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The effect of external magnetic field and temperature on paramagnetic spin-1/2 and spin-1 degree of 
freedom was investigated. Magnetization m(h,T) and magnetic susceptibility are found to have a direct 
and inverse behaviour with external magnetic field and temperature respectively. Various limiting cases 
of m(h,T) were considered for different temperatures and external magnetic field. The agreement with 
Curie’s law was observed. The saturated points of m(h,T) for spin-1 and spin-1/2 are discussed. 
Comparison between magnetic susceptibility of spin-1/2 and spin-1 as a function of temperature was 
also examined. 
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INTRODUCTION 
 
The Heisenberg Hamiltonian is a quantum mechanical 
analogue of the Ising model (for an introduction sees 
(Manousakis, 1991; Affleck, 1988), an early discussion 
can be found in (Van Vleck, 1932)).This model is a 
variant of the Hubbard model (Hubbard, 1963) at half 
filling and large onsite Coulomb repulsion U, which en-
forces the constraint of singly occupied site. The model, 
describing the pairwise interactions between localized 
spins, is one of the most fundamental models of corre-
lated quantum matter. In spite of its simple mathematical 
form, it has an unimaginable richness, arising from 
dimensionality and geometrical constraints, competing 
exchange interaction, the type of spin degrees of freedom 
and additional interactions with external magnetic fields 
or other degrees of freedom such as phonons. 

Neutron scattering experiments (Shirane et al., 1989; 
Aeppli et al., 1989) show that the magnetic behaviour of 
materials is well described by the quantum Heisenberg 
models. Following the PhD Thesis of Pierre Curie (Paris: 
Gautheir-Villars; 1895) (Curie, 1895), there have been 
oodles of theoretical and experimental research on the 
dependence of paramagnetic materials and its variants 
on magnetic field and temperature. Temperature depen-
dence of the so-called two-magnon excitation in the 
paramagnetic phase was studied by using the “Equation-
of-Motion Method” (Horsch and von der, 1988). Here,  the 
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temperature variations of frequency shift, absorption 
coefficient and integrated intensity were found to coincide 
with experimental data. The investigation of the ground 
state and the lowest excited state of the spin 1/2-
heisenberg model using ED and VMC was carried out by 
Horsch and von der (1988). Their calculation on the 
dispersion of spin-wave excitation revealed an excited 
triplet which becomes degenerate with the ground state 
in the thermodynamic limit. A study of spontaneous 
magnetization as a function of temperature by Xuang-
Zhang and Zhan Zhang 1990, (Masahiko et al., 2002) 
found the existence of multiple magnetism in the super-
lattices. A Universal electron paramagnetic resonance 
(EPR) simulation program developed by Hanqing Wu 
1996; (Larico, 2004) was used for the simulation of EPR spec-
tra of spin-1 and spin-1/2. The EPR simulation results 
show the absence of EPR signal in the EPR simulation 
when D > frequency and the presence of an EPR signal, 
when D � frequency. From synthesized powder sample of 
NaTiSi2O6, Masahiko et al. (2002) observed a typical 
behaviour of magnetic susceptibility in a spin-1/2 1D 
magnet, followed by a spin-Peierls-like transition at 210 
K. Furthermore, a study of electronic properties and 
structural properties of isolated nickel impurities in 
diamond was in agreement \with EPR model and optical 
experiments on synthetically grown diamond Larico Braz 
R (2004). More recently, paramagnetic results on one-
dimensional spin-1 single-ion studied by the random 
phase approximation for the exchange interaction term 
and the Anderson–Callen approximation for the  anisotro- 
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py term were found to be in agreement with the other 
theoretical results (Hai-Jun et al., 2009). 

A fundamental starting point in the study of the 
magnetic property of undoped materials is the study of 
magnetic property of a single isolated spin. This system, 
though deceitfully simple is the key for probing into more 
complex systems. This paper, therefore, focuses on the 
detailed study of isolated spin-1 and spin-1/2 degree of 
freedom of a paramagnet and their response to external 
magnetic field and temperature. 

The layout of this paper is as follows. In the next 
section, we present the Heisenberg Hamiltonian and 
reformulate it in terms of creation and annihilation 
operators. In subsequent section, a detailed study of 
spin-1/2 degree of freedom is presented. The effect of 
temperature and an external magnetic field is elucidated.  

Also, detailed examination of spin-1 degree of freedom 
and its dependence on temperature and an external 
magnetic field is presented. Graphically comparison on 
the paramagnetic susceptibility of spin-1/2 and spin-1 
degree of freedom is presented in subsequent section. 
From this, a conclusion in drawn. 
 
 
THE HEISENBERG HAMILTONIAN 
 
For the case where the pairwise interactions between the 
spins are isotropic, the basic Heisenberg Hamiltonian is 
commonly represented as 
 

,

.ij i j i
i j i

H J S S h S= −� �                                                (1) 

 
Where; ijJ the exchange integrals between spins are on 

sites i and j which decays rapidly with distance between 
these sites. The ground state of the model depends on 
the sign of the exchange integral. If ijJ  >0 (antifer-

romagnetic alignment), the ground is the checker board-
like Neel state, with all the spins up at the even sites and 
down at the odd site or the other way round. If

 ijJ  <0 

(ferromagnetic alignment), the spins tend to align 
themselves with their neighbour and the ground state is 
the configuration with either all the spins up or all down. 
More often, only nearest-neighbour interactions are 
considered and longer-range interactions are neglected. 
The spin operators 

iS  represent quantum spin degrees 

of freedom, that is with S= ½ or 1. h  represents an 
applied external magnetic field. Additional richness enters 
the Hamiltonian when anisotropies are considered. For 
example, a frequently studied variant of the isotropic 
Heisenberg model is the XYZ model. 
With . z z x x y y

i j i j i j i jS S S S S S S Sλ→ + + , where the 

anisotropy parameter λ  interpolates between the XY limit 
( 0=λ ), the Heisenberg limit ( 1=λ ) and the Ising  limit  

 
 
 
 
( ∞=λ ). The spin operators .i jS S  for the Heisenberg 

limit can be written as; 
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In terms of creation and annihilation operators, the spin 
operators are defined as; 
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Where;
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Using equation (2 - 5), the Hamiltonian (1) for the 
Isotropic Heisenberg antiferromagnetic is given by 
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These quantities are defined by; 
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ISOLATED SPIN ½ DEGREE OF FREEDOM 
 
In this session, we consider the response of a single 
quantum spin-1/2 to an applied magnetic field.Spin-1/2 
degree of freedom has projection of 2±  along the z-axis. 
The Hilbert space of this system has two states ↑ and 

↓ . Since there is no interaction, the only relevant part of 

H in equation 6 is Hh. Hence, the Hamiltonian of this 
system is given by: 
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Table 1. Variation of m(h,T) with h for fixed values of T 
 

H T=0.2 m1 (h,T) T=0.6 m1 (h,T) T=1 M3 (h,T) T=1.2 m4 (h,T) 
0.00 0.000000000 0.000000000 0.000000000 0.000000000 
0.5 0.42414182 0.19705928 0.12245933 0.10268534 
1 0.49330715 0.3411309 0.23105858 0.19705928 

1.5 0.49944722 0.42414182 0.31757448 0.27729986 
2 0.4999546 0.4655548 0.38079708 0.3411309 

2.5 0.49999627 0.48473285 0.42414182 0.38927268 
3 0.49999969 0.49330715 0.45257413 0.42414182 

3.5 0.49999997 0.49708025 0.47068777 0.44866421 
4 0.50000000 0.49872898 0.48201379 0.4655548 
5 0.50000000 0.49975969 0.49330715 0.48473285 

 
 
 

 
 
Figure 1. A plot of m(h,T) versus h for fixed values of T. 
 
 
 
The action of H on these two states will generate a 
diagonalized 2x2 matrix as shown below 
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The matrix is already diagonal with ground state energy 

given by 
2
h

E g −=  and excited state given by
2
h

Eex = . 

The magnetization of this system is given by; 
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The magnetic susceptibility )(Tχ  of this system is 
obtained by taking the partial derivative of m (h, T) with 
respective to h at the limit 0→h .Hence, we have that 
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This result shows the inverse dependence of magnetic 
susceptibility and magnetization on temperature (Curie’s 
law). 
 
 
GRAPHICAL AND PHYSICAL INTERPRETATION OF 

( , )mhT   
 
Since the magnetization of this system is a function of 
both temperature and magnetic field, to visualize its 
physical content, it is necessary that to plot it against h 
and T for given values of T and h, respectively (Table 1 
and 2). 

In Figure 1, as 0→h , 0),( →Thm , for any value of 

T. In this limit, 02 →hβ  and 22
hh

Tanh ββ →�



�
�
�

�
. In 

Figure 2, as 0→T  or 12 >>hβ , 
2

1),( →Thm . In this 

limit, 1
2

→�



�
�
�

� h
Tanh

β
. Also, in Figure 2, for given value 

of T, the function m (h, T) is observed to be nearly 
parallel to h axis (indicating zero gradient) as the value of 
h is increased. This behaviour indicates that m (h, T) has 
attained its saturated value of 0.5 
 
 
ISOLATED DEGREES SPIN-1 OF FREEDOM 
 
Spin-1 degrees of freedom has projections 1, 0, -1,  along  
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Table 2. Variation of m (h, T) with T for fixed values of h. 
 

T h=0.75 m1(h,T) h=1.75 m2(h,T) h=3 m3(h,T) h=4.5 m4(h,T) 
0.25 0.45257413 0.49908895 0.49999386 0.49999998 
0.50 0.31757448 0.47068777 0.49752738 0.49987661 
1.25 0.14565631 0.30218389 0.4168273 0.47340301 
1.50 0.12245933 0.26254197 0.38079708 0.45257413 
1.75 0.10553249 0.23105858 0.34739134 0.42899998 
2.50 0.07444252 0.16818777 0.26852478 0.35814894 
2.75 0.06776232 0.15393099 0.24855287 0.33703953 
3.00 0.0621765 0.14183405 0.23105858 0.31757448 
3.50 0.05336737 0.12245933 0.20206337 0.28342090 
4.00 0.04673815 0.10766317 0.1791787 0.25491499 

 
 
 

 
 
Figure 2. A plot of m (h,T) versus T for fixed values of h. 

 
 
 
the direction of z-axis. The size of the Hilbert space of 
this system is 3 that is,↑ ,↓ and 0.These three 
projections will give rise to the  eigenvalues 0,-h and h. 
The magnetization of this system is giving by: 
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The derivative of magnetization with respect to the 
applied field gives 
                      

( )
( )

( )
( )[ ]2

2

21

4
21

2)),((

hCosh

hSinh
hCosh

hCosh
h

Thm

β
ββ

β
ββ

+
−

+
=

∂
∂

      (15)                                                                                                                   

 
The susceptibility of the system is given by; 

3
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0
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This result for spin-1 degree of freedom still obeys the 
Curie’s law for isolated spin. 
 
 
GRAPHICAL INTERPRETATION OF SPIN-1 DEGREE 
OF FREEDOM                                                                                                                   
 
It is useful to visualize the physical content of m (h, T) by 
plotting it against temperature and magnetic field for 
given values of magnetic field and temperatures

 

respec-
tively (Tables 3 and 4). In Table 3, there exist a linear 
relationship between m (h, T) and h for given values of T 
and for Table 4, an inverse relationship exists between m 
(h, T) and T for given values of h. 
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Table 3. The different values of m (h, T) obtained by slightly varying h for given values of T. In this 
table, there exist a linear relationship between m (h, T) and h for given values of T. 
 

H T = 0.2 m1(h,T) T = 0.6 m2(h,T) T = 1 m3(h,T) T = 1.2 m4(h,T) 
0.00 0.00000000 0.00000000 0.000000000 0.00000000 
0.5 0.91223468 0.49962272 0.32015667 0.27003119 
1.0 0.99321726 0.78749445 0.57521038 0.49962272 
1.5 0.99944661 0.91223468 0.74648446 0.67070133 
2.0 0.9999546 0.9631425 0.85093709 0.78749445 
2.5 0.99999627 0.98426317 0.91223468 0.86357923 
3.0 0.99999969 0.99321726 0.94797458 0.91223468 
3.5 0.99999997 0.99706318 0.96894495 0.94326587 
4.0 1.00000000 0.99872575 0.98136107 0.9631425 

 
 
 

Table 4. Values of m (h, T) are obtained by varying T for given values of h. An 
inverse relationship exists between m (h, T) and T for given values of h.  
 

T h = 0.75 m1(h,T) h = 2 m2(h,T) h = 3.5 m3(h,T) h = 5 m4(h,T} 
0.25 0.94797458 0.99966442 0.99999917 1.00000000 
0.50 0.74648446 0.98136107 0.99908729 0.9999546 
1.25 0.37773166 0.77192376 0.9359274 0.98136107 
1.50 0.32015667 0.69801973 0.89535281 0.9631425 
1.75 0.27730217 0.63233393 0.85093709 0.93963632 
2.50 0.19705734 0.4833401 0.71836078 0.85093709 
2.75 0.17959996 0.4464842 0.67836569 0.81911142 
3.00 0.16495374 0.41440459 0.64118428 0.78749445 
3.50 0.14177461 0.3615866 0.57521038 0.72668203 
4.00 0.12427311 0.32015667 0.51943127 0.67070133 

 
 
 

 
 
Figure 3. A plot of m (h,T) versus T for varying values of h.  

 
 
 
Figure 3 shows that for a given temperature, the 
magnetization increases with increasing magnetic field, 
saturating at its maximum value of 1. In Figure 4,  the  re- 

lationship between m (h, T) and T for given values of h is 
inverse. For both graphs, when the argument )( hβ is 
extremely  large  or  small,  the  magnetization  for  spin-1  
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Figure 4. The inverse relationship between m (h,T) and T for given values of h.  

 
 

Table 5. The inverse behaviour of (T) for both spin-1 
and spin-1/2 systems as a function of temperature. 
 

T Spin-1/2 ( χ ) Spin-1 ( χ ) 

0.25 1.0000 2.66666667 
0.50 0.5.000 1.33333333 
1.25 0.2000 0.53333333 
1.50 0.1667 0.44444444 
1.75 0.1429 0.38095238 
2.50 0.1000 0.26666667 
2.75 0.0909 0.24242424 
3.00 0.0833 0.22222222 
3.50 0.0714 0.19047619 
4.00 0.0625 0.16666667 

 
 
 
degree of freedom takes the form 
 

( )hTanhThm β=),(                    (17)                                                                                                                               
 
This implies that the zero temperature and magnetic field 
magnetization are 1 and 0 respectively. 
 
 
MAGNETIC SUSCEPTIBILITY OF SPIN-1/2 AND SPIN-1 
 
Magnetic susceptibility χ  for both spin-1 and spin-1/2 
degree of obeys the inverse law. This inverse relationship 
between χ  and T, clearly suggests that an increase in 
thermal energy of the system will lead to a decrease 
in χ (Table 5).  

From both graph (Figure 5), the magnetic susceptibility 
increases with decrease in temperature. Another 
important observation from the graph is that the magnetic 
susceptibility for spin-1 degree of freedom is greater than 
spin-1/2 degree of freedom for the same range of 
temperatures. This implies that the thermal agitation in 
response to temperature is more in spin-1/2 compared to 
spin-1 

 
 
Figure 5. Plot of χ (T) versus T for both spin-1/2 and spin-1. 
 
 
 
Conclusion 
 
In this paper, we have examined two cases of paramag-
netism, that of spin-1/2 and spin-1 degree of freedom. 
For both systems, magnetization and susceptibility are 
affected by temperature and magnetic field in accordance 
with Curie’s law. The plot of m (h, T) against h, for given 
values of temperature and vice versa, shows that the 
saturated values of m (h, T) for spin-1/2 and spin-1 are 
respectively ½ and 1. An important observation in this 
work is that besides temperature and magnetic field, the 
magnetization and susceptibility also depend on the spin 
degree of freedom. The comparison between magnetic 
susceptible of spin-1/2 and spin-1 shows that spin-1 
systems have the tendency to sustain magnetism more 
than spin-1/2 systems for the same range of tempera-
tures. In general, the tendency of atomic magnetic 
moments to  align  themselves  parallel to  magnetic  field  



 
 
 
 
(were the potential is minimum) is opposed by random 
thermal motion which tends to randomize their 
orientations. For this reasons, paramagnetic susceptibility 
and magnetization always decreases with increasing 
temperature. 
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