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In this paper, we construct and suggest some new, efficient, and accurate numerical algorithms based 
on the spectral methods for solving the Burgers’ equation. Spectral methods using Chebyshev and 
Legendre polynomials are developed. Test problems are used to validate these methods that are found 
to be accurate and efficient. Also, the results show that despite the fact that Chebyshev polynomials are 
the most widely used ones; the use of Legendre polynomials gives more accurate results. In addition 
the present study includes numerical solution of Burgers’ equation by means of the Adomian 
decomposition method. Comparison with other methods is also given. 
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INTRODUCTION 
 
There has been a great interest in approximating the 
solution of initial boundary value problems using spectral 
methods as a truncated series of globally defined smooth 
functions in each space variable, which can be 
considered as a development of the known weighted 
residual method. The choice of trial functions 
distinguishes spectral methods from finite difference and 
finite element methods. For problems with smooth 
solutions this method is highly accurate and in many 
other equations (especially nonlinear problems) gives a 
good approximation to the solution. The trial functions 
considered here are the well-known Chebyshev and 
Legendre polynomials, which are defined as: 
 

i) Chebyshev polynomial )(xTn  are defined on (-1,1) 
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ii) Legendre polynomials )(xpn on (-1,1) with the weight 
function w(x) = 1 are defined with the recurrence relation: 
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Kaya (2004), Kaya et al. (2003), Adomian (1994), 
Wazwaz (2000), Ismail et al. (2004) and Khater et al. 
(2002) have used the Adomian decomposition method 
(ADM) for solving large nonlinear partial differential 
equations (coupled system). In this paper, we use the 
Adomian decomposition method for solving the Burgers’ 
equation, which has been suggested and developed by 
Adomian (1994). Some numerical examples are tested to 
illustrate the efficiency of the proposed algorithm. It is an 
interesting and open problem to extend this technique for 
solving the variational inequalities associated with the 
obstacle, unilateral, contact and free boundary value 
problems. Noor (2004, 2009) and Noor et al. (1993), 
developed applications, formulation and other numerical 
methods for solving variational inequalities and related 
optimization problems. 
 
 
Burgers equation and the Tanh-function method 
 
We consider the Berger equation of the following type: 
 

0,t x xxu uu u a x bε ν+ − = ≤ ≤ ,           (6) 
 
Where andε ν  are positive parameters and the 
subscripts t and x denote differentiation. Appropriate 
boundary conditions will be chosen from the following: 
 

 0),(,),( 21 >∀== ttbutau ββ ,                      (7) 
 
and the initial condition to be used is described in “the 
initial state” (Khate et al., 2002). 

In this study, we find the exact solution for Burgers’ 
equation using the recent Tanh-function method (Parkes 
et al., 1997, 1998; Khater et al., 2002; Fan, 2000, 2001; 
Evans and Raslan, 2005a, b). For this purpose, suppose 
we use the transformation: 
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Based on this fact, we consider the following changes: 
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Using (9), Burgers’ Equation 6 can be represented by the 
ordinary differential equation: 
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Integration (10), we have: 
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We introduce a new independent variable: 
 
 ),tanh(ξ=y                                                           (12) 
 
which leads to the change of derivative: 
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We now introduce the following Tanh series: 
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Where m is a positive integer. 
 
From (13) and (14), we get: 
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To determine the parameter m , we balance the linear 
term of highest order in (15) with the highest order 
nonlinear term. This in turn gives 1,m =  so we get: 
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From (15) and (16), we obtain the following system of 
algebraic equations in: 
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With the aid of Mathematical, we find: 
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Thus, we obtain: 
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Which are solutions of (6). In a similar way, the following 
solutions are obtained: 
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We now consider some numerical methods for finding the 
analytical solutions of the Berger equation using the 
Chebyshev and Legendre polynomials. 
 
 
NUMERICAL SCHEMES 
 
In this study, we consider several analytical methods for 
solving the Bergers equation of the type (6) and this is 
the main motivation of this paper. For simplicity and to 
convey the basic ideas of these schemes, we assume 
that the solution of (6) is considered in the following form: 
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Where )(tAn are time dependent unknown coefficients 

and )(xnΦ  are the trial functions in the space variable x. 
Form 21 and 6, we obtain: 
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Where • and ‘ are differentiation with respect to time and 
space respectively. We consider )(xnΦ  as Chebyshev 
and Legendre polynomials. 
 
 
Spectral method using Chebyshev polynomials 
 
We introduce a formula for the first and second derivative 
of an infinitely differentiable function in terms of 
Chebyshev polynomials. We can see that: 
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We suppose that we are given f(x) as an infinitely 
differentiable function on (-1,1) as: 
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So the (k-1)th derivative of f(x) is: 
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It can be easily shown that: 
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Where 0,1,20 >== ncc n  . Let the numerical solution 
be of the form: 
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Differentiation and substituting in (6) 
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Tn(x) are polynomials of degree .n  Here Tn’(x) and Tn”(x) 
are of degrees (n-1) and (n-2) respectively. 
 
Our main purpose is to express the derivatives in terms 
of Tn(x). Let: 
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Expressing )()1( tAn and )()2( tAn  in terms of An(t)’s (27) 
and (28), we obtain from (29): 
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It is known that Chebyshev polynomials satisfy: 
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Multiplying Equation 33 by 
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respect to x over (-1,1) and considering the orthogonal 
property of Chebyshev polynomials, we get: 
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Which is a first order ODE that can be solved using a 

suitable finite difference technique for
•

)(tAn and Equation 
35 can be solved, hence the solution at different time 
levels. 
 
 
Spectral method using Legender polynomials 
 
Considering the recurrence relation: 
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Now, assume that the solution of (6) in the form: 
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Where Pn(x) is the well known Legendre polynomials 
satisfying (4). 
 
Now, An(t) are chosen such that u(x,t) satisfies Burger’s 
Equation 6. Differentiating (39) with respect to x and 
substituting in (4): 
 

 0)()(')()(
2

0

1

000

=″−+ ����
−

=

−

===

• N

n
nn

N

kl
kk

N

l
ll

N

n
nn xPAxPAxPAxPA γ .     (40) 

 
We can express Pn’ and Pn” in terms of Pn(x) as: 
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Then Equation 40 with (41), (42) leads to: 
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The product of two polynomials is given in (44) as: 
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Multiplying both sides of (46) by Pm(x) and integrating 
with respect to x over the interval (-1,1), Equation 46 
becomes: 
 

 

1 min( , )1
(1)

0 0 0 01

1 12 (2)

2
01 1

( 0.5 2)
() ( ) ( ) () ()

( 0.5 )

( ) ( ) () ( ) ( ) 0

l kN N N
i k i l i

n n m l k
n l kl i l k i

N

l k i m n n m
n

BB Bl k i
A t P xP xdx At A t

l k i B

P xP xdx A t P xP xdxγ

−•
− −

= = = = + −−

−

+ −
=− −

+ + −+
+ + −

− =

� ����

�� �
 (47) 

 
Applying the orthogonal property, we have: 
 

0)(
)5.0(
)25.0(

)()()(
)2(

0

1

0

),min(

0

)1( =−
−++
−+++���

=

−

= = −+

−−
•

tA
B

BBB
ikl
ikl

tAtAtA n

N

l

N

kl

kl

i ikl

iliki
kln γ

                                                                       (48) 
 
This is a first order ordinary differential equations which 
can be treated and solved using suitable technique 
leading to a nonlinear algebraic system of equations. 
 
 
The initial state 
 
At time level zero, the analytical solutions are given as: 
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We can obtain initial values for the expansion coefficients 
by solving the linear system using Gauss elimination with 
partial pivoting. 



 
�

 

 
 
 
 
The Adomian decomposition method 
 
Consider the partial differential equation written in the 
form: 
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With initial condition given by: 
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Where Lt, L are partial differential operators, N is a 
nonlinear operator.  
 

Applying the inverse operator 1−
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The Adomian decomposition method assumes the 
unknown function ),( txu  to be expressed as infinite 
series of the form: 
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Identifying the zero component 0u  by all terms that arise 
from the initial condition and as a result the remaining 
components , 1nu n ≥  can be determined using the 
recurrence relation: 
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Knowing 0u we find 1 2, ,...u u nu , and hence can find 

( , ).u x t  
 
 
Example 
 
We consider Burgers equation in the form: 
 

0, 0 30t x xxu u u u xε ν+ − = ≤ ≤ ,         (58) 
 
With boundary conditions u (30, t) = 0, u (0, t) = 1, and 
initial condition: 
 

1
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u x x
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Which has the exact solution: 
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u(-1,t) = 1, u(1,t) = 0, and the equation is: 
 

1
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Numerical results for test problems are given in the 
following cases: 
 
 
RESULTS 
 
Numerical results using Chebyshev polynomials 
 
In Table 1 we give a list of error norms for different 
truncated numbers, using spectral method with 
Chebyshev polynomials. We used a subroutine given by 
Powell’s based on Newton’s method for solving the 
nonlinear equations for each level time. 
 
 
Numerical results using Legendre polynomials 
 
In Table  2  we  give  a  list  of  error  norms  for  different
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Table 1. The error for time = 1, time step = 0.01. 
 

 Error N = 10 N = 18 N = 24 

ν = 1 
L2-error 2.18E-2 5.79E-3 5.81E-3 

L ∞ -error 2.39E-2 1.21E-2 1.17E-2 
     

ν = 1.4 
L2-error 9.13E-3 4.14E-3 5.34E-3 

L ∞ -error 1.02E-3 4.73E-3 7.60E-3 
 
 
 

Table 2. The error for time = 1, time step = 0.01. 
 

 Error N = 10 N = 18 N = 24 

ν =1 
L2-error 1.62E-2 5.79E-3 5.70E-3 

L ∞ -error 1.72E-2 1.24E-2 1.20E-2 
     

ν =1.4 
L2-error 4.75E-3 1.03E-3 1.78E-3 

L ∞ -error 5.35E-3 1.35E-3 3.94E-3 
 
 
 
truncated numbers, using spectral method with Legendre 
polynomials. We used a subroutine given by Powell’s 
based on Newton’s method for solving the nonlinear 
equations for each level time. Our results show that 
despite the fact that Chebyshev polynomials are the most 
widely used ones, the use of Legendre polynomials give 
more accurate results. 
 
 
The Adomian decomposition method for Burgers’ 
equation 
 
Consider the following problem: Find a function u(x, t) 
satisfying the Burgers’ equation with the initial: 
 

1
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4
u x t x x
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And as in “the Adomian decomposition method” we get 
the recurrence relations: 
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Where 0, ≥nAn are Adomian polynomials that 
represent the nonlinear terms. 
 
Recall that these polynomials can be formulated for each  

nonlinear term. Here, we list sets of Adomian polynomials 
as: 
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Using these polynomials and employing the appropriate 
recursive relation we find: 
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and so on. The solution in a series form is given by: 
 
 ...,),(),(),(),( 210 +++= txutxutxutxu         (67)  
 
It is necessary to make tests for these series solutions, 
by showing a comparison with the exact solutions of the 
Burgers’ equation. In the program, we put 1ν = , t = 2, 
and take only four terms of the series. The series and the 
exact solution results are shown in Table 3, it seems that 
the series solution are confirmed with the exact solution. 
Figures 1 and 2 shows the Adomian solution for Burgers’ 
equation at t = 2.  
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Table 3. Adomian decomposition solution at t = 2. 
 
X ADM sol. Exact sol. Error 
-1.0 0.999665 0.999665 -1.30E-7 
-0.4 0.880828 0.880828 3.08E-5 
0.0 0.622396 0.622459 -6.34E-5 
0.4 0.0758605 0.0758582 2.29E-6 
1.0 0.0009108 0.0009110 -1.53E-7 

 
 
 

 
 

Figure 1. ADM solution, 1,0 1tν = ≤ ≤ . 

 
 
 

 
 
Figure 2. ADM solution, 0.5,0 1tν = ≤ ≤ . 
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Conclusion 
 
In this work, the spectral method was applied 
successfully for solving the nonlinear Burgers’ equation. 
The use of Legendre polynomials is proposed as a basis 
for the space of solutions and shows that it gives better 
results than the Chebyshev polynomials in which the 
weight function for the first (Legendre) is more suitable 
near the boundaries than the other (Chebshev). Also the 
applications of the recent Adomian decomposition 
method have been proposed and given very accurate 
results and show that it can be widely used for many 
nonlinear partial differential equations. In addition the 
Tanh-function method is used to get the exact solution 
and all numerical results are shown in a comparison with 
the obtained exact solution. 
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