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In this paper, we construct and suggest some new, efficient, and accurate numerical algorithms based
on the spectral methods for solving the Burgers’ equation. Spectral methods using Chebyshev and
Legendre polynomials are developed. Test problems are used to validate these methods that are found
to be accurate and efficient. Also, the results show that despite the fact that Chebyshev polynomials are
the most widely used ones; the use of Legendre polynomials gives more accurate results. In addition
the present study includes numerical solution of Burgers’ equation by means of the Adomian
decomposition method. Comparison with other methods is also given.
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INTRODUCTION

There has been a great interest in approximating the
solution of initial boundary value problems using spectral
methods as a truncated series of globally defined smooth
functions in each space variable, which can be
considered as a development of the known weighted
residual method. The choice of trial functions
distinguishes spectral methods from finite difference and
finite element methods. For problems with smooth
solutions this method is highly accurate and in many
other equations (especially nonlinear problems) gives a
good approximation to the solution. The trial functions
considered here are the well-known Chebyshev and
Legendre polynomials, which are defined as:

i) Chebyshev polynomial T, (x) are defined on (-1,1)

with respect to the weight function ) —

*Corresponding author. E-mail: noormaslsma@hotmail.com,
mnoor.c@ksu.edu.sa.

AMS classification: 35 Q20; 65A30; 65N35; 41A15; 76B25.

T (x)= cosfcos’ x), n=>0

and the recurrence relation:

T, 0=2T,(0—T,(0,[;9=L T()=x, (1)
Where,
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T, (x) =2 Z( pr B (” D! o pyreem, ©)
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i) Legendre polynomials p, (x)on (-1,1) with the weight
function w(x) = 1 are defined with the recurrence relation:

n+D) p,,)=2n+Dxp,)—np,, (. D=L pW=x,  (4)



And,

07
jg(»c)p,,,(x)dp A= ZAy (I %}r

Kaya (2004), Kaya et al. (2003), Adomian (1994),
Wazwaz (2000), Ismail et al. (2004) and Khater et aI
(2002) have used the Adomian decomposition method
(ADM) for solving large nonlinear partial differential
equations (coupled system). In this paper, we use the
Adomian decomposition method for solving the Burgers’
equation, which has been suggested and developed by
Adomian (1994). Some numerical examples are tested to
illustrate the efficiency of the proposed algorithm. It is an
interesting and open problem to extend this technique for
solving the variational inequalities associated with the
obstacle, unilateral, contact and free boundary value
problems. Noor (2004, 2009) and Noor et al. (1993),
developed applications, formulation and other numerical
methods for solving variational inequalities and related
optimization problems.

Burgers equation and the Tanh-function method

We consider the Berger equation of the following type:

u+euu, —vu_ =0, a<x<b (6)
Where & and v are positive parameters and the

subscripts t and x denote differentiation. Appropriate
boundary conditions will be chosen from the following:

ua)=8.ubt)=4 V>0 (7)

and the initial condition to be used is described in “the
initial state” (Khate et al., 2002).

In this study, we find the exact solution for Burgers’
equation using the recent Tanh-function method (Parkes
et al.,, 1997, 1998; Khater et al., 2002; Fan, 2000, 2001;
Evans and Raslan, 2005a, b). For this purpose, suppose
we use the transformation:

f &), (8)

Where & =c(x—At1).

u(x,t) =

Based on this fact, we consider the following changes:
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d d2
d?()a (=c df()i(): éﬁ

Using (9), Burgers’ Equation 6 can be represented by the
ordinary differential equation:

_ df(f) df (&) , d*f(&) _
cA E ecf(&)—== E —c’v e =0.

Integration (10), we have:

d
—(. 9
8t(): (9)

(10)

2, 4 (6)
i =0.

We introduce a new independent variable:

—cﬂf(§)+—f &)-c

= tanh(¢), (12)

which leads to the change of derivative:

_é‘() (- y)—() (13)

We now introduce the following Tanh series:

F@=50)=a . (14

Where m is a positive integer.

From (13) and (14), we get:

—cls+£s2—c2/1 V(l—yz)ﬁzO. (15)
2 dy

To determine the parameterm, we balance the linear
term of highest order in (15) with the highest order
nonlinear term. This in turn gives m =1, so we get:

s(y)=a, +a,y. (16)

From (15) and (16), we obtain the following system of
algebraic equations in:

a,.a,,c,and A
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y'i=c’v a,+0.5c€ aje—c A a,=0,
y' :a,ace—acd=0, (17)

y*:0.5ceal +c’vea” =0.

With the aid of Mathematical, we find:

—2cvV —2cvV
a, = ,a, = A=—2cvV,
€ € (18)
2cV —2cV
Ay =——,a, = A=2cv,
E E

Thus, we obtain:

uCet) = 2V (1 = Tanhle(x—2cvi]).
E

2¢cv

u(x,r) = (I-Tanhlc(x—2cVt])

Which are solutions of (6). In a similar way, the following
solutions are obtained:

uGet) = 2V (1= Cothe(x - 2¢v1]),
E
w(x,t) = ZLgV(l— Coth[c(x—2¢Vv1))

We now consider some numerical methods for finding the
analytical solutions of the Berger equation using the
Chebyshev and Legendre polynomials.

NUMERICAL SCHEMES

In this study, we consider several analytical methods for
solving the Bergers equation of the type (6) and this is
the main motivation of this paper. For simplicity and to
convey the basic ideas of these schemes, we assume
that the solution of (6) is considered in the following form:

u(x,t) =iAn NP, (x), (21)
n=0

Where A, (t)are time dependent unknown coefficients

and @, (x) are the trial functions in the space variable x.
Form 21 and 6, we obtain:

SAOBO+EIAOBM SAOBW -y I AOBM =0, (@)

Where ® and * are differentiation with respect to time and
space respectively. We consider @, (x) as Chebyshev
and Legendre polynomials.

Spectral method using Chebyshev polynomials

We introduce a formula for the first and second derivative
of an infinitely differentiable function in terms of
Chebyshev polynomials. We can see that:

LTn'ﬂ (x)— LTn'_1 (x)=2T,(x) . (23)
n+l1 n—1

We suppose that we are given f(x) as an infinitely
differentiable function on (-1,1) as:

f()=2 AT, (), (24)
n=0
So the (k-1 )th derivative of f(x) is:

FOP 0= 4, T (x), (25)

n=0

Rewrite (25) in the form:

[P =) ANT, (0,
n=0

Then
fP=3 AT, (v, (26)
n=0
It can be easily shown that:
AV = 2 i A (27)
n - p 14 ’
n p=n+l
p+nodd
And
a» =L i *(p?—n*)A (28)
n 217 l’ n P
n p=nt+

p+neven



Where ¢, =2,c,
be of the form:

=1,n>0 . Let the numerical solution

N
u(x,n)=> A, T,(x).
n=0
Differentiation and substituting in (6)

Z&T@HZAT@ZAJ@»yZATIoo 9)

ki=0

Tn(x) are polynomials of degree n. Here T, (x) and T,*(x)
are of degrees (n-1) and (n-2) respectively.

Our main purpose is to express the derivatives in terms
of Ty(x). Let:

N-1

u,(x,0)=Y AV T, (x),

n=0

- (30)
u, (x,0)=Y AP T, (x),
n=0

Expressing A" (f)and A'® () in terms of A(t)’s (27)
and (28), we obtain from (29):

EA@NﬁQSEmA@N®T®7§A®T®dl31

O kH)

It is known that Chebyshev polynomials satisfy:
]} (X) Tk (X) = 05( l+k‘ (X) + l k‘ (-x)) (32)

From (32) and (31), we have:

N o NM M 2
DAOTHEY SAUOAOT, DT, 0 ~7DANTW0 33,

T, (x)
V1-x?

respect to x over (-1,1) and considering the orthogonal
property of Chebyshev polynomials, we get:

Multiplying Equation 33 by and integrating with
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N o
wa->MQZMW%(MM24W
n=0 =0 k=0 (34)
N2 (2
—7ZA7(t)—c5 =0

Thus:

N,N-1 N,N-1
A)+05 ZA,a)AkaHos ZA,(t)AS)(t) yAW)=0 (35)

(o 4

Which is a first order ODE that can be solved using a

suitable finite difference technique for A () and Equation
35 can be solved, hence the solution at different time

levels.
Spectral method using Legender polynomials

Considering the recurrence relation:
() p,,O=2n+Dxp,(0—np, (0, =L pY=x.  (36)

In a similar way to Chebyshev polynomials, we can

deduce that if f(x) is expressed as f(x) = ZAn P (x),

n=0

then £ (x) = ZA,(Z") P, (x) and it can be shown that:

n=0

A =@2n+1) DA, (37)

p=n+l1
p+nodd

And

A? =(n+05) ip(p+1)—n(n+1)]Ap,n20, (38)
pnt2

ptneven

Now, assume that the solution of (6) in the form:

u(x,))=Y A @) P,(x), (39)
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Where P,(x) is the well known Legendre polynomials
satisfying (4).

Now, A,(t) are chosen such that u(x,t) satisfies Burger’s
Equation 6. Differentiating (39) with respect to x and
substituting in (4):

N o N NA N2 ”
DYAP®+YAP®IAR®-YDAP 0=0. (40
=0 =0 kEO =0
We can express P, and P,” in terms of P(x) as
N-1
u,(x,0)=>Y A" P,(x),
n=0
N-2
u, (.0 =Y A7 P,(x),
n=0

It shows that:

N
AV =@2n+1) DA, (42)
D nod
And

Af,z) =(n+0.5) ilp(p+1)—n(n+1)]Ap,n20’ (43)

p=t2
ptneven

Then Equation 40 with (41), (42) leads to:

ZA(r)P(xHE;(r)&(r)T(x) T@-@,@T W=C, (44)

EOkH)

The product of two polynomials is given in (44) as

PP (1) = ““hi”“ (I+k+0.5-2)) B.B_.B,_,
e & (+k+05-i) B,

B (49)

I'G+0.5)

Where B, =
I'(0.5)i!

, and I is the well known Gamma
function.

From (45) and (44), we get:

N Mnilk) (l+k+05—2)6§45
G 0 %) i gk o
Y Ll
M o (46)
72‘4@}@:0

Multiplying both sides of (46) by P.,(x) and integrating
with respect to x over the interval (-1,1), Equation 46
becomes:

N NN k) (l 405 Z)Bﬁ B
E f P + E DA 1 i 1
4()IP(X) o %m AR (+405) B, (47)

j PRk 30) jlmwc:o
4 o g

Applying the orthogonal property, we have:

. N _N-1minfk)

A S AOA @)

I kE0 =0

({+k+05-2)B B, @
0

(+k+05i) BHH 0=
(48)

This is a first order ordinary differential equations which
can be treated and solved using suitable technique
leading to a nonlinear algebraic system of equations.

The initial state

At time level zero, the analytical solutions are given as:
N

u(x,0)=>_A,(0)P,(x). (49)
n=0

We divide the interval (-1,1) into elements of equal
length; and let —1=x, <...<Xx, =1, be partition of (-

1,1) by the knots x;, thus for (N+1) different values of x;
we have the following system:

N
u(x,00=>A,0)®,(x,),i =0L...N (50)
n=0

We can obtain initial values for the expansion coefficients
by solving the linear system using Gauss elimination with
partial pivoting.



The Adomian decomposition method

Consider the partial differential equation written in the
form:

L u(x,t) = Lu(x,t) + N(u), (51)
With initial condition given by:
u(x,0) = g(x), (52)

Where L, L are partial differential operators, N is a
nonlinear operator.

Applying the inverse operator L,"1 to the equation and
using the initial condition, then:

u(x,t) = g(x)+ L' Lu(x,t)+ L'N(u), (53)

The Adomian decomposition method assumes the
unknown function u(x,7) to be expressed as infinite

series of the form:
u(x,t) =y u,(x,1), (54)
n=0

And the nonlinear term N (u) can be expressed hn terms
of the Adomian polynomials as:

Nw =Y 4, (55)
n=0

Where A, are the Adomian polynomials that can be

generated for all forms of nonlinearly (1,4,21,22). So we
get:

iun (x,t) = g(x)+ L' (L) + L' (i A), (56)
n=0 n=0

Identifying the zero component u, by all terms that arise
from the initial condition and as a result the remaining
components u,,n =1 can be determined using the
recurrence relation:

u, =g (x),

U, :L[_I(L (Zu11)+L;_1(ZAn)’n 21,
n=0

n=0

(57)
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Knowing u,we find u,,u,,...u,, and hence can find

u(x,t).

n?

Example
We consider Burgers equation in the form:
u, +euu —vu =0, 0<x <30, (58)

With boundary conditions u (30, t) =0, u (0, t) = 1, and
initial condition:

u(x,0)=0.5(1—tanh{4L(x —15})» (59)
14
Which has the exact solution:

u(x,t)=0.5(- tanh{%(x -15-0.5¢}),r > 0. (60)
14

2x—-30
Using the transformationX:x3—O, the domain

(0,30) leads to (-1,1) and consequently the solution to the
problem becomes:

u(x,t):O.S(l—tanh{L%(x -0.5}),r 20,—-1<x <1, (61)
4

u(-1,t) = 1, u(1,t) = 0, and the equation is:

u,+—uu, ———u, =0. (62)

Numerical results for test problems are given in the
following cases:

RESULTS

Numerical results using Chebyshev polynomials

In Table 1 we give a list of error norms for different
truncated numbers, using spectral method with
Chebyshev polynomials. We used a subroutine given by
Powell's based on Newton’s method for solving the
nonlinear equations for each level time.

Numerical results using Legendre polynomials

In Table 2 we give a list of error norms for different
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Table 1. The error for time = 1, time step = 0.01.

Error N=10 N=18 N=24

Vo1 Lo-error 2.18E-2 5.79E-3 5.81E-3
- L oo -error 2.39E-2 1.21E-2 1.17E-2
V14 Lo-error 9.13E-3 4.14E-3 5.34E-3
T L oo -error 1.02E-3 4.73E-3 7.60E-3

Table 2. The error for time = 1, time step = 0.01.

Error N=10 N=18 N =24

V1 Lo-error 1.62E-2 5.79E-3 5.70E-3
- L oo -error 1.72E-2 1.24E-2 1.20E-2
Voia Lo-error 4.75E-3 1.03E-3 1.78E-3
T L oo -error 5.35E-3 1.35E-3 3.94E-3

truncated numbers, using spectral method with Legendre
polynomials. We used a subroutine given by Powell’s
based on Newton’s method for solving the nonlinear
equations for each level time. Our results show that
despite the fact that Chebyshev polynomials are the most
widely used ones, the use of Legendre polynomials give
more accurate results.

The Adomian decomposition method for Burgers’
equation

Consider the following problem: Find a function u(x, t)
satisfying the Burgers’ equation with the initial:

u(x,t)=0.5(1—tanh{4ix),—ISx <1, (63)
Vv

And as in “the Adomian decomposition method” we get
the recurrence relations:

u,(x,t)=u(x,0),

(64)
u, (x,t)=v@,) —€A, ,n=0

Where A, ,n=0are Adomian
represent the nonlinear terms.

polynomials  that

Recall that these polynomials can be formulated for each

nonlinear term. Here, we list sets of Adomian polynomials
as:

A =t Uy, A =t Uy Uy, A =1, HU U A Uy, (65)

Using these polynomials and employing the appropriate
recursive relation we find:

uy(x,t)=0.5 (1—tanh{ix ),
4v

u,(x,t)=0.0625 sech[%]z, (66)

15x

u,(x,t)=0.0078125¢ *sec h[%]2 tanh[T],

and so on. The solution in a series form is given by:
u(x,t) =uy(x,t)+u, (x,1) +u,(x,1)+..., (67)

It is necessary to make tests for these series solutions,
by showing a comparison with the exact solutions of the
Burgers’ equation. In the program, we put v =1,1t = 2,
and take only four terms of the series. The series and the
exact solution results are shown in Table 3, it seems that
the series solution are confirmed with the exact solution.
Figures 1 and 2 shows the Adomian solution for Burgers’
equation att = 2.



Table 3. Adomian decomposition solution at t = 2.

Khalifa et al.

X ADM sol. Exact sol. Error
-1.0 0.999665 0.999665 -1.30E-7
-0.4 0.880828 0.880828 3.08E-5
0.0 0.622396 0.622459 -6.34E-5
0.4 0.0758605 0.0758582 2.29E-6
1.0 0.0009108 0.0009110 -1.53E-7

Figure 2. ADM solution,V =0.5,0<¢ <1

1709
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Conclusion

In this work, the spectral method was applied
successfully for solving the nonlinear Burgers’ equation.
The use of Legendre polynomials is proposed as a basis
for the space of solutions and shows that it gives better
results than the Chebyshev polynomials in which the
weight function for the first (Legendre) is more suitable
near the boundaries than the other (Chebshev). Also the
applications of the recent Adomian decomposition
method have been proposed and given very accurate
results and show that it can be widely used for many
nonlinear partial differential equations. In addition the
Tanh-function method is used to get the exact solution
and all numerical results are shown in a comparison with
the obtained exact solution.
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