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In this work, the exact analytic solutions for some unsteady oscillating flows of an incompressible 
Burgers' fluid in a duct of rectangular cross-section are considered. Here, two types of flows, namely, 
(1) flow due to the oscillating pressure gradient, and (2) flow due to the oscillation of duct parallel to its 
length, were considered. The exact analytical expressions for the velocity field and the adequate shear 
stress are determined by means of the Laplace and Fourier sine transforms. They are written as a sum 
of steady and transient solutions and satisfy all imposed initial and boundary conditions. The effects of 
the indispensable parameters of the flow are graphically analyzed. Moreover, similar solutions for 
Oldroyd-B, Maxwell, Newtonian fluid, and for the flows induced by a constant pressure gradient and 
impulsive motion of duct are obtained as the limiting cases of the presented solutions. 
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INTRODUCTION 
 
In recent years, study of non-Newtonian fluids is of 
paramount importance due to their increasing 
applications in various manufacturing and processing 
industries. Many fluids of industrial importance, notably, 
most particulate slurries (china clay and coal in water, 
sewage sludge, etc), multiphase mixtures (oil-water 
emulsion, gas-liquid dispersions such as froths and 
foams, butter), pharmaceutical formations, cosmetics and 
toiletries, paints, synthetic lubricants, biological fluids 
(blood, synovial, saliva), and foodstuffs (jams, jellies, 
soup, etc) are non-Newtonian in their flow characteristics 
and are referred to as rheological fluids. That is, they 
might exhibit dramatic deviation from Newtonian behavior 
depending on the flow configuration and/or the rate of 
deformation. The notable points of the rheological 
behavior are the ability of the fluid to shear thinning or 
shear thickening, the presence of non-zero normal stress 
differences in shear flow, the ability of the fluid to yield 
stress, the ability of the fluid to exhibit relaxation and the 
ability of the fluid to creep. Non-Newtonian fluids form a 
broad class of fluids in which the relation connecting the 
shear   stress   and   the  deformation  rate  is  non-linear.  
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Hence, there is no universal constitutive model available 
which exhibits the characteristics of all non-Newtonian 
fluids. Here are some of the studies (Teipel, 1981; 
Rajagopal, 1984, 1982; Kumari et al., 2010; Erdogan, 
1995) made by using various non-Newtonian models. 
Although, many models are accorded to describe the 
rheological behavior of non-Newtonian fluids, the rate 
type fluids have attained an increasing attention, because 
these fluids take into account the elastic and memory 
effects. As a subclass of the non-Newtonian rate type 
fluids, the Burgers' fluid (Burger, 1935), yet the model of 
choice to characterize the response of a variety of 
geological materials is considered in this study. The 
Burgers' model has also been used to characterize 
diverse viscoelastic materials: food products such as 
cheese, soil, asphalt, etc. There are numerous examples 
of the use of Burgers' model to study asphalt and asphalt 
mixes (Majidzadeh and Schweyer, 1967). This model has 
also been used in calculating the transient creep 
properties of the earth's mantle and specifically related to 
the post-glacial uplift (Peltier et al., 1981). The Burgers' 
model is also used to model other geological structure, 
like olivine rock (Chopra, 1977). In general, the Burgers' 
model has not attained much attention in spite of its 
diverse applications. Very limited studies (Ravindran et 
al., 2004; Quintanilla and Rajagopal, 2006; Hayat et al., 
2006;  Corina et  al.,  2010)  have been reported for flows  



 
 
 
 
involving Burgers' fluids. The duct flows have the 
significant role in the physical/industrial world. There is 
large number of experiments about the duct (channel) 
flows, but a small amount of literature is available (Nazar 
et al., 2012; Nadeem and Akram, 2010; Schuchkin et al., 
2002). The duct phenomenon occurs in human body like 
gastrointestinal tract, renal duct, bile duct and piping 
system, fuel chimneys, water tank, etc. are used in every 
engineering design. 

The aim of this paper is to present the exact analytical 
solutions for the velocity fields and the tangential stresses 
corresponding to an incompressible Burgers' fluid lying in 
a duct of rectangular cross-section. The flow is generated 
by the oscillating pressure gradient as well as due to 
cosine and sine oscillations of the duct parallel to its 
length. In order to obtain these starting solutions, double 
Fourier sine and Laplace transforms are used. These 
solutions, presented as sum of steady-state and transient 
solutions, describe the motion of the fluid for some time 

after its initiation. In the absence of side walls ( )0=β , 

the obtained solutions correspond to the case when flow 
is between the parallel plates. The required times to 
reach the steady-state for the cosine and sine oscillations 
of the boundary and the effect of the various pertinent 
parameters have been examined by the graphical 
pictures. 
 
 
GOVERNING EQUATIONS 
 
The unsteady flow of an incompressible fluid, in the 
absence of body forces, is governed by the following 
laws:  
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where  ρ  is the density of fluid, V  is the velocity vector,  

∇∇∇∇  is the gradient operator, dtd /  is the material time 

derivative, p  is the pressure and the extra stress tensor 

S  in a Burgers' fluid is given by: 
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in which µ is the dynamic viscosity, T

LLA
1

++++====  is the first 

Rivlin-Ericksen tensor,  L  is the velocity gradient, λ and  

λr <λ  are relaxation and retardation times, γ is the 
material constant of Burgers' fluid, and 
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For the following problems, we assume the velocity and 
the stress fields of the form: 
 

),,,(         ,ˆ),,(),,( tyxktyxutyx SSV ==           (5) 

 

with  k̂   as the unit vector along z-direction of the 

Cartesian coordinate system. For such flows, the 
constraint of incompressibility is automatically satisfied. 

Substituting Equation 5 into Equations 2 and 3 and 
taking into account the initial conditions for stress: 
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where  ),,( tyxS xz   and  ),,( tyxS yz   denote the non-

trivial tangential stresses. 
Substituting Equations 8 and 9 in Equation 7, a 

straightforward calculations yields the equation of motion 
as follows: 
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with  ρµν /=   as the kinematic viscosity of the fluid. 

Equations 8 to 10 may be written in dimensionless form 

by introducing the following relations: 
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where  U   denotes the characteristic velocity. 

Using these scales, the dimensionless form of the 

aforementioned equations becomes: 
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where the dimensionless parameter hd /=β   

representing the aspect ratio and the asterisks have been 
omitted for simplicity. 

 
 
POISEUILLE FLOW DUE TO AN OSCILLATING 
PRESSURE GRADIENT 
 

Consider the unsteady flow of an incompressible Burgers' 
fluid filling the duct of rectangular cross-section whose 

sides are  ,0=x  ,dx =  0=y  and .hy =
 
Initially, we 

assume that both fluid and duct are at rest. The duct 
remains stationary for all time and the fluid laid in the duct 
is disturbed due to an oscillating pressure gradient of the 
form: 
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applied at time  
+= 0t . In Equation 13, Q  is the constant 

and ( )⋅H  denotes the Heaviside unit step function. 

The associated initial and boundary conditions of the 
problem are: 
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Using the non-dimensional scheme of Equation 11, 
Equations 15 to 17 reduce to the non-dimensional form: 
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and 
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In order to solve the problem consisting of Equations 14, 
18, 19, and 20 for small and large times, we use double 
Fourier sine and Laplace transforms (Fetecau et al., 
2011; Salah et al., 2011; Christov and Jordan, 2012; 
Anjum et al., 2012). Consequently, multiply both sides of 

Equation 14 by ),sin()sin( yx nm µλ  

( ),and πµπλ nm nm ==  integrate the result with 

respect to  x   and  y   over  ]1,0[]1,0[ ×   and bearing in 

mind  the conditions of Equations 19 and 20, we arrive at, 
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where  
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µβλλ +=   and the double Fourier sine 

transform  )(tu
mn   of  ),,( tyxu  has to satisfy the initial 

conditions: 
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Applying the Laplace transform to Equation 21 together 
with Equation 18, we deduce: 
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where  ( )qumn   is the Laplace transform of  )(tumn   and  

q   the transform parameter. 

Rewriting Equations 23 and 24 in the equivalent form: 
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respectively, 
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in which 
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Inverting Equation 25 by means of the Laplace transform, 
one obtains: 
 

[ ] [ ] ( ) ,
)1(1)1(1

)(
0

ττ
µλγ

dG
Q

tu mn

t

n

n

m

m

mn ∫
−−−−

=       (28) 

 
Where 

 

 

( ) ( )( ) ( )( )
tqtq

mn
mn

mnmnmnmn

mnmnmn

mnmnmnmn

mnmn e
qqqq

q
e

qqqq

q
tG 2

3221

2

2

21

3112

1

2

1

−−
−

−−
−=

ϕϕ
   

( )( ) ( ) ( ),sincos
54

3

3213

3

2

3 2
tte

qqqq

q

mnmn

mn

mnmnmnmn

mnmn tq
ωωϕωϕω

ϕ
++

−−
−   

                                                                               (29) 
 
respectively, 
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Finally, substituting Equations 29 and 30 in Equation 28 
and inverting the result by means of the double Fourier 
sine transform, we find for the velocity field, the following 
simple expressions 
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where  12 −= mM   and  12 −= nN  . 

Note that the starting solutions  ),,( tyxu   in Equations 

31 and 32 are sum of the steady solution  su  (valid for 

large times) and the transient solutions  tu . The steady 

solutions are: 

 

( ) ( )[ ] ,
)sin()sin(

cossin
16

),,(
54

1,
N

N

M

M

MNMN

yx
tt

Q
tyxu

nm

s
µ

µ

λ

λ
ϕωϕωω

γ
−= ∑

∞

=

                                                              (33) 

 
respectively, 
 

( ) ( )[ ] ,
)sin()sin(

cossin
16

),,(
45

1,
N

N

M

M

MNMN

yx
tt

Q
tyxu

nm

s
µ

µ

λ

λ
ϕωωϕω

γ
+−= ∑

∞

=

                                                           (34) 

 
whereas, the transient solutions are 
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respectively, 
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The non-trivial tangential stresses can be immediately 
calculated from Equations 12 and 13. Consequently, 
taking the Laplace transform of Equations 12 and 13, and 
using the initial conditions of Equation 6, we attained: 
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where ),,,(1 qyxτ
 

),,(2 qyxτ , and  ),,( qyxu  are the 

Laplace transforms of ),,,(1 tyxτ  ),,(2 tyxτ  and 

),,,( tyxu  respectively. 

Now  ),,( qyxu   can be obtained, for instance, by 

taking the inverse Fourier sine transform of Equation 23, 
that is, 
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Inserting Equation 39 into Equations 37 and 38, and 
applying the inverse Laplace transform, it immediately 

results in the following expressions for the tangential 
stresses: 
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In-deed, similar to the velocity, the forgoing expressions 
for the tangential stresses are sum of the steady and 

transient solutions. More exactly, we have: 
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respectively, 
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which represent the steady-state tangential stresses. 
 
 

FLOW DUE TO AN OSCILLATING DUCT PARALLEL 
TO ITS LENGTH 
 

Here, we consider unsteady flow of an incompressible 
Burgers' fluid at rest in a duct of rectangular cross-

section. At time ,0+=t  the duct begins to oscillate with 

velocity  ( ) ( )ttUH ωcos   or  ( ) ( )ttUH ωsin , where  U   

is the amplitude and  ω   the angular frequency of the 

velocity of duct. Due to the shear, the fluid will also start 
oscillating parallel to the length of the duct. Its velocity is 

of the form ( )15 . The resulting dimensionless governing 

problem is 
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where  
 

                        (46) 

and the initial conditions are prescribed in Equation 19. 
Writing  
 

( ) ).,,( ),,( tyxvtVtyxu −=                                                (47) 

 
adopting a similar procedure as in Poiseuille flow due to 
an oscillating pressure gradient, we finally find the 
expressions for the velocity field: 
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respectively, 
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The corresponding steady state and transient solutions are 
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respectively, 
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Employing the same methodology as used in Poiseuille 

flow  due  to   an    oscillating     pressure    gradient,   the 
expressions for the tangential stresses are given by: 
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denoting the steady-state tangential stresses.  
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LIMITING CASES 
 
Oldroyd-B fluid 
 

Taking γ =0 in Equations 23 and 24, following the same procedure and simplify the result, we obtain the velocity field for 
an oscillating pressure gradient: 
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respectively,  
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corresponding to the Oldroyd-B fluid. In above relations of Equation 58 and 59: 
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Maxwell fluid 
 

Making λr=0 into Equations 58 and 59, we get the velocity  
 

 
 
field: 
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respectively, 
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corresponding to the Maxwell fluid for an oscillating 
pressure gradient. 
 
 

Newtonian fluid 
 

Taking the limit λ=→0 in Equations 60 and 61, we find 
the 

Velocity field corresponding to Newtonian fluid performing 
the same motion. Hence, we have: velocity  
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respectively, 
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Stokes’ first problem (ω→0) 
 
By taking ω=0 in Equations 31, 40, 41, 48, 54, and 55, 
we can easily obtain the solutions for constant pressure 
gradient and impulsive motion of the duct performing the 

same motion. For instance, Equations 31 and 48 take the 
following form: 
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and 
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Table 1. Values of ( )tyxu ,,
 
for λ=0.5, λr=2.0, γ=0.02, ω=0.5 and various values of t 

for cosine oscillation. 
 

t u(0.5,0.5,t) for ββββ=0.5 u(0.5,0.5,t) for ββββ=0.0 

0.1 0.159227 0.151909 

0.2 0.462117 0.444357 

0.3 0.685231 0.648599 

0.4 0.830653 0.785824 
 
 
 

Table 2. Values of  ( )tyxu ,, for  t=0.2,  λr=2.0,  γ=0.02, ω=0.5 and various values of  

λ  for cosine oscillation. 
 

λλλλ u(0.5,0.5,t) for ββββ=0.5 u(0.5,0.5,t) for ββββ=0.0 

3.0 0.735248 0.693832 

4.0 0.581220 0.553647 

5.0 0.462117 0.444357 

6.0 0.370650 0.358614 
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where 
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GRAPHICAL RESULTS AND DISCUSSION 
 
Here, the significant features of rheological 
characteristics on velocity field were presented. The 
graphical results illustrate the velocity profiles only for the 
flow due to an oscillating duct parallel to its length. To 
illustrate the difference, we have presented the profiles 
for both cosine and sine oscillations of the boundary. 
Further, in order to capture the effects of side walls (when 

0≠β ), a comparison of the velocity profiles with those 

for the flow between two parallel plates (when 0=β ) is 

provided. The numerical values are shown in Tables 1 to 
3 and plotted in Figures 1 to 7. We interpret these results 
with respect to the variations  of emerging  parameters  of 

interest. 
Figure 1 displays the influence of time t  on the velocity 

profile for both cosine and sine oscillations of the 
boundary in the presence as well as absence of side 
walls. It is clearly seen that increasing the values of t  

produces an increase in the velocity profiles for both 
cases. That is, the velocity profile for time t = 0.4 is larger 
than those of starting time t = 0.1. This fact is also 
reflected in Table 1. Moreover, this figure also depicts the 
dependence of velocity on side walls, and one can see 
that the maximum velocity occurs near the side wall, 
while the velocity is minimum at the centre of the plate. It 
is evident from Figure 1 and Tables 1 to 3 that the 
velocity profiles are greater in magnitude in the presence 
of side walls (when 5.0=β ) when compared with those in 

the absence of side walls (when 0=β ). 

Figures 2 and 3 present the influence of the parameters 

λ  and 
r

λ  on the velocity field. The effect of increasing 

λ  from 0.3=λ   to 6.0 is to decrease the velocity for both 

cosine and sine oscillations of duct. The effect of 

increasing 
r

λ  is opposite qualitatively to that of the 

parameter .λ  Therefore, λ depicts the shear thickening 

behavior,  while  λr shows the shear thinning effect on the 
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Table 3. Values of ( )tyxu ,, for t=0.2, λ=0.5, λr=2.0, ω=0.5 and various values of  

γ  for cosine oscillation. 
 

γγγγ u(0.5,0.5,t) for ββββ=0.5 u(0.5,0.5,t) for ββββ=0.0 

0.010 0.463913 0.445508 

0.040 0.457956 0.441903 

0.070 0.449483 0.438116 

0.095 0.439785 0.435174 

 
 
 

 

 
 

Figure 1. Profiles of the velocity  ( )tyxu ,,   given by Equations 48 [left column] and 49 [right 

column] for  ,0.5=λ    ,0.2=
r

λ    ,02.0=γ    5.0=y   and different values of time  t.  

 
 
 

velocity profiles in the presence (when 5.0=β )  as well 

as in the absence of side walls (when 0.0=β ). 

Therefore, we can understand that the influence of the 

relaxation parameter λ  as well as the retardation 

parameter r
λ

 
on the velocity profile is significantly 

effective and quite opposite qualitatively. 
The effects of the rheological parameters γ  of Burgers' 

fluid on the velocity profiles in the presence as well as the 

absence of side walls are depicted in Figure 4 . Here, we 
can see that the velocity decreases with an increase in γ  

from  010.0=γ   to  .095.0 . However, it is observed that 

this decrease in the velocity is much in the presence of 
side walls as compared to that in the absence of side 
walls. This  fact  is  also  reflected  in  Table  3. Thus,  it is 

concluded that the velocity is severely affected by the 
rheological parameter  γ   and the velocity profiles are 

found to be more sensible to the changes with the 
rheological parameter  .γ   

Figures 5 to 7 describe the required time to reach the 
steady-state or the decay of transient solution for different 
values of relaxation, retardation and rheological 
parameters, respectively, for both cosine and sine 
oscillations in the presence of side walls (when 5.0=β ). 

Here, we can see that the material parameter λ has the 

same effect as γ, while λr has the opposite effect on the 
velocity profile. More exactly, it is clearly seen that the 
required time to reach the steady-state or the decay of 

transient solution increases if λ and γ  increases from 4.0 
to 7.0 and 0.01 to 0.30, respectively. However, the 
required  time  to  reach  the  steady-state or the decay of 
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Figure 2. Profiles of the velocity ( )tyxu ,,  given by Equations 48 [left column] and 49 [right column] for 

,2.0=t  ,0.2=
r

λ  ,02.0=γ  5.0=y   and different values of relaxation time .λ   
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Figure 3. Profiles of the velocity ( )tyxu ,, given by Equations 48 [left column] and 49 [right column] for 

,2.0=t   ,0.5=λ    ,02.0=γ    5.0=y   and different values of retardation time .rλ   



Khan and Anjum          5849 
 
 
 

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

x

u
(x

,y
,t

)

 

 

γ=0.010

γ=0.040

γ=0.070

γ=0.095

(a) β=0.5

0 0.2 0.4 0.6 0.8 1
0.04

0.05

0.06

0.07

0.08

0.09

0.1

x

u
(x

,y
,t

)

 

 

γ=0.010

γ=0.040

γ=0.070

γ=0.095

(b) β=0.5

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

x

u
(x

,y
,t

)

 

 

γ=0.010

γ=0.040

γ=0.070

γ=0.095

(c) β=0.0

0 0.2 0.4 0.6 0.8 1
0.04

0.05

0.06

0.07

0.08

0.09

0.1

x

u
(x

,y
,t

)

 

 

γ=0.010

γ=0.040

γ=0.070

γ=0.095

(d) β=0.0

 
 

Figure 4. Profiles of the velocity  ( )tyxu ,,  given by Equations 48 [left column] and 49 [right column] for ,2.0=t  

,0.5=λ    ,0.2=rλ    5.0=y   and different values of rheological parameter  .γ   
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Figure  5. Decay of the transient part of the velocity  ( )tyxu ,,   given by Equations 52 [left column] and 53 

[right column] for ,5.0=rλ    ,02.0=γ    ,1.0=ω    5.0=y   and different values of relaxation time  λ  . 
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Figure 6. Decay of the transient part of the velocity  ( )tyxu ,,   given by Equations 52  [left column] and  53 [right 

column] for ,10=λ    ,02.0=γ    ,1.0=ω    5.0=y   and different values of retardation time  
r

λ . 

 
 
 

 
 

Figure 7. Decay of the transient part of the velocity  ( )tyxu ,,   given by Equations 52 [left column] and 53 [right 

column] for ,10=λ  ,5.0=
r

λ    ,1.0=ω    5.0=y   and different values of rheological parameter  γ  . 

 
 
 

transient solution decreases with an increase in λr from 
0.5 to 2.0. 
 
 
Conclusions 
 
In this paper, we have investigated the starting solutions 
concerning some oscillatory flows of a non-Newtonian 
fluid. An incompressible Burgers' fluid in a channel of a 
rectangular cross-section has been considered. The 
motion was induced by the oscillation of duct parallel to 
its length as well as the oscillatory pressure gradient. The 

exact analytical expressions for the velocity field and the 
corresponding shear stress were established in simple 
forms by means of integral transforms. These solutions, 
depending on the initial and boundary conditions, were 
presented as sum of steady and transient solutions. 

Finally, in order to bring light to some relevant physical 
aspects of the obtained results, the influence of the 
material parameters on the fluid motion was underlined 
by graphical illustrations for flow due to the oscillation of 
duct parallel to its length. On the basis of the earlier 
discussion, the following important findings were drawn. It 
is  worth pointing out that the velocity profile was found to  



 
 
 
 
be more sensible to the changes with rheological 
parameter γ  in the presence of side walls as compared 

to that in the absence of side walls. Further, it was found 
that the required time to reach the steady-state or the 

decay of transient solution increases if λ  and γ  

increases. On the other hand, the required time to reach 
the steady-state or decay of the transient solution 

decreases if 
r

λ  increases. 

It is hoped that the present investigation would be 
useful in studying more complex problems and can be 
utilized as the basis for many scientific and industrial 
applications. 
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