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In this paper, a new type of anti-synchronization called adaptive modified function projective anti- 
synchronization was presented. In this study, state variables of drive system would be anti-
synchronized with state variables of response system up to desired scale function matrix. The 
adaptive control law and the parameter updates were determined to make the states of two Lorenz 
systems modified function projective anti-synchronized by using Lyapunov stability theory. Numerical 
simulations were presented to verify the effectiveness of this control method. 
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INTRODUCTION 
 
Chaos an interesting phenomenon of nonlinear systems 
has been developed more and studied extensively in the 
last few years. Since Pecora and Carroll (1990) 
established a chaos synchronization scheme for two 
identical chaotic systems with different initial conditions, 
a variety of approaches have been proposed for the 
synchronization of chaotic systems which include 
complete synchronization (Zhou and Chen, 2008), phase 
synchronization (Chavez et al., 2006), lag synchroni-
zation (Yu and Cao, 2007), generalized synchronization 
(Zhang and Jiang, 2011), projective synchronization (Hu 
and Xu, 2008) and modified projective synchronization 
(Cai, 2010; Tang and Fang, 2008; Sudheer and Sabir, 
2010; Park, 2008). Among all kinds of chaos synchroni-
zation, projective synchronization has been extensively 
investigated in recent years and provides greater security 
in secure communication. First, Mainieri and Rehacek 
(1999) reported projective synchronization in partially 
linear systems. After that, Xu et al. (2001) and Xu (2002) 
introduced several control schemes based on Lyapunov 
stability theory to conduct the scaling factor onto a 
desired value, and derived a general condition (Li and 
Xu, 2001; Xu et al., 2002) for projective  synchronization. 
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Recently, function projective synchronization was 
investigated (Du et al., 2008), where the master and 
slave systems could be synchronized up to a scaling 
function. That is, master’s and slave’s state variables in 
pair correlate each other by a scaling function. Anti-
synchronization (AS) can also be interpreted as anti-
synchronization which is a phenomenon whereby the 
state vectors of the synchronized systems have the same 
amplitude but opposite signs as those of the driving 
system. Therefore, the sum of two signals is expected to 
converge to zero. In this paper, a new type of anti-
synchronization phenomenon called adaptive modified 
function projective anti-synchronization (AMFPAS), is 
proposed, where the responses of the anti-synchronized 
dynamical states anti-synchronize up to a desired scaling 
function matrix. The organization of this paper is as 
follows: the definition of AMFPAS is given, after which 
we take Lorenz system as an example to illustrate the 
AMFPAS phenomenon. Numerical simulations are given 
to demonstrate the effectiveness of the proposed method 
and conclusion is finally drawn. 
 
 
METHOD OVERVIEW  
 
Here, adaptive modified projective scheme is presented 
(Aebastian and Sabir, 2009). Consider the following master 



 
 
 
 

 
 

Figure 1. Chaotic behavior of Lorenz system. 

 
 
 
master and slave system: 
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where n
Ryx ∈,  are the state vectors, nn

RRgf →:, are 

continuous nonlinear vector functions and ),( yxu  is the 

vector controller. By defining the error system as: 
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where M  is a diagonal matrix with constant arrays, 

nn
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×
∈= ),...,,( 21 and )(tµ  is an n-order 

diagonal matrix, ))(),...,(),(()( 21 tttdiagt nαααµ = and )(tiα  is 

a continuously differentiable function with bounded, 
0)( ≠tiα  for all t . 

 
 
SYSTEM DESCRIPTION 
 
Consider the chaotic Lorenz system as follows (Du et al., 
2009):  
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where x , y  and z  are state variables. When three real 

parameters take the values, 10=a , 60=b and 38=c , the 

system shows chaotic behaviour. Figure 1 shows the 
chaotic behavior of Lorenz system. 
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ADAPTIVE MODIFIED FUNCTION PROJECTIVE ANTI-
SYNCHRONIZATION (AMFPAS) BETWEEN TWO 
LORENZ SYSTEMS 
 
To anti-synchronize two Lorenz systems, we assume that 
the Lorenz system denoted by subscript d is the drive 
system and the Lorenz system denoted by subscript r is 
the response system. Following equations show the drive 
system (Equation 4) and response system (Equation 5): 
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where [ ]TuuuU 321 ,,=  is the control law that drive and 

response systems can be anti-synchronized such as 
defining AMFPAS errors as follow: 
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for all )3,2,1( =iei , we have: 
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By differentiating Equation 6, we have: 
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Then we have the error dynamics as follows by 
substituting Equations 4 and 5 in 7: 
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The goal is to find control law [ ]TuuuU 321 ,,=  to achieve 

stability. So, following control laws and update rules for 
the unknown parameters 1a , 1b  and 1c  are proposed: 
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Figure 2. The state trajectories of the drive system and the response system for state “x”. 
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and 
 

441111 )])(()[( ekxytmxyea rrdd +−+−= α& ,

552221 ])([ ekxtmxeb rd ++= α& , 

663331 ])([ ekztmzec rd +−−= α&  
                       (10) 

 

where 0>ik  for 6,...,1=i . 

We use Lyapunov stability theorem to show that the 
drive system (Equation 4) and the response system 
(Equation 5) will be anti-synchronized using adaptive 
modified function projective method. By defining 

1aaea −= , 1bbeb −=  and 1ccec −= , we have 1aea && −= , 

1beb
&& −=  and 1cec && −= . 

Using the positive definite Lyapunov function as 
follows: 
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 The derivative of v is: 
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and by substituting Equations 8 and 10 in 12, we have: 

TKe
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where T
cba eeeeeee ],,,,,[ 321=  and 

),,,,,( 654321 kkkkkkdiagK = .  

So V&  is negative definite and we have 

0,,,,, 321 →cba eeeeee  as ∞→t .  

 
 

NUMERICAL SIMULATIONS 
 

Here, numerical simulations are presented to 
demonstrate the effectiveness of adaptive modified 
function projective method for anti-synchronization. The 
initial conditions of the drive systems were 0)0( =dx , 

1)0( =dy  and 1)0( =dz , and those of the response system 

were 6.0)0( =rx , 8.0)0( =ry  and 5.0)0( =rz . The scaling 

functions were chosen as )202sin(4.02)(1 tt πα += , 

)202sin(25.01)(2 tt πα +=  and )202sin(15.05)(3 tt πα += , and 

the scaling factors were 7.01 =m , 12 =m  and 5.03 =m . The 

initial condition values of the estimated parameters 
were 8)0(1 =a , 50)0(1 =b  and 2)0(1 =c . Moreover, the 

control gains were chosen as 11 =k , 12 =k , 13 =k , 14 =k , 

15 =k  and 16 =k . Figures 2 to 4 showed the state 

trajectories of the drive system and the response system. 
Figure 5 exhibits the evolution of the AMFPAS errors, it 
could be seen that by 0→e  as ∞→t , globally 

asymptotically stability of the error dynamical system 
between the drive and the response systems was proved. 
The time evolution of the control law is depicted in Figure 
6 and in Figure 7 the time evolution of the estimated 
parameters is shown. These results showed that the 
required anti-synchronization has been achieved with 
proposed method for designing control law (Equation 9).  
 
 

Conclusion 
 

This paper investigated the adaptive modified function 
projective anti-synchronization between two chaotic
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Figure 3. The state trajectories of the drive system and the response system for 
state “y”. 
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Figure 4. The state trajectories of the drive system and the response system 

for state “z”. 
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Figure 5. The evolution of the AMFPAS errors. 
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Figure 6. The time evolution of the control laws. 
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Figure 7. The time evolution of estimated unknown parameters 1a , 1b  and 1c
.
 

 
 
 

Lorenz systems. On the basis of Lyapunov stability 
theory, we design anti-synchronization controllers with 
corresponding parameter update laws. All the theoretical 
results are verified by numerical simulations to 
demonstrate the effectiveness of the proposed anti-
synchronization schemes. 
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