
International Journal of the Physical Sciences Vol. 6(13), pp. 3232-3245, 4 July, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.298
ISSN 1992 - 1950 ©2011 Academic Journals�

Full Length Research Paper

User-session-based automatic test case generation
using GA

Xuan Peng* and Lu Lu

Department of Computer Science and Engineering, South China University of Technology, Guangzhou Higher

Education Mega Centre, Panyu District, Guangzhou, Guangdong, P.R. China, 510006.

Accepted 21 March, 2011

User-session-based testing which relies on capturing and replaying real user sessions is an effective
approach to test web applications. However, as a black-box testing, test case generation totally based on
user session data may not be qualified for ensuring the reliability of web applications. This paper
proposed an approach in terms of gray-box testing, combining user session data with request
dependence graph of web application, to generate test cases automatically. A model of RDG was first
constructed according to the structural analysis of the application under test; and then transition
relations between pages and requests were extracted based on the request dependence graph. Finally, a
reasonable test suite was generated to cover as many fault sensitive transition relations as possible with
the aid of genetic algorithm. Simulation results indicated that our approach was better than the traditional
user-session-based testing, in that it attained a higher path coverage and fault detection rate within small
size of the test suite.

Key words: Web application testing, automatic test case generation, user session, request dependence graph,
genetic algorithm.

INTRODUCTION

In recent years, as web applications play increasingly
important roles in software engineering area, how to
assure the security and dependability of web applications
becomes a significant issue for the engineering
practitioners. A web application (Ammann and Offutt,
2008) is often composed of relatively small software
components, created with multitudinous technologies (for
example, JSPs, ASPs, servlets, XML, PHP, etc.). Thus,
web applications are complex and changeable, and
effective testing of web application is essential to
guarantee the coordination among those components
and technologies.

User-session-based testing (Sprenkle et al., 2005a)
has been researched recently to make use of user
session data to generate test cases from a functional
standpoint. Session information transparently collects
user interactions, and is stored in a server log. A user
session is composed of a sequence of user requests. A

*Corresponding author. E-mail: p.xuan02@mail.scut.edu.cn Tel:
+86 159 890 50398. Fax: +86 755 8246 1479.

request is generally in the form of user IP, timestamp,
request pattern (GET/POST), URL, parameter-value
pairs, data transmission protocol, etc. User-session-
based testing automatically generates test cases based
on user profiles (Sampath et al., 2008). By capturing and
replaying user sessions, this technique reruns real user-
induced events to meet the functional requirements of
web application. When compared with traditional white-
box testing, user-session-based testing reduces much
human effort of manual test case generation. Additionally,
test cases generated from user sessions are more
representative of the real field usage application, thus are
prone to detect faults effectively.

Although user-session-based testing utilizes capture
and replay mechanism to test the functionality of web
applications with little intervention and participation of
testers, there are yet several issues existing. On the one
hand, for the web application which has been deployed
on the server for a long time and which has received a
large number of hits, huge quantity of user sessions will
be collected from the server and it is costive to replay all
those user sessions. To tackle this problem, approaches
for reducing original user sessions were proposed. These

approaches addressed the selection of representative
user sessions and the removal of redundant ones to meet
some certain test requirements, and are mostly focused
on the requirement of base request coverage (Sampath
et al., 2008; Di Lucca et al., 2006). On the other hand,
web application testing based on user sessions belongs
to black-box testing and ignores the structure of the web
application; therefore, test case generation totally based
on user session selection may not be qualified for various
coverage requirements, in terms of traditional white-box
testing, such as block, function, path coverages, etc. In
this context, user session data can be applied as an
accessible baseline test suite which reflects the real user
operations. However, testing that relied solely on user
session selection may be excessively dependent on the
quality of the collected and selected session data; thus,
the size and quality of the test suite generated by the
session selection are absolutely tied to the user sessions
of the original set. In this way, the cost effectiveness and
fault detection ability cannot be guaranteed.
In this paper, we present a test case generation

approach named US-RDG in terms of gray-box testing,
which combines user sessions with request dependence
graph (RDG) of web application, to take both user
session collection and structural analysis of application
into account. In our approach, base request coverage is
no longer the only criterion for test case generation, and
we induct an additional conception of transition relation in
the form of “page�request�page” to charge the
generation process. Also, a model of RDG (request
dependence graph) is first constructed and the transition
relations existing in the application are extracted to reveal
the transition relationship between pages and requests,
before the optimized test cases are generated by the
user session mixture in the unit of
“page�request�page”, with the aid of genetic heuristic.
In addition, we make a further analysis of data and link
dependence to transition relations to distinguish the fault-
sensitive ones. The goal of this approach is to generate a
reasonable test suite to cover as many transition relations
as possible, especially the fault-sensitive ones.
Comparing the study’s approach with the existing

approaches of generating test cases, based on user
session data, our approach has the following features:

1. Combine user-session-based testing with white-box
web application testing techniques by inducting structural
analysis to charge the test case generation process, so
as to obtain a test suite with sufficient structural
coverage.
2. Process user sessions from the perspective of
transition relation in the form of “page�request�page”
rather than “request” only, which is more accurate in user
usage presentation.
3. Abandon the complex high-level structural analysi
better effectiveness to produce test suite using user s of
application, and evaluate user sessions in terms of a

Peng and Lu 3233

bottom-layer analysis by integrating transition relation
with request dependence.
4. Generate test cases in the unit of transition relation
instead of user session and mix different user sessions to
form a test case using genetic heuristic, so as to
generate a more comprehensive, flexible and fault
detectable test suite.

RELATED WORK

Much related work has been done in the areas of web
application testing, user-session-based testing and test
case generation, using GA. Here, a brief overview was
done first.

A number of approaches (Ricca and Tonella, 2001; Dai
and Chen, 2007; Chen et al., 2007; Miao et al., 2008)
have been proposed to generate test data relying on the
structure analysis of web application in terms of
traditional white-box testing. Ricca and Tonella (2001)
proposed an approach to create a model based on
Unified Modeling Language (UML), in which path
expression was created to generate test cases for web
application. Chen et al. (2007) partitioned web
applications into logical components (LCs) at different
levels of abstraction using Pages-Flow-Diagram (PFD),
and then used an automaton to model those LCs, with
which test cases could be generated automatically.

However, web application testing simply depends on
white-box testing technology which has many limitations:
(1) the complex deploying environment and changeability
of web application result in relative limitations of white-
box testing; (2) Each test case is generated one by one
manually, which is labour-intensive and inefficient; (3)
Test cases are created by testers and cannot represent
real field usage of application, and thus perform poorly in
fault detective capability.

According to the defects of traditional web application
in the aforementioned testing, the technique of user-
session-based testing which was based on the real user
interactions of application was proposed. This technique
is less dependent on the complex and fast changing
technology underlying web application (Elbaum et al.,
2005b), and can reduce the human effort in test data
generation. Much work has been done to address test
case generation and optimization, based on user
sessions (Di Lucca et al., 2006; Elbaum et al., 2003,
2005a, b; Sampath et al., 2004, 2008; Sampath and
Sprenkle, 2007; Sprenkle et al., 2005; Luo et al., 2009).

Elbam et al. (2005b) presented three strategies to
generate test cases based on user session data: directly
reusing user sessions as test cases, combining different
user sessions to form a test case and reusing user
sessions with form modifications. In addition, they
proposed two hybrid techniques to combine user-
session-based approaches with structured white-box web
application testing techniques. Their results showed the

3234 Int. J. Phys. Sci.

session data than the white-box techniques considered.
Nevertheless, it was indicated that the faults detected by
the user-session-based testing and traditional white-box
testing differed, suggesting that these two techniques
were complimentary. Besides, we find that by inducting
an unconstrained and complete random operation to mix
or modify user sessions, the size of generated test suite
was similar to the original user session set and the
results of their empirical studies did not reveal quite an
improvement in source code coverage, block coverage
and fault detective ability.

In allusion to the big size issue of the test suite
generated from user sessions, Sreedevi and Sampath
(2007) addressed user-session-based test suite reduction
in several papers (Di Lucca et al., 2006; Sampath et al.,
2007; Sprenkle et al., 2005). In their research, user
sessions which had the common base request patterns
were grouped into the same cluster by concept analysis
and one user session was randomly selected from each
cluster to be a test case. Consequently, a set of
additional heuristics was proposed to control the test
case amount. Their empirical study indicated that there is
a trade-off existing between test suite size and fault
defective effectiveness. Lucca et al. (2006) proposed a
technique to identify equivalent user behaviors included
in user sessions and remove user sessions which
provided the same page coverage to reduce the test
suite. These two approaches are emphasized on the user
session selection according to base request coverage,
and the user session which contained more base
requests would have bigger probability to be selected as
the test data. However, there are two limitations in
generating test data with this mode:

(1) It generates a test case with the unit of the user
session, which is entirely dependent on the original user
sessions. For example, if each user session in the
original set contains only a small number of base
requests, a large number of user sessions may be
selected and each selected one may be too simple to be
fault detectable.
(2) Selecting user sessions with the aim of request
coverage ensures that each request is executed at least
once, while it is not sufficient for some other structural
coverage, such as block coverage, page path coverage
and request transition coverage. In this case, structural
analysis of the under-test web application is necessary to
combine with the user-session-based testing.

Luo et al. (2009) presented a technique to generate test
cases by combining user session selection with a high-
level structural analysis. They constructed a service
profile of application to cluster user sessions and then
selected a set of representative user sessions according
to structural analysis of the web application. The results
demonstrated that this technique exerted better fault
detective ability than those techniques leaving application

structure out of account. Yet the accuracy of service
profile construction and user session clustering is crucial
to the implementation process of the technique, since any
deviation may affect the quality of the generated test
cases.

A number of approaches (Doungsa-ard et al., 2007;
Ghiduk et al., 2007; Kalaji et al., 2009; Khor and Grogono,
2004; Rauf et al., 2010) for generating optimal test cases
using GAs have been proposed, all of which showed the
superiority of GA in problem optimization; whereas, a
majority of these approaches were based on white-box
testing and they used GA to generate test cases on the
basis of random or manual created initial populations.

METHODOLOGY

Here, our methodology of US-RDG which combines user session
data with request dependence graph (RDG) to generate test cases
automatically is presented. The aim of this methodology is to create
a reasonable test suite based on the collected user sessions with
genetic heuristic. A test suite is considered as reasonable if it meets
the following criteria: (1) Proper test suite size; (2) Proper test case
length; (3) Cover as many fault-sensitive transition relations in the
form of “page�request�page” as possible; and (4) Integrate
conflicting user usages to provide more powerful test data.

Methodology overview

Here, an overview of this study’s methodology will be observed. As
seen previously, a set of requests sent from clients are recorded in
an access log of server. Three portions of the request were taken
into consideration for the user-session-based testing. The first
portion is composed of user IP and timestamp, which can be used
to identify a user session. In general, a user session is said to have
began when a new IP address sends a request to the server and
ends when the user leaves the web site, or the session is timed out
(Elbaum et al., 2005b; Luo et al., 2009; Sampath et al., 2006, 2008;
Sprenkle et al., 2005). Another portion is composed of request
pattern (GET/POST) and URL, which is called base request, while
the third portion is the parameter-value pairs carried by base
request. An identified user session can be simplified as a sequence
of base requests and parameter-values to describe users’
sequential actions for web resources. A request is generally sent by
a certain page through a trigger of user operation, such as clicking
a button; and in a sequence of base requests, the URL of the
previous request is the corresponding page which sends the next
request to the server. Thus, it is simple to convert the form of user
session from base request sequence, such as
“request�request�…�request”, into transition sequence of pages
and requests, such as
“request�page�request�page�…�request�page”. Most
approaches evaluated user sessions from the standpoint of base
request coverage. However, evaluating user sessions purely by the
state of request is not sufficient for recognizing users’ real
operations; as such, transition relations between pages and
requests should be taken into consideration:

192.168.0.100 - - [03/Dec/2010:10:18:50 +0800] "GET
/AdvSearch.jsp HTTP/1.1" 200 5231
192.168.0.100 - - [03/Dec/2010:10:18:55 +0800] "GET
/Books.jsp?name=&author=& HTTP/1.1" 200 14882
172.19.153.224 - - [05/Dec/2010:15:14:30 +0800] "GET
/Books.jsp?category_id=3&name= HTTP/1.1" 200 13084

172.19.153.224 - - [05/Dec/2010:15:15:08 +0800] "GET
/AdvSearch.jsp HTTP/1.1" 200 5231

The foregoing session is a segment intercepted from the access log
of an e-business application named Book Store. Two user sessions
are identified by user IP. From the request state point of view, the
two user sessions cover the same base requests of “GET
AdvSearch.jsp” and “GET Books.jsp”, which cannot distinguish any
difference in between them, while from a transition angle, the two
user sessions are represented as “GET AdvSearch.jsp
�AdvSearch.jsp� GET Books.jsp� Books.jsp” and “GET
Books.jsp� Books.jsp � GET AdvSearch.jsp �AdvSearch.jsp”,
which intuitively reveals that these two sessions have sent the
same requests in reverse orders and through disparate elements of
different pages. Thus, we induct the “page�request�page” mode
to represent each session from a transition point of view, so as to
reflect requests’ transition process exactly and get a more accurate
evaluation of user sessions.

In our approach, we generate test cases based on the user
session prototype. During the generation, we adopt coverage of
transition relation in the form of “page�request�page” as a major
criterion to evaluate user sessions. To attain a more objective and
comprehensive user session evaluation from the application itself,
we reveal the structure of the under-test application by listing all the
existing transition relations between pages and requests, which is in
the form of “page�request�page” as well. Each transition relation
refers to a potential action from one page to another. The source
code covered by a transition relation differs from one another; thus,
executions of different transition relations can detect multiple faults.
The goal of this study’s approach is to process user sessions to be
the test cases for covering as many transition relations as possible.

Since user sessions record real operations of users, replaying
them directly as test cases without modification may not be quite
fault detectable because they have been already executed
previously by the users when operating. On the other hand, as a
major requirement for test case generation is to provide most of the
coverage in functions, blocks and paths in order to detect faults as
many as possible, the technique of test suite generation purely
based on user session selection relies too much on the original user
sessions, which is not flexible to retain, to a maximum extent, the
original coverage with a small size of the test suite. In this context,
generating test data in unit of user session is not preferable to form
an optimized test suite. In our approach, we make use of transition
relation which can be corresponded conveniently with user
sessions, as a relative small unit, and generate a more powerful
test data of multi-usage by mixing different user sessions. Thus, we
use genetic heuristic to control the generation process with the
three genetic processors of selection, crossover and mutation.

The rest of the study’s methodology is to present the concrete
realization of our methodology. Subsequently, a request
dependence graph is constructed from a structural point of view to
reveal transition relations existing between pages and requests. In
addition, a further analysis of link dependence and data
dependence is made by transition relations in order to distinguish
the significance of each transition relation in fault detection, after
which a genetic heuristic was presented to generate test data to
cover as many transition relations as possible.

Request dependence graph construction

A web application generally contains a set of correlative static or
dynamic web pages and other components, and these components
integrate pages to form a system. To reveal the structure of a web
application, dependence relationship between web pages can be
extracted by source code analysis of application. Chen et al. (2008)
developed a software tool, WebMTA (Chen et al., 2008), which
constructs system dependence graphs in terms of data and link

Peng and Lu 3235

dependence for web application. However, in order to cater for the
testing based on user sessions, in our approach, we propose a
model to analyze application’s dependence relationship from the
standpoint of base requests, for the purpose of extracting all
possible transition relations between pages and requests.

Excluding requests of irrelevant files, such as .jpg, .gif, etc., a
request is made in general for the client to visit another page via
some elements of the current page. Thus, there exists a request
dependence relationship between pages, and this relationship can
be attained from the developers, that is, a specification document or
source code analysis of the application. A web page A is request
dependent on a web page B if an execution of B will trigger a
request for A. For example, in a Default.jsp page, when a hyperlink
named “Login” is clicked, a request as “GET /Login.jsp” will be
constructed and sent to the server. After receiving the server’s
response, the client browser will be directed to a login page named
Login.jsp; thus, page Login.jsp is request dependence on
Default.jsp through request “GET /Login.jsp”, which can be
converted to a transition relation as “Default.jsp � GET /Login.jsp
� Login.jsp”.

To depict the request dependence relationship clearly, we
construct a request dependence graph. In this graph, a node
represents a web page, a directed edge represents a request
dependence relationship between two pages, and the request itself
is presented to identify each directed edge. As the parameter-value
pairs of a request are uncertain, we enumerate all the possible
parameters of requests without values. Thus, the request labeled in
the graph can be formatted as: “GET/POST PAGE <p1, p2,
…,pn>”, where p1, p2,…, pn are possible parameters carried by the
request. Figure 1 is an example of request dependence graph for a
part of the Book Store application which will also be used in the
empirical studies.

Each directed edge in the request dependence graph can be
corresponded to a transition relation. Take the edge identified by
request r1 for example, we can see that a corresponding transition
relation can be extracted as “Registration.jsp � r1 � Default.jsp”.
Since there are 11 edges in Figure 1, an equal number of transition
relations can be extracted correspondingly. In addition, we induct a
further analysis of data dependence and link dependence
relationship to each transition relation. A transition relation of “page
A � request R � page B” is identified as data dependence if there
is any data transition or data operation from A to B through R. For
example, in the Book Store application, a web page “Books.jsp”
offers a list of books with introductions and hyperlinks. When
clicking the hyperlink of a certain book, a request like “GET
/BookDetail.jsp?item_id=34” will be sent to the server, and another
page “BookDetail.jsp” is dynamically generated according to the
value of “item_id” to offer the detailed information of a certain book.
In this context, transition relation of “Books.jsp � GET
/BookDetail.jsp?item_id=34 � BookDetail.jsp” is data dependence
because there is a data transition within it. Otherwise, if there is no
data transition or data operation in the request transition process,
the relation is identified as link dependence. A link dependence
transition relation is in general a simple direction from one page to
another.

Test case generation using GA

As transition relations are extracted from the structural analysis of
the web application in request dependence graph construction, test
cases should be generated to cover as many of those relations as
possible. In our US-RDG, we generate test cases using GA based
on user scenarios. User session data captured from server logs are
used as the initial population of GA, and on this basis, a reasonable
test suite is generated.

GAs (Genetic Algorithms), developed by Holland (1975) with the
inspiration from Darwin’s evolution theory, are adaptive heuristic

3236 Int. J. Phys. Sci.

Figure 1. A. Partitial request dependence graph and; B. labeled requests.

Figure 2. Genetic encoding and chromosome.

search algorithms premised on the evolutionary ideas of natural
selection and genetic. Heuristics of GA are broadly applied to
generate useful solutions for optimization and search problems with
natural evolution. These heuristics were started with a set of
solutions called the initial population, and then new populations
were created gradually through three genetic processors of
selection, crossover and mutation.

In our genetic heuristic, we encode each gene as a combination
of requests and pages. We use two structured nodes to present
pages and requests in Figure 2A, in which one is page node with a
member variable of URL, and the other is a request node with a set
of member variables of base requests and parameter-value pairs;
and then chromosome is constructed by linking page and request
nodes alternately with a unidirectional chained list (Figure 2B). The
gene in a chromosome is structured in the form of
“page�request�page” (Figure 2C), which can be corresponded
with the transition relation; and each two adjacent genes share a
common page node.

In the following, the steps of our genetic heuristic will be applied
to generate a test case.

(A) Initial population generating and genetic encoding: In our

heuristic, we treat each user session as a chromosome. To encode
chromosome, pre-analysis is processed to the request sequence of
each user session. For a request, separate portions are used as
base request (action and URL), while name-value pairs are
extracted, and the request node (Figure 2A) can be easily
constructed. A related page node with the same URL as the request
is later constructed, and the next pointer of the request node is
fixed to the page node, since the URL of the request is the next
page which will be visited in the client end. After that, the next
request of the sequence is analyzed to construct another request
node, and the pointer of the previous page node is fixed to it. The
above process will be repeated until the request sequence has no
request left. Since the first request of a user session has no
previous request to fix a page which triggers it, the first page node
of a chromosome is generally with URL of �.

(B) Fitness Function and Selection Strategy: We evaluate fitness of
each chromosome based on the transition relation coverage
analysis. For a chromosome, we calculate how many transition
relations were covered in it. In addition, we induct the dependence
property of each covered transition relation into fitness calculation,
because there is difference between data dependence transition

Peng and Lu 3237

Figure 3. Crossover process.

relation and link dependence transition relation in fault detection. A
transition relation identified by data dependence triggers more
background program segments to process data, sometimes
interacting with database, and may be more fault-prone than that
identified by link dependence. Thus, we assign 1 to be the
coefficient of the link dependence transition relation and introduce a
parameter � which is defined as much greater than 1 to be the
coefficient of the data dependence transition relation, so as to
increase the proportion of the data dependence transition relation in
fitness calculation. In this context, the chromosome which covers
more data dependence transition relations will have a relatively
bigger fitness. The fitness function of a chromosome is seen as:

Fitness value = (� * |CDTR| + |CLTR|) / (� * |DTR| + |LTR|) (1)

Where |CDTR| and |CLTR| separately denotes the number of data
and link dependence transition relations covered in the
chromosome; |DTR| and |LTR| separately denotes the number of
data and link dependence transition relations existing in the
application which are attained from the structural analysis in request
dependence graph construction. From the fitness function, we can
see that the highest fitness value is top achieved as 1 when a
chromosome covers all the data dependence transition relations
and link dependence transition relations existing in the application.

We use the typical roulette wheel selection (Michalewicz, 1999)
to select chromosomes for new population generation. The
chromosome which has better fitness will have a greater chance of
being selected.

(C) Crossover: The two-point crossover method is taken to
reproduce chromosomes, because a request can be only sent by
some certain pages; thus, the dependence relationship between
pages and requests should be taken into account. For the two
parent chromosomes, pc1 and pc2, presented in Figure 2B, page
nodes will be first compared between them, after which each node
with the same URL will be identified as a pair successively. If there
are two or more than two identified pairs in these two
chromosomes, random probabilities will be generated for each pair
and two pairs of nodes with the highest probability will be selected
to be the crossover points. Finally, the crossover points’ *next
pointer of each pair will be exchanged with each other. Otherwise, if
no crossover points are selected, then no crossover process will be
carried out. We take Figure 3 to illuminate the crossover process.
Supposing the page nodes with URL of u1 and u7 in shadow are
the crossover points, for simplicity, the name-value pairs are left out
temporarily.

(D) Mutation: The mutation takes place to change the request node

of a gene. In the mutation process, a mutation probability is first
predefined, and for each chromosome a mutation score is randomly
generated to compare with the mutation probability to decide
whether or not a mutation will be processed. For a mutating
chromosome, a mutation gene in the form of
“page1�request�page2” is randomly selected; and another
random selected chain, which has a head page node with the same
URL as page1 and a tail page node with the same URL as page2,
is then cut from a random chromosome of the initial population.
Finally, the common transition relations covered between the
mutating chromosome and the selected chain are counted, and the
common ratio in the selected chain is calculated. If the common
ratio is smaller than a predefined common threshold, then mutation
process will be carried by replacing the request node of mutation
gene with the selected chain removing the head node and tail node;
otherwise, another chain will be selected to be judged as the
foregoing, until the mutation process is carried out or a limited
number of times is reached. However, the mutation process is
illuminated in Figure 4.

(E) Acceptance and Replacement: For the fact that the
aforementioned two processors of crossover and mutation are
fraught with uncertainty, it is not sure that the offsprings are
superior to their parents. We will re-calculate the fitness values of
the new ones with the fitness function in step B; and then their
fitness values will be compared with that of the parents, after which
two chromosomes with relatively high fitness value will be selected
and placed in a new population. This process assures that in any
case, the optimal chromosome is inherited. The new population is
used for the next iteration of the heuristic.

(F) Stop: If the average fitness value reaches a steady state in
recent several populations or a predefined maximum generation
has been achieved, the mutation should be stopped, and the best
solution should be returned in the current population.

(G) Loop: Go to step B.

EMPIRICAL STUDIES

Here, we conduct an empirical study to evaluate the
validity and effectiveness of our US-RDG approach to
generate test cases for web application testing. Several
issues need to be dealt with and confirmed in the
empirical study: (1) Can US-RDG perform well in web

3238 Int. J. Phys. Sci.

Figure 4. Mutation process.

application testing? (2) How effective are the test cases
generated through our approach in terms of request
coverage, transition relation coverage and fault
detection? In addition, we apply some other existing
approaches which also address test case generation
based on user session to our empirical environment, in
order to provide an explicit comparison.

In our empirical studies, we used an open source
online Book Store available at gotocode.com. The online
Book Store allows users to register, sign in/out, search
books, order books, edit shopping cart and edit user
profile. There is also a module for administrators;
because the user data we collected were aimed at
customer activities, we only address the test suite
generation for the customer module. This application
uses JSPs for its front end and a MSSQL database for
the back end, and we deployed it on an environment
combining Apache Http server with Tomcat server and
JRE (Java Runtime Environment).

Request dependence graph construction of book
store

The customer module of Book Store contains 9 JSPs,
which are Default.jsp, Registration.jsp, Login.jsp,
AdvSearch.jsp, BookDetail.jsp, Books.jsp,
ShoppingCart.jsp, MyInfo.jsp and
ShoppingCartRecord.jsp. By means of the specification
document and structure analysis, 10 base requests are
identified among these JSPs, after which request
dependence relationships of the Book Store are
constituted and request dependence graph is constructed
in the left side of Figure 5A. The labeled request is
figured out in the right side of Figure 5B.

As can be seen from Figure 5, there are 49 edges in
the request dependence graph of the Book Store. In this
context, 49 transition relations can be extracted
correspondingly. From a further analysis of data
dependence and link dependence, 15 transition relations
among them can carry a data transition or data operation;

thus, these 15 transitions presented in the following can
be identified as data dependence transition relations.

Default.jsp�r1�Default.jsp;
Default.jsp�r2�Registration;
Registration.jsp�r2�Registration.jsp;
BookDetail.jsp�r3�Login.jsp;
ShoppingCart.jsp�r3�Login.jsp;
Default.jsp�r5�Books.jsp;
AdvSearch.jsp�r5�Books.jsp;
Books.jsp�r5�Books.jsp; Login.jsp�r6�Login.jsp;
ShoppingCart.jsp�r8�ShoppingCartRecord.jsp;
ShoppingCartRecord.jsp�r8�ShoppingCartRecord.jsp;
MyInfo.jsp�r9�MyInfo.jsp;
Default.jsp�r10�BookDetail.jsp;
Books.jsp�r10�BookDetail.jsp;
BookDetail.jsp�r10�BookDetail.jsp.

User session collection and preprocessing

In order to collect adequate and available user sessions,
we invited students who had online shopping experience
and no prior knowledge on this project to visit a Book
Store. We asked them not to use the browser’s
navigation features such as “back/forward”, so as to
ensure the accuracy of mapping requests to transition
relations. In the period of our experiment, we had 49
students’ participants and 3219 requests were recorded
in the log file with a size of 1.14M. After removing the
irrelevant data such as requests of .jpg, .ico, .gif, etc.
files, 1451 requests were left. We developed an applet in
C# to identify each user session based on user IP
address and the visiting stamp. Finally, 87 user sessions
were attained. Table 1 shows the characteristics of the
collected user sessions.

Test case generation using GA

As it is indicated previously, we use our genetic heuristic

Peng and Lu 3239

Figure 5. A. Request dependence graph of book store and; B. labeled requests.

Table 1. Characteristics of the collected user sessions.

Characteristic Value
Total number of user sessions 87
Total number of requests accessed 1451
Largest user session in the number of requests 43
Average user session in the number of requests 16.7
Number of unique requests covered (coverage percentage) 10 (100%)
Number of data dependence transition relations covered (coverage percentage) 15 (100%)
Number of link dependence transition relations covered (coverage percentage) 26 (76.47%)
Number of transition relations covered (coverage percentage) 41 (83.67%)

to generate test cases based on transition relation
analysis. At first, original user sessions were encoded to
chromosomes through an applet, and then, our GA
heuristic was applied.

We deploy the heuristic in C# with 6 modules, which
are fitness function, filtering function, crossover function,
mutation function, acceptation function and control
function.

Fitness function

The fitness function is used for calculating the fitness
value of each chromosome. The data dependence
transition relations covered in a chromosome can be

identified by a simple script. In our experiment, we view a
transition relation as data dependence when the request
in it carries any parameter with assigned value. After the
data dependence transition relations and link
dependence transition relations covered in a chromo-
some are separately counted, the fitness function,
presented in formula (1) of “test case generation using
GA”, is applied to calculate fitness. However, � is a
parameter of coefficient used to increase the proportion
of data dependence transition relations in fitness
calculation.

Filtering function

First, we sort chromosomes according to fitness from

3240 Int. J. Phys. Sci.

high to low, and then select chromosomes in order. In
addition, the filtering process follows a rule that the
chromosome whose fitness is lower than a predefined
percentage (fitness percentage threshold) of the parents’
average fitness should not be selected. The
chromosomes selected in this function are called a
selected group.

Crossover function

Two chromosomes with the highest fitness and lowest
fitness are respectively selected from the chromosome
group; and then two pairs of crossover points are fixed by
comparison and screening. Finally, the *next pointer of
the crossover points (if they are present) will be
exchanged with each other as presented in Figure 3.

Mutation function

A mutation probability is predefined to control whether or
not a mutation operation will be carried out for a
chromosome. If a chromosome is identified to be
mutated, a mutation point is decided randomly; and then
random chains are selected successively from
chromosomes of the initial population, until the common
ratio between the selected chain and the mutating
chromosome is smaller than a defined common ratio
threshold.

Acceptation function

Acceptation function is used to compare the fitness
values of four chromosomes, the offsprings and their
parents; while two chromosomes with the highest fitness
values are chosen for the next generation.

Control function

Control function is used to control the coordination of the
aforementioned 5 modules. These 5 modules work
coherently and iteratively until the average fitness value
reaches a steady state in recent several populations
(fluctuation is less than the fluctuating range), or a
predefined maximum generation is achieved.
Furthermore, in the iterative process, the three modules
of crossover, mutation and acceptation are in a nested
loop to deal with chromosomes in each selected group.

GA performance in test case generation

The charts shown in Figures 6 and 7 present the results
when running our GA heuristic under the condition of the

given parameters as follows: (1) �: 10; (2) fitness
percentage threshold: 0.92; (3) mutation probability: 0.25;
(4) common ratio threshold of mutation: 0.5; (5)
fluctuating range of resent several populations: 0.0001;
and (6) maximum generation: 100. Due to the GA’s the
randomness, the heuristic was run for 20 times and all
results were recorded so as to evaluate its performance
objectively. In these 20 runs, the number of iterations
used to generate an ultima test suite ranges from 12 to
23 with an average of 17.94, and the number of ultima
generated test cases ranges from 3 to 10 with an
average of 5.94. Since the goal of our genetic heuristic is
not only to generate the test data as traditional gas, but
also to optimize the original test data (user session) set in
aspects of both size reduction and quality improvement,
first we reveal the average performance of chromosomes
in each generation. Figure 6 presents the chromosomes’
average performance of each generation in five aspects
of fitness, base request coverage, data dependence
transition relations coverage and transition relations
coverage. In addition, the worst, average and best-case
scenarios were outlined for each aspect to offer an
objective evaluation of the heuristic’s performance.
Simplification of a dot in a broken line indicates
chromosomes’ average performance in a certain case
and a certain generation. As can be seen, all the broken
lines in the charts are on the rise with increasing
generation. Figure 6A reveals the variation of fitness,
from which we can see the average fitness increase with
generation steadily and the average fitness value of the
last (23rd) generation which ranges from 0.7716 to
0.9157 with a mean value of 0.8594; thus, the distance
between the best and the worst case of each generation
is less than 0.15, which indicates that our heuristic is
relatively stable. The reason why the average fitness of
the last generation is less than 1 is that the transition
relation coverage of the original user session set did not
reach 100%, and the fitness value is to some extent
bound by it. Figure 6B presents the average base request
coverage in each generation: the average base request
coverage increased from 62.96 to almost 100% in the
2nd generation, which suggests that the requirement of
the base request coverage is easy to be satisfied, and
the user session analysis, totally based on request
coverage, is not sufficient for test data generation.
Figures 6C, D and E present the average coverage
performance of each generation in data dependence
transition relations, link dependence transition relations
and total transition relations, respectively. Our heuristic
obtained a good effect in the data dependence transition
relation coverage, which achieved an average of nearly
100% ultimately. Although the ultima average link
dependence coverage transition relation and total
transition relation coverage seem not to be so good in
Figures 6D and E, yet it is because the original user
session set has just covered 76.47% link dependence
transition relations and 83.67% transition relations;

Peng and Lu 3241

 A

Generation

Fi
tn

es
s

Best

Average

Worst

100.00

80.00

60.00

40.00

20.00

0.00

Generation

Best

Average

Worst

B

C
ov

er
ag

e
(%

)

100.00

80.00

60.00

40.00

20.00

0.00

 C
Generation

Best

Average

Worst

C
ov

er
ag

e
(%

)

100.00

80.00

60.00

40.00

20.00

0.00

 D
Generation

Best

Average

Worst

C
ov

er
ag

e
(%

)

Figure 6. Average performances of chromosomes in each generation. A. Average fitness; B. Average request
coverage; C. Average data dependence transition relation coverage; D. Average link dependence transition relation
coverage; E. Average transition relation coverage of chromosomes.

3242 Int. J. Phys. Sci.

Original

Maximal

Average

Minimal

100.00

80.00

60.00

40.00

20.00

0.00

C
ov

er
ag

e
(%

)

 Data Link Total

Figure 7. Performance of generated test suite.

moreover, in our heuristic, each test case can achieve an
average link dependence transition relation coverage of
44.32 to approximately 62.25% and an average transition
relation coverage of 59.06 to approximately 72.39%. In
this case, the results of this study are acceptable. The
result reported in the foregoing is from the standpoint of
each chromosome’s performance on average. In the
following, we will analyze the coverage performance of
the ultimate test suite generated by our genetic heuristic.
The chart in Figure 7 also presents the three kinds of
transition relation coverage from maximal, average and
minimal levels. Of the 20 runs, 15 have generated test
cases to cover all the data dependence transition
relations, while the remaining 5 covered 14 transition
relations. As can be seen from the chart, data
dependence transition relation coverage of the generated
test suite ranges from 93.33 to 100% with an average of
98.33%, which indicates the good performance of our
heuristic in data dependence transition relation coverage.
Furthermore, the link dependence transition relation
coverage ranges from 61.76 to 76.47% with an average
of 68.38% and the total transition relation coverage
ranges from 73.47 to 83.67% with an average of 77.96%.
When compared with the original user sessions, the
generated test suite relatively covers 80.77~100% link
dependence transition relations and 87.81~100% total
transition relations of the original relations. The results
indicated that our heuristic can achieve up to 100% of the
original transition relation coverage; even in minimal
cases, our heuristic did not lost much coverage with a
small test suite.

Replay mechanism

Sapmpath et al. (2007) implemented a customized replay
tool using HTTPClient (available in
http://www.innovation.ch/java/HTTPClient/) to replay user
sessions on the application. For the simulation
experiment of our US-RDG, two factors were taken into

consideration when replaying the generated test cases:
one is the web application state, and the other is the
original user session state. The web application state was
already considered both in Elbaum et al. (2005b) and
Sampath et al. (2007), for the reason that the state of the
application might affect the normal operation of some
specific requests. Sapmpath et al. (2007) proposed a
with_state replay method to attain the web application
state of each original user session and restore the
respective state when replaying a certain one. In addition,
we introduce a new factor named user session state to
our replay mechanism. Since the offsprings are
generated by combining two individuals in both crossover
and mutation processes of our genetic heuristic and the
ultimate form of our generated test case is a mixture of
different user sessions, the user session state is also
crucial for the normal operation of the test case. To tackle
the two issues discussed in the foregoing, for each test
case, we identify all the crossover and mutation points in
it, and record their respective session states and web
application states from the corresponding original user
session. Subsequently, these session states and web
applications were restored on the points of those
corresponding points of test cases which are about to be
executed in the replaying process.

Fault seeding

Faults that belong to the following 3 types are seeded
into the online Book Store:

F1 (GUI faults): Faults that occur during the generation or
form validation of a page and influence the correct
display or normal event handler of pages.

F2 (Database operation faults): Faults that occur when
operations such as query, insert, update and delete are
performed on the server database through the client
browser.

Peng and Lu 3243

Table 2. Results of test suite reduction.

Test suite Originality ACON ASER US-RDG (Average)
The number of test cases 87 2 13 3~10 (5.94)
Total requests 1451 49~68 292 162~432 (270.7)
Unique requests 10 10 10 10
Data dependence transition relations coverage 15 6~9 13 14~15(14.75)
Link dependence transition relations coverage 26 9~13 21 21~26(23.45)
Transition relations coverage 41 17~22 34 36~41(38.2)

F3 (Navigation faults): Faults that occur when the target
URL of a hyperlink or button is incorrect, and the
resource is not available or a page is unreachable, which
influence the normal direction of pages and the
integration of the application. Hence, 40 faults were
totally seeded into the application, of which 10 are for F1,
15 are for F2 and 15 are for F3.

Result comparison

In this study, two other approaches were applied to
generate test cases based on user sessions: ACON,
proposed by Sampath et al. (2007), applied concept
analysis to cluster user session and it presented a set of
heuristics for test case selection; while ASER, proposed by
XingminLuo et al. (2009), clusters user sessions based
on the service profile and it selects a set of representative
user sessions from each cluster.

To apply ACON, a relational table was first established to
reveal the relationship between sessions and requests,
and then a concept lattice was constructed through a
concept analysis tool, ConExp (Yevtushenko, 2000), by
inputting the established relational table. We used the
test-all-exec-request heuristic, in which test cases were
selected from the bottom node and the next bottom node,
to select user sessions as test cases. In our study, the
bottom node contained no user sessions, and there were
two next-to-bottom nodes, in which one contained four
user sessions and the other contained one user session.
Thus, we randomly selected one user session from each
of the two next-to-bottom nodes. In this case, 2 test
cases were attained for ACON.

To apply ASER, service profile was first constructed, and
user sessions were then classified into different service
clusters according to the common paths contained in
user sessions and service. Finally, user sessions were
selected from each cluster based on dependence
relation. In this study, 7 services of login, registration,
searching, advance searching, book ordering, shopping,
cart editing and user profile editing were identified from
the Book Store application; and then those 87 sessions
were partitioned into 7 clusters. The respective user
session count of the 7 clusters is 16, 4, 1, 13, 20, 5 and 3,
and there are still 15 sessions which are not associated

with any services. Finally, 13 user sessions were
selected as test cases from those 7 clusters with count of
2, 1, 1, 3, 3, 2 and 1.

The US-RDG approach was implemented in GA
performance in test case generation and replay
mechanism. Due to the randomness of GA, test cases
generated in those 20 GA runs were adopted to reveal
the experiment results.

Table 2 shows the test suite reduction results of the
three approaches. We list the performance of each
approach from six aspects of the test suite size, total
requests, unique requests, and three types of transition
relations coverage. Since the test suite generated
through both ACON and US-RDG were uncertain, all the
possible cases were listed. In addition, we offer brackets
to present the average performance of US-RDG in each
aspect. From the table, it is seen that all the approaches
generated a test suite with small size, ACON reduced to 2,
ASER reduced to 13, and our US-RDG ranged from 3 to
10 with an average of 5.94. ACON performed best in test
cases and requests reduction, while the coverage of
transition relations was not that good. When compared
with the original user session set, ACON lost 19~24
(46.34~58.54%) transition relations of its originality,
especially the data dependence transition relations which
were fault sensitive (with 40~60% lost). ASER generated
13 test cases with an average request number of 22.46,
while US-RDG generated 5.94 test cases in average,
with an average request number of 45.57. Although the
average test case length of US-RDG was bigger than that
of ASER, US-RDG performed better than ASER in transition
relation coverage with a mixture of user sessions.

Table 3 presents the results of fault detection. The
faults seeded for F1 were detected best by the three
approaches, which were consistent with our testing
experience that the GUI faults were more prone to be
detected; even so, ACON missed two faults of F1. For F2
and F3, both ACON and ASER did not perform well in fault
detection, in that ACON detected 7~8 faults of F2 with a
detective rate less than 54% and 6~9 faults of F3 with a
detective rate of 40~60%, while ASER detected 12 faults of
F2 with a detective rate of 80% and 10 faults of F3 with a
detective rate of 66.67%. Since faults of these two types
are closely associated with the different transmissions
between pages, the probability of fault detection is relatively

3244 Int. J. Phys. Sci.

Table 3. Results of fault detection.

Fault detection Originality ACON ASER US-RDG
F1 (GUI faults) 10 8 10 10
F2 (Database operation faults) 15 7~8 12 13~15
F3 (Navigation faults) 15 6~9 10 12~15
Total 40 21~25 32 36~40

more dependent to the coverage of transition relations. In
our US-RDG approach, we achieved 86.67~100%
detective rate for F2, and 80~100% for F3. The detective
rate of US-RDG for total faults is 90~100%. As can be
seen in the result, our approach reached a relative high
fault detection probability.

Conclusion

In this paper, an approach named US-RDG for
generating test cases based on user sessions was
presented, in which a gray-box testing combining
structural testing and user-session-based testing was
inducted to generate test cases automatically. We
proposed a new conception named transition relation in
the form of “page�request�page” to present the
transition relationship between pages and requests from
a structural standpoint. In addition, user sessions were
correspondingly represented in the form of transition
relations.

In our approach, structural analysis was first made with
the application under test, and a graph named RDG was
constructed based on the request dependence
relationship between pages. Transition relations were
then extracted according to the RDG, and a further
analysis of data dependence and link dependence was
made to identify the significance of each transition
relation. Finally, a GA heuristic was proposed to generate
test cases by mixing different user sessions so as to
cover as many fault sensitive transition relations as
possible. Our empirical studies were compared with the
results of the other two approaches with our methodology
of US-RDG. The results showed that our approach
performed well for test case generation of web
application, and the generated test cases were effective
and efficient in requests coverage, path coverage and
fault detection.

However, even though our US-RDG achieved similar
transition relation coverage as the original user session
set in a maximum level, the coverage of the generated
test suite is dependent on the original coverage; that is to
say, the transition relations which are not covered in the
original user session set would not be covered in our US-
RDG. In the future, we plan to investigate the
argumentation of the generated test suite to meet a full
coverage from a standpoint of structure analysis.

ACKNOWLEDGEMENTS

This paper is supported by Guangdong Technology
Project (2009B010800048), GuangDong National
Science Fund (10151064101000011) and Fundamental
Research Funds for the Central Universities, SCUT.

REFERENCES

Ammann P, Offutt J (2008). Introduction to Software Testing. China

Machine Press, Beijing, China, 246-267.
Chen SB, Miao HK, Qian ZS (2007). Automatic generating test cases

for testing web applications. In: CISW 2007: Int. Conf. Comput. Intell.
Secur. Workshops Harbin, China, pp 881-885.

Chen MH, Song C, Luo XM, Zheng XY (2008). WebMTA.
<http://www.cs.albany.edu/~mhc/WebMTA/docs/tool.pdf>.

Dai ZY, Chen MH (2007). Automatic test case generation for multi-tier
web applications. In: WSE 2007: Proc. 9th IEEE Int. Workshop Web
Site Evol. Paris, France. pp 39-43.

Di Lucca GA, Fasolino AR, Tramontana P (2006). A technique for
reducing user session data sets in web application testing. In: WSE
’06: 8th IEEE Int. Symp. Web Site Evol. Philadel. USA, pp 7-13.

Doungsa-ard C, Dahal K, Hossain A, Suwannasart T (2007). Test data
generation from UML state machine diagrams using Gas. In: ICSEA
2007: 2nd Int. Conf. Softw. Eng. Advances Cap Esterel, France. pp
47-52.

Elbaum S, Karre S, Rothermel G (2003). Improving web application
testing with user session data. In: ICSE’03: Proc. 25th Int. Conf.
Software Eng. Portland, Oregon, USA, pp 49-59.

Elbaum S, Karre S, Gibson E, Pollock L (2005a). An empirical
comparison of test suite reduction techniques for user-session-based
testing of web applications. In: ICSM05: Proc. 21st IEEE Int. Conf.
Softw. Mainten. Budapest, Hungary, pp .587-596.

Elbaum S, Rothermel G, Karre S (2005b). Leveraging user-session data
to support web application testing. IEEE Tran. Softw. Eng., 31(3):
187-202.

Ghiduk AS, Harrold MJ, Girgis MR (2007). Using genetic algorithms to
aid test-data generation for data-flow coverage. In: APSEC 2007:
14th Asia-Pacific Software Eng. Conf. Nagoya, Japan, pp. 41-48.

Holland J (1975). Adaptation in Natural and Artificial Systems. Uni.
Michigan Press, Ann Arbor, USA, 66-72.

Kalaji AS, Hierons RM, Swift S (2009). Generating feasible transition
paths for testing from an extended Finite State Machine. In: ICST’09:
Inte. Conf. Softw. Test. Verification Validation Denver, Colora., pp
230-239.

Khor S, Grogono P (2004). Using a genetic algorithm and formal
concept analysis to generate branch coverage test data automatically.
In: ASC’04: Proc. 19th Int. Conf. Automated Softw. Eng. Lina,
Austria, pp. 346-349.

Luo XM, Ping F, Chen MH (2009). Clustering and tailoring user session
data for testing web applications. In: ICST '09: 2nd Int. Conf. Softw.
Test. Verification Validation Denver, Colorado, pp. 336-345.

Miao HK, Qian ZS, Song B (2008). Towards automatically generating
test paths for web application testing. In: TASE’08: 2nd IFIP/IEEE
Inte. Symp. Theor. Aspects Softw. Eng Nanjing, China, pp. 211-218.

Michalewicz Z (1999). Genetic algorithms + data structures = evolution
programs. 3rd ed., Springer, London, UK, 33-44.

Rauf A, Anwar S, Jaffer MA, Shahid AA (2010). Automated GUI test

coverage analysis using GA. In: ICIT 2010: 7th Int. Conf.
Inform.Technol. Las Vegas, Nevada, USA, pp. 1057-1062.

Ricca F, Tonella P (2001). Analysis and testing of web applications.
Proc. 23rd Int. Conf. Softw. Eng., pp. 25-34.

Sampath S, Mihaylov V, Pollock L (2004). A scalable approach to user-
session based testing of web applications through concept analysis.
In: ASE’04: Proc. 19th Int. Conf. Automated Softw. Eng. Washington
DC, USA, pp. 132-141.

Sampath S, Bryce RC, Viswanath G, Kandimalla V, Koru AG (2008).
Prioritizing user-session-based test cases for web applications testing.
In: ICST 2008: 1st Int. Conf. Softw. Test. Verifi. Validation
Lillehammer, Norway, pp. 141-150.

Sprenkle S, Sampath S, Gibson E, Pollock L, Souter A (2005). An
empirical comparison of test suite reduction techniques for user-
session-based testing of web applications. In: ICSM05: Proceedings
of the 21st IEEE Int. Conf. Softw. Mainten. Budapest, Hungary, pp.
587-596.

Peng and Lu 3245

Sampath S, Sprenkle S (2007). Applying concept analysis to user-

session-based testing of web applications. IEEE Tran. Softw. Eng.,
33 10: 643-658.

Yevtushenko SA (2000). System of data analysis "Concept Explorer" (in
Russian). In: KII-2000: Proc. 7th national conf. Artif. Intell. Russia, pp.
127-134.

