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In this paper, using non-planar space curves, the translation surfaces were investigated according to
Frenet frames in Minkowski 3-space and some properties of these surfaces were given. Furthermore,
we calculated first fundamental form, second fundamental form, Gaussian curvature and mean
curvature of the translation surface. Also, the Darboux frame of the generator curves of the translation
surfaces in Minkowski 3-space was given. Finally, we gave the conditions of being a geodesic, an
asymptotic line and a principal line for the generator curves of the translation surface.
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INTRODUCTION

The theory of translation surfaces is always one of the
interesting topics in mathematics. Translation surfaces
have been investigated by some differential geometers.
Verstraelen et al. (1994) had studied minimal translation
surfaces in n-dimensional Euclidean spaces. Liu (1999)
had given the classification of the translation surfaces
with constant mean curvature or constant Gaussian
curvature in 3-dimensional Euclidean space and 3-
dimensional Minkowski space. Yoon (2002) had studied
translation surfaces in the 3-dimensional Minkowski
space whose Gauss map G satisfies the condition
AG=AG, AeMat(3,R) where A denotes the Laplacian
of the surface with respect to the induced metric and
Mat(3,R) the set of 3X3 real matrices. Munteanu and
Nistor (2011) studied the second fundamental form of

translation surfaces in E*®. They had given a non-
existence result for polynominal translation surfaces in

E*® with vanishing the second Gaussian curvature K, .
They classified those translation surfaces for which K,

and H are proportional. Baba-Hamed et al. (2010)
studied the translation surfaces in the 3-dimensional
Lorentz-Minkowski space under the condition Ar; = A4r;
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where 4, e R and A denotes the Laplace operator with

respect to the first fundamental form and they obtained
the complete classification theorems for those ones. They
also gave explicit forms of these surfaces. Cetin et al.
(2011) investigated the translation surfaces in 3-
dimensional Euclidean space by using non-planar space
curves and they gave the differential geometric properties
for both translation surfaces and minimal translation
surfaces.

In this paper, by using non-planar curves and their

Frenet frames, we studied the translation surface in EJ.

We gave some differential geometric properties of the
translation surfaces. Also, we gave the Darboux frame of
the generator curves of the translation surfaces in
Minkowski 3-space.

PRELIMINARIES

The Minkowski 3-space Ef is the Euclidean 3-space
E3provided with the standard flat metric given by
()==x2+x°+x° where {xx,} is a rectangular
coordinate system of E}. Since () is an indefinite

metric, recall that a vector v e E? can have one of three
Lorentzian causal characters: it can be spacelike, if
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(viv)=0 Or v=0, timelike, if (v,v) <0 and null (lightlike), if
(vwv)=0 and v=0. Similarly, an arbitrary curve a =a(s)

in E13 can locally be spacelike, timelike, or null (lightlike),
if all of its velocity vectors «'(s) are respectively

spacelike, timelike, or null (lightlike) (O’Neill, 1983).
Let «(s) be a regular curve in Minkowski 3-space.

Denote by {T,N,B} the moving Frenet frame along the

curve a(s) in the space EX. If « is a timelike curve,
then the Frenet formulae were given by:

Tl [0 k  OFT
N'[=lk, O k,|[N (1)
B| |0 -k, 0B
where, (T.T)=-1,
(T,N)=(N,B)=(T,B)=0"

(N,N) =1, (B,B) =1,
For an arbitrary spacelike

curve «(s) in the space E13, the following Frenet
formulae were given by:

T 0 k OfT

N'[=|-¢k, O ky|N (2)
B' 0 k, 0B
where (T.T)=1, (N,N) =g ==1, (B,B) = —&,

(T,N)=(N,B)=(T,B)=0, and k; and k, are curvature
and torsion of the spacelike curve «(s), respectively.
Here, ¢ determines the kind of spacelike curve «(s). If
¢=1, then «(s) is a spacelike curve with spacelike

principal normal N and timelike binormal B. If £=-1,
then «(s) is a spacelike curve with timelike principal

normal N and spacelike binormal B (Walrave, 1995).

Definition 1

A timelike vector is future pointing or past pointing if the
first compound of the vector is positive or negative,
respectively.

Definition 2

Hyperbolic angle

Let x and y be future pointing (or past pointing) timelike
vectors in R?. Then, there is a unique real number 6 >0

such that (x,y)=—|x||y|cosh@. This number is called
the hyperbolic angle between the vectors x and vy .

Central angle

Let x and y be spacelike vectors in Rf’ that span a

timelike vector subspace. Then, there is a unique real
number #=0 such that (x,y)=x||ly|coshe. This

number is called the central angle between the vectors x
and vy .

Spacelike angle

Let x and y be spacelike vectors in Rf’ that span a
spacelike vector subspace. Then, there is a unique real
number >0 such that (xy)=x||y|cosd. This number is

called the spacelike angle between the vectors x and vy .

Lorentzian timelike angle

Let x be a spacelike vector and y be a timelike vector in

R?. Then there is a unique real number >0 such that
(x,y) = x||y|sinhe. This number is called the Lorentzian
timelike angle between the vectors x and y (O’Neill,
1983).

Definition 3

A surface in the Minkowski 3-space R? is called a

timelike surface if the induced metric on the surface is a
Lorentz metric and is called a spacelike surface if the
induced metric on the surface is a positive definite
Riemannian metric, that is, the normal vector on the
spacelike (timelike) surface is a timelike (spacelike)
vector (Beem and Ehrlich, 1981).

Let x=(%,X;,%X3) and y=(y;,Y,,Y3) be vectors in
Minkowski 3-space Ef . Then the scalar product of x and
y is defined by:

(X, y) =X Y1 T XY +X3Y5
Furthermore, the cross product of x and y is defined by:
XXy =(XaY3 = X3Y2, X Y3 —X3¥1, X2 Y1 —X1¥2) -

Let M be a non-null surface in E>. The mean curvature
H and the Gaussian curvature K are given by:

H :GI+En—22Fm 3
2|EG-F“|



and

K=<U,U>Elg_—n::22 @

respectively, where U is the unit normal vector field of
the surface (Baba-Hamed et al., 2010). If the surface M
is a spacelike surface, then the curve «(s) lyingon M is

a spacelike curve. If the surface M is a timelike surface,
then the curve «(s) lying on M can be a spacelike or a

timelike curve.
Since the curve «(s) lies on the surface M there

exists another frame along the curve «(s) which is called
Darboux frame and denoted by {T,g,U}. In this frame T

is the unit tangent of the curve, U is the unit normal of
the surface M along «(s) and g is a unit vector given

by g=U AT . Since the unit tangent T is common in

both Frenet frame and Darboux frame, the vectors
N,B,g, and U lie on the same plane.

If the surface M is an oriented timelike surface, then
the curve «(s) lying on M is a timelike or a spacelike

curve. So, the relations between these frames can be
given as follows: If the curve «(s) is timelike, then:

T 1 0 0 |T
g|=|0 cosy siny|N (5)
U 0 —siny cosy| B

and if the curve «(s) is spacelike, then

T 1 0 0 T
g|=|0 coshy sinhy |N/|. (6)
U 0 sinhy coshy| B

If the surface M is an oriented spacelike surface, then
the curve «(s) lying on M is a spacelike curve. So, the

relations between the frames can be given as follows:

T 1 0 0 T
g|=|0 coshy sinhy | N @
U 0 sinhy coshy | B

where y is the angle between the vectors g and N .

According to Lorentzian causal characters of the
surface M and the curve «(s) lying on M, the

derivative formulae of the Darboux frame can be changed
as follows: If the surface M is a timelike surface, then
the curve «(s) lying on M can be a spacelike or a

timelike curve. Thus, the derivative formulae of the
Darboux frame of «(s) is given by:
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(8)

«

T

g9'|=|x g

U’ Kn T4 0 U

where (T, T)=e=+1, (g,9)=—¢, (U,U)=1.
If the surface M is a spacelike surface, then the

curve a(s) lying on M is a spacelike curve. Thus, the

derivative formulae of the Darboux frame of «(s) is given
by:

T 0 Kg Ko | T
g'|=|-x¢ 0 7409 ©)
U Kn 74 0 |U

where (T,T)=1, (g.g)=1, (U,U)=-1. In this formulae

kq.kn and z, are called the geodesic curvature, the

g
normal curvature, and the geodesic torsion, respectively.
In the differential geometry of surfaces, for a curve «(s)

lying on a surface M , the followings are well-known:

i) a(s) is a geodesic curve kg =0,
i) a(s) is an asymptotic line = » =0,
iii) a(s) is principal line <>z, =0 (O'Neill, 1966).

TRANSLATION SURFACES WITH SPACE CURVES IN
MINKOWSKI 3-SPACE

Here, we investigated the translation surfaces according
to Frenet frame in Minkowski 3-space. So, we gave
fundamental forms, Gaussian curvature, and mean
curvature.

The translation surface M determined by curves
a,p:(a,b) > R is the patch

M (u,v) = a(u) + S(v) .

It is the surface formed by moving « parallel to itself in
such a way that a point of the curve moves along g
(Gray, 1998).

Let {T,,N,,B,} be the Frenet frame field of «(u) with
curvature k{* and torsion k3 . Also, let {T;N,,B,| be the
Frenet frame field of B(v) with curvature k# and torsion
ky .

A surface that can be generated from two space curves
by translating either one of them parallel to itself in such a
way that each of its points describes a curve that is a
translation of the other curve. For the surface M, there

are two cases; first one is that both the surface M and
the generator curves «(u) and g(v) of M are spacelike.

The second case is that the surface M is timelike, so the
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generator curves «(u) and B(v) of M can be timelike or
spacelike.

The spacelike translation surfaces

Let M(u,v) be a spacelike translation surface. Then, the
generator curves «(u) and g(v) of M(u,v) are spacelike
curves. So, we can give the following cases:

Case l

Let a(u) is a spacelike curve with spacelike binormal and
pL(v) is a spacelike curve with spacelike binormal, so

there exist the following equalities, and the unit normal of
the surface can be defined by:

1
Uu,v)=——-T_ AT
(u.Y) sing °F

where ¢(u) is the angle between tangent vectors of «(u)
and g(v). The first fundamental form | of the surface is
defined by:

| = Edu? + 2Fdudv + Gdv?

where E=1, F=cosp and G =1 are the coefficients of
| . Then,

| =du? +2cos gdudv + dv?.

The second fundamental form Il of the surface is

defined by:

Il =Idu? + 2mdudv + ndv?

where | =—k{"cosh@,, m=0 and n=—k{ coshg, are
the coefficients of 1l . Also 6, and 6, are the angle

between U and N,,N g, respectively. Then,
Il =—k{* cosh 6,,du® —k{’ cosh 0 ,dv?.

On the other hand the Gaussian curvature K and mean
curvature H of the surface are:

K k{k{’ cosh 6,, cosh 8,

sin g

and

oo k" cosh 9, —k{’ cosh 6,
a 2sin
respectively.
By considering the similar calculations and Lorentzian

casual characters of the curves, we can give the
followings:

Case 2

Let a(u) is a spacelike curve with spacelike binormal and
B(v) is a spacelike curve with spacelike principal normal,
so there exist following equalities:

I =du? +2cos gdudv + dv?
Il =—k{* cosh 8, du’ +k{’ sinh 0 ,dv*

K kik{’ cosh @, sinh 6,

oo k{* cosh @, +k{’ sinho,
sin? ¢ B

2sin? o

Case 3

Let a(u) be a spacelike curve with spacelike principal
normal and pg(v) be a spacelike curve with spacelike
binormal, so there exist the following equalities:

| =du? +2cos gdudv + dv?
Il =k{* sinh@,du® —k{’ cosh #,dv’

kZk” sinh @, cosh @
K = 1™ a B

H k{* sinh @, —k{’ cosh 6,
sin B

2sin’

Case 4

Let a(u) is a spacelike curve with spacelike principal
normal and pg(v) is a spacelike curve with spacelike
principal normal, so there exist following equalities:

| =du? + 2cos gdudv + dv?
Il =k{* sinh@,du’ +k{’ sinh 6 ,dv?
< —k{'k{ sinh@, sinh 6,

k®sinh@, +k” sinho
— H = 1 a 1 p
sin® ¢

2sin p

The timelike translation surfaces

Let M(u,v) be a timelike translation surface. Then, the



generator curves «a(u) and p(v) of M(u,v) can be
timelike or spacelike. So, we can give the following cases

for the timelike translation surface M :
Case l

Let both «(u) and pg(v) are timelike curves, so there

exist following equalities.
The unit normal of the surface can be defined by:

U(u,v) =

T, AT
sinhp * #

where ¢(u) is the angle between tangent vectors of a(u)
and g(v). The first fundamental form | of the surface is
defined by:

| = Edu? + 2Fdudv + Gdv?

where E=-1, F=-coshy and G=-1 are the
coefficients of | . Then,

| =—du? —2cosh gdudv — dv? .

The second fundamental form Il of the surface is

defined by:
Il =Idu? + 2mdudv + ndv?

Where | =k cosh#,, m=0 and n=k/ cosh 0, are the
coefficients of 11 . Also 6, and ¢, are the angle between
U and N,,Ng, respectively. Then,

Il =k{* cosh 6,,du® +k{’ cosh 8 ,av?.

On the other hand the Gaussian curvature K and mean
curvature H of the surface are:

—k{’k{' cosh @, cosh 6,

K =
sinh? ¢
and
a B
o —k; cosh @  —k; cosh Hﬁ

23inh2q)

respectively.
By considering the similar calculations and Lorentzian
casual characters of the curves we can give the
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followings:

Case 2

Let a(u) be a spacelike curve with spacelike binormal
and p(v) be a spacelike curve with spacelike binormal,
so there exist the following equalities:

U(u,v)= Ty ~Tg

sinh g
| = du? + 2cosh gdudv + dv?
Il =k{* sinh@,du’ +k{’ sinh @ ,dv?

< —k{’k{ sinh @, sinh o,

H ki’ sinh@,, +k{ sinh6, |
sinh? ¢

2sinh? o

Case 3

Let a(u) be a spacelike curve with spacelike binormal
and p(v) be a spacelike curve with spacelike principal
normal, so there exist the following equalities:

/\Tﬁ

a

U(u,v) =#T
sinh¢g

I =du? +2cosh gdudv + dv?

Il =k{" sinh@,du’ +k{’ cosh 0dv’

_ —k{*k{sinh g, cosh 6,

H— k" sinh@,, +k{ cosh @, .
sinh? o

2sinh? ¢

K

Case 4

Let a(u) be a spacelike curve with spacelike principal
normal and p(v) be a spacelike curve with spacelike
binormal, so there exist the following equalities:

1
uu,v)=—-"T,AT
) sinh¢g ~p
I =du? +2cosh gdudv + dv?
Il =k{* cosh @, du® +k{’ sinh@;dv’

K k{“k{ cosh 8, sinh o,

o k{* cosh 6, +k{’ sinh @, _
sinh? o

2sinh? ¢
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Case 5

Let a(u) be a spacelike curve with spacelike principal
normal and pB(v) be a spacelike curve with spacelike
principal normal, so there exist the following equalities:

U(u,v) =

T, /\Tﬁ

sinh g

| = du? + 2cosh gdudv + dv?
Il =k{* cosh @, du® +k{’ cosh 6,,av*

—kZk? cosh 6, cosh @
K = 1 ™M a £

k& cosh @, +k# cosh @
H = 1 a 1 ﬁ_

sinh? 2sinh? ¢

Case 6

Let a(u) be a timelike curve and g(v) be a spacelike

curve with spacelike binormal, so there exist the following
equalities:

U(u,v) =

T T
coshep “ np
| =—du? + 2sinh gdudv + dv?

Il =k{* cosh @, du® +k{’ sinh @ 5dv?

W kk{ cosh 6, cosh 6,

" ki cosh 6, —k{’ cosh 0, |
cosh? ¢

2cosh? ¢

Case 7

Let a(u) be a timelike curve and g(v) be a spacelike

curve with spacelike principal normal, so there exist the
following equalities:

[24

U(u,v) = S L

T, AT
osh ¢ s

| =—du? + 2sinh gdudv + dv?
Il =k{* cosh @, du® +k{’ cosh 6,dv*

—k{’k{’ cosh 6,, cosh 6,

K- o ki cosh 0, —k{’ cosh 0,

2cosh? ¢

cosh? ¢

Case 8

Let a(u) be a spacelike curve with spacelike binormal

and g(v) be a timelike curve, so there exist the following
equalities:

U(u,v)= col

T, AT
shep s

I =du? +2sinh gdudv — dv?

H 2 2
Il =k{* sinh@,du® +k{ cosh & dv
K~ k{k{’ sinh @, cosh 6,

o —k{*sinh @, +k{ cosho, '
cosh?

2cosh? ¢

Case 9

Let a(u) be a spacelike curve with spacelike principal
normal and g(v) be a timelike curve, so there exist the
following equalities:

1
U(u,v) = T AT
( ) COSh@ a B

| = du? + 2sinhgdudy — dv?
Il =k{* cosh @,du® +k{’ cosh 6 ,dv*

« k’k{’ cosh 8, cosh 6,
- cosh? o

—k{* cosh 6, +k{’ cosh 6,

2cosh? ¢

DARBOUX FRAME OF THE GENERATOR CURVES

Here, we investigate Darboux frame of the generator
curves of the translation surface. There exist two cases;
first one is that, both the surface M, the generator
curves «(u), and g(v) of M are spacelike. The second

case is that, the surface M is timelike, so the generator
curves «(u) and pg(v) of M can be timelike or

spacelike.

Case 1l

If the surface M is spacelike, then the curve «(u) and
L(v) are spacelike.

Casea

Let a(u) be a spacelike curve with spacelike principal
normal.

From Equation 7, we can write for the curve «a(u) as
follows:



g, =coshy, N, +sinhy,B, (20)
U =sinhy,N, +coshy,B, (11)

where y, is the angle between g, and N,.
Differentiating Equation 10 with respect to u we have:

9,'=—k{ coshy,T, +(r,+kg)sinhy,N,
+(y,"+k5)coshy,B, .

From Equation 9, we can write for the curve «(u) as
follows:

T,'=Kg9, +x3U (12)
ga':—KgTa +rgU (13)
U'=x T, +750,-

Taking the inner product of Equation 12 with g, , we get:
xg =Kk{ coshy, . (14)
Taking the inner product of Equation 12 with U , we get:
k7 =—k{sinhy,, . (15)

Taking the inner product of Equation 13 with U , we get:

a

g = 7o K3 . (16)

T

Caseb

Let a(u) be a spacelike curve with spacelike binormal.
From Equation 7, we can write for the curve «(u) as
follows:

g, =coshy, N, +sinhy, B, a7)
U =sinhy,N_ +coshy,B, (18)

where y, is the angle between g, and N,.
Differentiating Equation 17 with respect to u we have:

9o =K' coshy, T, + (7, +k7)sinhy, N,
+(y,+k§)cosh 7, B, '
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From Equation 9, we can write for the curve «(u) as
follows:

T,'=xg9, +x7U (19)

“u (20)

9, =—KgTy+7
U'=xST, +780, -

Taking the inner product of Equation 19 with g, , we get:
Kg =—k{ coshy,. (21)
Taking the inner product of Equation 19 with U , we get:
Ky =k{sinhy, . (22)

Taking the inner product of Equation 20 with U , we get:

7g =—(Va"+k3) - (23)

Case 2

If the surface M is a timelike, then the curve «(u) and
L (v) can be timelike or spacelike.

Casea

Let a(u) be atimelike curve.
From Equation 5, we can write for the curve «(u) as
follows:

9, =0087,N, +siny,B, (24)
U =-siny,N, +cosy,B, (25)
where y, is the angle between g, and N,.

Differentiating Equation 24 with respect to u we have:

_(7a'+kg)5in7/aNa

[24

g,'=kcosy,T
+(r,'+k3)cosy, B

a

From Equation 8, we can write for the curve «(u) as
follows.

T '=Kgga +x7U (26)

a
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9, =xgT, —74U 27)
U'=xpT, +740,-

Taking the inner product of Equation 26 with g, , we get:
Kg =k{ COSy,. (28)
Taking the inner product of Equation 26 with U , we get:
Ky =—k{siny, . (29)
Taking the inner product of Equation 27 with U , we get:

78 = (1, k5 (30)

Caseb

Let a(u) be a spacelike curve with spacelike principal
normal. From Equation 6, we can write for the curve a(u)
as follows:

g, =coshy, N, +sinhy,B, (31)
U =sinhy,N_, +coshy,B, (32)

where y, is the angle between g, and N,.
Differentiating Equation 31 with respect to u we have:

g,'=—-k{ coshy,T, +(r,"+k5)sinhy,N,
+(r,'+k%)cosh 7,B, '

From Equation 8, we can write for the curve «(u) as
follows:

Ta'zicgga—lcﬁ’u (33)
9,'=xg T, +74U (34)
U'=xyT, +7409,-

Taking the inner product of Equation 33 with g, , we get:
Kg =—k{ coshy,. (35)
Taking the inner product of Equation 33 with U , we get:

Kk =—k{ sinhy,, . (36)

Taking the inner product of Equation 34 with U , we get:

7g =—(ra"+k7) - (37)

Casec

Let a(u) be a spacelike curve with spacelike binormal.
From Equation 6, we can write for the curve «a(u) as
follows:

g, =coshy, N, +sinhy,B, (38)
U =sinhy,N_ +coshy,B, (39)

where y, is the angle between g, and N,.
Differentiating Equation 38 with respect to u we have:

g, =k coshy T +(y, '+ky)sinhy N,

+ (k; +y,")coshy B,

From Equation 8, we can write for the curve «(u) as
follows:

Ta':Kgga+Kﬁ’U (40)

oy (41)

g,'= K'gTa +7
U'=xpT, +740,-

Taking the inner product of Equation 40 with g, , we get:
xg =k{ coshy, . (42)
Taking the inner product of Equation 40 with U , we get:
kn =—k{sinhy,, . (43)

Taking the inner product of Equation 41 with U , we get:

a

&=y, ke (44)

T

Theorem 1

Let a(u) be a space curve with non zero curvature. The
curve «(u) is a geodesic curve if and only if a(u) is a
timelike curve and, g, and B, are linear dependent.



Proof

Let a(u) be a space curve with non zero curvature. If
«a(u) is a geodesic curve, then zcg =0. From Equations
14, 21, 28, 35, and 42 the curve «(u) must be timelike.
Since, when «(u) is a spacelike curve, xg #0. If
kg =0, cosy, =0. This means that g, is perpendicular

to N,. Then we can say that g, and B, are linear

dependent.
If a(u) is a timelike curve and, g, and B, be linear

dependent. So, g, Iis perpendicular to N, and

a

cosy, =0. Then xg =0. By the definition we can obtain

that «(u) is a geodesic curve.

Theorem 2

Let a(u) be a space curve with non zero curvature. The
curve a(u) is an asymptotic line if and only if g, and
N, are linear dependent.

Proof

Let a(u) be a space curve with non zero curvature. If
a(u) is an asymptotic line, by the definition 7 =0. From
Equations 15, 22, 29, 36, and 43 the angle y, must be

zero. This means that g, and N, are linear dependent.
If g, and N, be linear dependent. We can say that

siny, =0 and sinhy, =0. Then «; =0. By the definition
we can obtain that «(u) is an asymptotic line.

Theorem 3

Let a(u) be a space curve. The curve «(u) is a principal

line if and only if y,+k; =0.
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Proof

Let «(u) be a space curve. If «(u) is a principal line, by
the definition r;‘ =0. From Equations 16, 23, 30, 37, and

44 it can be written that y_ +k; =0.

% =0. This means that

When 7, '+ky =0 and so r

a(u) is a principal line.
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