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In this paper, using non-planar space curves, the translation surfaces were investigated according to 
Frenet frames in Minkowski 3-space and some properties of these surfaces were given. Furthermore, 
we calculated first fundamental form, second fundamental form, Gaussian curvature and mean 
curvature of the translation surface. Also, the Darboux frame of the generator curves of the translation 
surfaces in Minkowski 3-space was given. Finally, we gave the conditions of being a geodesic, an 
asymptotic line and a principal line for the generator curves of the translation surface. 
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INTRODUCTION 
 
The theory of translation surfaces is always one of the 
interesting topics in mathematics. Translation surfaces 
have been investigated by some differential geometers. 
Verstraelen et al. (1994) had studied minimal translation 
surfaces in n-dimensional Euclidean spaces. Liu (1999) 
had given the classification of the translation surfaces 
with constant mean curvature or constant Gaussian 
curvature in 3-dimensional Euclidean space and 3-
dimensional Minkowski space. Yoon (2002) had studied 
translation surfaces in the 3-dimensional Minkowski 
space whose Gauss map G  satisfies the condition 

AGG  , ),3( RMatA  where   denotes the Laplacian 

of the surface with respect to the induced metric and 

),3( RMat  the set of 33x  real matrices. Munteanu and 

Nistor (2011) studied the second fundamental form of 

translation surfaces in 3E . They had given a non-
existence result for polynominal translation surfaces in 

3E  with vanishing the second Gaussian curvature IIK . 

They classified those translation surfaces for which IIK  

and H  are proportional. Baba-Hamed et al. (2010) 
studied the translation surfaces in the 3-dimensional 

Lorentz-Minkowski  space  under  the  condition iii rr    
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where Ri   and   denotes the Laplace operator with 

respect to the first fundamental form and they obtained 
the complete classification theorems for those ones. They 
also gave explicit forms of these surfaces. Çetin et al. 
(2011) investigated the translation surfaces in 3-
dimensional Euclidean space by using non-planar space 
curves and they gave the differential geometric properties 
for both translation surfaces and minimal translation 
surfaces. 

In this paper, by using non-planar curves and their 

Frenet frames, we studied the translation surface in 3
1E . 

We gave some differential geometric properties of the 
translation surfaces. Also, we gave the Darboux frame of 
the generator curves of the translation surfaces in 
Minkowski 3-space. 
 
 
PRELIMINARIES 
 

The Minkowski 3-space 
3

1E  is the Euclidean 3-space 

3E provided with the standard flat metric given by 
2

3
2

2
2

1, xxx   where  1 2 3
, ,x x x  is a rectangular 

coordinate system of 3
1E . Since ,  is an indefinite 

metric, recall that a vector 3
1Ev  can have one of three 

Lorentzian   causal   characters:  it  can  be  spacelike,   if  
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0, vv  or 0v , timelike, if 0, vv  and null (lightlike), if 

0, vv  and 0v . Similarly, an arbitrary curve )(s   

in 3
1E  can locally be spacelike, timelike, or null (lightlike), 

if all of its velocity vectors )(' s  are respectively 

spacelike, timelike, or null (lightlike) (O’Neill, 1983). 
Let )(s  be a regular curve in Minkowski 3-space. 

Denote by  BNT ,,  the moving Frenet frame along the 

curve )(s  in the space 3
1E . If   is a timelike curve, 

then the Frenet formulae were given by: 
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where, 1, TT , 1, NN , 1, BB , 

0,,,  BTBNNT . For an arbitrary spacelike 

curve )(s  in the space 3
1E , the following Frenet 

formulae were given by: 
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where 1, TT , 1,  NN , BB, , 

0,,,  BTBNNT , and 1k  and 2k  are curvature 

and torsion of the spacelike curve )(s , respectively. 

Here,   determines the kind of spacelike curve )(s . If 

1 , then )(s  is a spacelike curve with spacelike 

principal normal N  and timelike binormal B . If 1 , 

then )(s  is a spacelike curve with timelike principal 

normal N  and spacelike binormal B  (Walrave, 1995). 

 
 
Definition 1 

 
A timelike vector is future pointing or past pointing if the 
first compound of the vector is positive or negative, 
respectively. 

 
 
Definition 2 

 
Hyperbolic angle 
 
Let x  and y  be future pointing (or past pointing) timelike 

vectors in 3
1R . Then, there is a unique real number 0  

such that cosh|| ||, yxyx  . This number is called 

the hyperbolic angle between the vectors x  and y . 

 
 
 
 
Central angle 
 

Let x  and y  be spacelike vectors in 3
1R  that span a 

timelike vector subspace. Then, there is a unique real 
number 0  such that cosh|| ||, yxyx  . This 

number is called the central angle between the vectors x  

and y . 

 
 
Spacelike angle 
 

Let x  and y  be spacelike vectors in 3
1R  that span a 

spacelike vector subspace. Then, there is a unique real 

number 0  such that cos|| ||, yxyx  . This number is 

called the spacelike angle between the vectors x  and y . 

 
 
Lorentzian timelike angle 
 
Let x  be a spacelike vector and y  be a timelike vector in 

3
1R . Then there is a unique real number 0  such that 

sinh|| ||, yxyx  . This number is called the Lorentzian 

timelike angle between the vectors x  and y  (O’Neill, 

1983). 
 
 

Definition 3 
 

A surface in the Minkowski 3-space 3
1R  is called a 

timelike surface if the induced metric on the surface is a 
Lorentz metric and is called a spacelike surface if the 
induced metric on the surface is a positive definite 
Riemannian metric, that is, the normal vector on the 
spacelike (timelike) surface is a timelike (spacelike) 
vector (Beem and Ehrlich, 1981). 

Let ),,( 321 xxxx   and ),,( 321 yyyy   be vectors in 

Minkowski 3-space 3
1E . Then the scalar product of x  and 

y  is defined by: 

 

332211, yxyxyxyx   

 
Furthermore, the cross product of x  and y  is defined by: 

 

),,( 211213312332 yxyxyxyxyxyxyx  . 

 

Let M  be a non-null surface in 3
1E . The mean curvature 

H  and the Gaussian curvature K  are given by: 
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respectively, where U  is the unit normal vector field of 

the surface (Baba-Hamed et al., 2010).  If the surface M  
is a spacelike surface, then the curve )(s  lying on M  is 

a spacelike curve. If the surface M  is a timelike surface, 
then the curve )(s  lying on M  can be a spacelike or a 

timelike curve. 
Since the curve )(s  lies on the surface M  there 

exists another frame along the curve )(s  which is called 

Darboux frame and denoted by  UgT ,, . In this frame T  

is the unit tangent of the curve, U  is the unit normal of 

the surface M  along )(s  and g  is a unit vector given 

by TUg  . Since the unit tangent T  is common in 

both Frenet frame and Darboux frame, the vectors 
gBN ,, , and U  lie on the same plane. 

If the surface M  is an oriented timelike surface, then 
the curve )(s  lying on M  is a timelike or a spacelike 

curve. So, the relations between these frames can be 
given as follows: If the curve )(s  is timelike, then: 
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and if the curve )(s  is spacelike, then 
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If the surface M  is an oriented spacelike surface, then 
the curve )(s  lying on M  is a spacelike curve. So, the 

relations between the frames can be given as follows: 
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where   is the angle between the vectors g  and N . 

According to Lorentzian causal characters of the 
surface M  and the curve )(s  lying on M , the 

derivative formulae of the Darboux frame can be changed 
as follows: If the surface M  is a timelike surface, then 
the curve )(s  lying on M  can be a spacelike or a 

timelike curve. Thus, the derivative formulae of the 
Darboux frame of )(s  is given by: 
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where 1,  TT , gg, , 1, UU . 

If the surface M  is a spacelike surface, then the 
curve )(s  lying on M  is a spacelike curve. Thus, the 

derivative formulae of the Darboux frame of )(s  is given 

by: 
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where 1, TT , 1, gg , 1, UU . In this formulae 

ng  ,  and g  are called the geodesic curvature, the 

normal curvature, and the geodesic torsion, respectively. 
In the differential geometry of surfaces, for a curve )(s  

lying on a surface M , the followings are well-known: 
 

i) )(s  is a geodesic curve 0 g , 

ii) )(s  is an asymptotic line 0 n , 

iii) )(s  is principal line 0 g  (O’Neill, 1966). 

 
 
TRANSLATION SURFACES WITH SPACE CURVES IN 
MINKOWSKI 3-SPACE 
 

Here, we investigated the translation surfaces according 
to Frenet frame in Minkowski 3-space. So, we gave 
fundamental forms, Gaussian curvature, and mean 
curvature. 

The translation surface M  determined by curves 

Rba ),(:,  is the patch 

 

)()(),( vuvuM   . 

 
It is the surface formed by moving   parallel to itself in 

such a way that a point of the curve moves along   

(Gray, 1998). 

Let   BNT ,,  be the Frenet frame field of )(u  with 

curvature 
1k  and torsion 

2k . Also, let   BNT ,,  be the 

Frenet frame field of )(v  with curvature 
1k  and torsion 


2k . 

A surface that can be generated from two space curves 
by translating either one of them parallel to itself in such a 
way that each of its points describes a curve that is a 
translation of the other curve. For the surface M , there 
are two cases; first one is that both the surface M  and 

the generator curves )(u  and )(v  of M  are spacelike. 

The second case is that the surface M  is timelike, so the  
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generator curves )(u  and )(v  of M  can be timelike or 

spacelike. 
 
 
The spacelike translation surfaces 
 

Let ),( vuM  be a spacelike translation surface. Then, the 

generator curves )(u  and )(v  of ),( vuM  are spacelike 

curves. So, we can give the following cases: 
 
 
Case 1  
 

Let )(u  is a spacelike curve with spacelike binormal and 

)(v  is a spacelike curve with spacelike binormal, so 

there exist the following equalities, and the unit normal of 
the surface can be defined by: 
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

TTvuU 
sin

1
),(  

 

where )(u  is the angle between tangent vectors of )(u  

and )(v . The first fundamental form I  of the surface is 

defined by: 
 

22 2 GdvFdudvEduI   

 
where 1E , cosF  and 1G  are the coefficients of 

I . Then, 
 

22 cos2 dvdudvduI   . 

 
The second fundamental form II  of the surface is 
defined by: 
 

22 2 ndvmdudvlduII   
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2

1
2

1 coshcosh dvkdukII 



   . 

 
On the other hand the Gaussian curvature K  and mean 
curvature H  of the surface are: 
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respectively.  

By considering the similar calculations and Lorentzian 
casual characters of the curves, we can give the 
followings: 
 
 
Case 2 
 

Let )(u  is a spacelike curve with spacelike binormal and 

)(v  is a spacelike curve with spacelike principal normal, 

so there exist following equalities: 
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Case 3 
 

Let )(u  be a spacelike curve with spacelike principal 

normal and )(v  be a spacelike curve with spacelike 

binormal, so there exist the following equalities: 
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Case 4 
 

Let )(u  is a spacelike curve with spacelike principal 

normal and )(v  is a spacelike curve with spacelike 

principal normal, so there exist following equalities: 
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The timelike translation surfaces 
 

Let ),( vuM   be  a  timelike  translation surface. Then, the  



 
 
 
 

generator curves )(u  and )(v  of ),( vuM  can be 

timelike or spacelike. So, we can give the following cases 
for the timelike translation surface M : 
 
 

Case 1 
 

Let both )(u  and )(v  are timelike curves, so there 

exist following equalities. 
The unit normal of the surface can be defined by: 
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where )(u  is the angle between tangent vectors of )(u  

and )(v . The first fundamental form I  of the surface is 

defined by: 
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where 1E , coshF  and 1G  are the 

coefficients of I . Then, 
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The second fundamental form II  of the surface is 
defined by: 
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On the other hand the Gaussian curvature K  and mean 
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respectively. 

By considering the similar calculations and Lorentzian 
casual   characters   of   the   curves   we   can   give   the  
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followings: 

 
 
Case 2 

 
Let )(u  be a spacelike curve with spacelike binormal 

and )(v  be a spacelike curve with spacelike binormal, 

so there exist the following equalities: 
 




TTvuU 
sinh

1
),(  

 
22 cosh2 dvdudvduI  

2
1

2
1 sinhsinh dvkdukII 




    

 



 


2

11

sinh

sinhsinhkk
K


  



 





2

11

sinh2

sinhsinh kk
H


 . 

 
 

Case 3 
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Let )(u  be a spacelike curve with spacelike principal 

normal and )(v  be a spacelike curve with spacelike 

binormal, so there exist the following equalities: 
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Case 5 
 

Let )(u  be a spacelike curve with spacelike principal 

normal and )(v  be a spacelike curve with spacelike 

principal normal, so there exist the following equalities: 
 




TTvuU 
sinh

1
),(  

 
22 cosh2 dvdudvduI    

2
1

2
1 coshcosh dvkdukII 




    

 



 


2

11

sinh

coshcoshkk
K


  



 





2

11

sinh2

coshcosh kk
H


 . 

 
 
Case 6 
 

Let )(u  be a timelike curve and )(v  be a spacelike 

curve with spacelike binormal, so there exist the following 
equalities: 
 




TTvuU 
cosh

1
),(  

 
22 sinh2 dvdudvduI    

2
1

2
1 sinhcosh dvkdukII 




    

 



 


2

11

cosh

coshcoshkk
K


  



 





2

11

cosh2

coshcosh kk
H


 . 

 
 
 
Case 7 
 

Let )(u  be a timelike curve and )(v  be a spacelike 

curve with spacelike principal normal, so there exist the 
following equalities: 
 




TTvuU 
cosh

1
),(  

 
22 sinh2 dvdudvduI    

2
1

2
1 coshcosh dvkdukII 




    

 



 


2

11

cosh

coshcoshkk
K


  



 





2

11

cosh2

coshcosh kk
H


 . 

 
 
Case 8 
 

Let  )(u  be  a  spacelike  curve  with spacelike binormal  

 
 
 
 
and )(v  be a timelike curve, so there exist the following 

equalities: 
 




TTvuU 
cosh

1
),(  

 
22 sinh2 dvdudvduI    

2
1

2
1 coshsinh dvkdukII 




    



 


2

11

cosh

coshsinhkk
K


  



 





2

11

cosh2

coshsinh kk
H


 . 

 
 
Case 9 
 

Let )(u  be a spacelike curve with spacelike principal 

normal and )(v  be a timelike curve, so there exist the 

following equalities: 
 




TTvuU 
cosh

1
),(  

 
22 sinh2 dvdudvduI    

2
1

2
1 coshcosh dvkdukII 




    

 



 


2

11

cosh

coshcoshkk
K






 





2

11

cosh2

coshcosh kk
H


  

 
 
DARBOUX FRAME OF THE GENERATOR CURVES 
 
Here, we investigate Darboux frame of the generator 
curves of the translation surface. There exist two cases; 
first one is that, both the surface M , the generator 

curves )(u , and )(v  of M  are spacelike. The second 

case is that, the surface M  is timelike, so the generator 

curves )(u  and )(v  of M  can be timelike or 

spacelike. 
 
 
Case 1 
 

If the surface M  is spacelike, then the curve )(u  and 

)(v  are spacelike. 

 
 
Case a 
 

Let )(u  be a spacelike curve with spacelike principal 

normal. 

From Equation 7, we can write for the curve )(u  as 

follows: 



 
 
 
 

  BNg sinhcosh                 (10) 

 

  BNU coshsinh                             (11) 

 
where   is the angle between g  and N . 

Differentiating Equation 10 with respect to u  we have: 

 


















Bk

NkTkg

cosh)'(

sinh)'(cosh'

2

21




. 

 

From Equation 9, we can write for the curve )(u  as 

follows: 
 

UgT ng





  '                              (12) 

 

UTg gg





  '                                          (13) 

 





  gTU gn ' . 

 

Taking the inner product of Equation 12 with g , we get: 

 


  cosh1kg  .                             (14) 

 
Taking the inner product of Equation 12 with U , we get: 

 


  sinh1kn  .                             (15) 

 
Taking the inner product of Equation 13 with U , we get: 

 



  2' kg  .                  (16) 

 
 
Case b 
 

Let )(u  be a spacelike curve with spacelike binormal. 

From Equation 7, we can write for the curve )(u  as 

follows: 
 

  BNg sinhcosh                 (17) 

 

  BNU coshsinh                             (18) 

 

where   is the angle between g  and N . 

Differentiating Equation 17 with respect to u  we have: 

 


















Bk

NkTkg

cosh)'(

sinh)'(cosh'

2

21




. 
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From Equation 9, we can write for the curve )(u  as 

follows: 

 
UgT ng





  '                   (19) 

 
UTg gg





  '                   (20) 

 





  gTU gn ' . 

 
Taking the inner product of Equation 19 with g , we get: 

 


  cosh1kg  .                             (21) 

 
Taking the inner product of Equation 19 with U , we get: 

 


  sinh1kn  .                             (22) 

 
Taking the inner product of Equation 20 with U , we get: 

 

)'( 2



  kg  .                  (23) 

 
 
Case 2 

 
If the surface M  is a timelike, then the curve )(u  and 

)(v  can be timelike or spacelike. 

 
 
Case a 
 

Let )(u  be a timelike curve. 

From Equation 5, we can write for the curve )(u  as 

follows: 
 

  BNg sincos                  (24) 

 

  BNU cossin                  (25) 

 

where   is the angle between g  and N . 

Differentiating Equation 24 with respect to u  we have: 

 


















Bk

NkTkg

cos)'(

sin)'(cos'

2

21




. 

 
From Equation 8, we can write for the curve )(u  as 

follows. 
 

UgT ng





  '                              (26) 
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UTg gg





  '                   (27) 

 





  gTU gn ' . 

 

Taking the inner product of Equation 26 with g , we get: 

 


  cos1kg  .                   (28) 

 
Taking the inner product of Equation 26 with U , we get: 

 


  sin1kn  .                  (29) 

 
Taking the inner product of Equation 27 with U , we get: 

 

)'( 2



  kg  .                 (30) 

 
 
Case b  
 

Let )(u  be a spacelike curve with spacelike principal 

normal. From Equation 6, we can write for the curve )(u  

as follows: 
 

  BNg sinhcosh                 (31) 

 

  BNU coshsinh                 (32) 

 

where   is the angle between g  and N . 

Differentiating Equation 31 with respect to u  we have: 

 


















Bk

NkTkg

cosh)'(

sinh)'(cosh'

2

21




. 

 

From Equation 8, we can write for the curve )(u  as 

follows: 
 

UgT ng





  '                   (33) 

 
UTg gg





  '                  (34) 

 





  gTU gn ' . 

 

Taking the inner product of Equation 33 with g , we get: 

 


  cosh1kg  .                  (35) 

 
Taking the inner product of Equation 33 with U , we get: 

 


  sinh1kn  .                  (36) 

 
 
 
 
Taking the inner product of Equation 34 with U , we get: 

 

)'( 2



  kg  .                  (37) 

 
 
Case c 
 

Let )(u  be a spacelike curve with spacelike binormal. 

From Equation 6, we can write for the curve )(u  as 

follows: 
 

  BNg sinhcosh                 (38) 

 

  BNU coshsinh                 (39) 

 

where   is the angle between g  and N . 

Differentiating Equation 38 with respect to u  we have: 

 

1 2

2

' cosh ( ' ) sinh

( ') cosh

g k T k N

k B

 

     



  

  

 

 

 


. 

 

From Equation 8, we can write for the curve )(u  as 

follows: 
 

UgT ng





  '                             (40) 

 

UTg gg





  '                              (41) 

 





  gTU gn ' . 

 

Taking the inner product of Equation 40 with g , we get: 

 


  cosh1kg  .                             (42) 

 
Taking the inner product of Equation 40 with U , we get: 

 


  sinh1kn  .                 (43) 

 
Taking the inner product of Equation 41 with U , we get: 

 



  2' kg  .                  (44) 

 
 
Theorem 1 

 
Let )(u  be a space curve with non zero curvature. The 

curve )(u  is a geodesic curve if and only if )(u  is a 

timelike curve and, g  and B  are linear dependent. 



 
 
 
 
Proof  
 

Let )(u  be a space curve with non zero curvature. If 

)(u  is a geodesic curve, then 0 g . From Equations 

14, 21, 28, 35, and 42 the curve )(u  must be timelike. 

Since, when )(u  is a spacelike curve, 0 g . If 

0 g , 0cos  . This means that g  is perpendicular 

to N . Then we can say that g  and B  are linear 

dependent. 

If )(u  is a timelike curve and, g  and B  be linear 

dependent. So, g  is perpendicular to N  and 

0cos  . Then 0 g . By the definition we can obtain 

that )(u  is a geodesic curve. 

 
 
Theorem 2  
 

Let )(u  be a space curve with non zero curvature. The 

curve )(u  is an asymptotic line if and only if g  and 

N  are linear dependent. 

 
 
Proof 
 

Let )(u  be a space curve with non zero curvature. If 

)(u  is an asymptotic line, by the definition 0n . From 

Equations 15, 22, 29, 36, and 43 the angle   must be 

zero. This means that g  and N  are linear dependent. 

If g  and N  be linear dependent. We can say that 

0sin   and sinh 0  . Then 0n . By the definition 

we can obtain that )(u  is an asymptotic line. 

 
 
Theorem 3  
 

Let )(u  be a space curve. The curve )(u  is a principal 

line if and only if 2' 0k


   . 
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Proof 
 

Let )(u  be a space curve. If )(u  is a principal line, by 

the definition 0 g . From Equations 16,  23, 30, 37, and 

44 it can be written that 
2' 0k


   . 

When 
2' 0k


    and so 0 g . This means that 

)(u  is a principal line. 
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