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Pilots put their plane in the ideal conditions for the atmosphere to suck it and allow a successful launch; 
similarly some portions of the ocean surface put a Troposphere column placed above them in ideal 
temperature and humidity training tornadoes and primary gravity waves that accompany them. To study 
the behavior of rogue waves triggered by tornadoes in terms of their space and time evolution, that is, 
their motion and also in terms of mechanical transformations that these systems may suffer in their 
dealings with other systems, we use Benjamin-Feir equations on gravity waves modulational instability. 
Spectacular images available on tornadoes when impacting on land allow each of us to have an opinion 
on the magnitude of the pressure forces deployed by that space weather phenomenon. This study on 
atmosphere-oceans interactions is unique and based on the effectiveness of Mbanes’ fluid dynamic 
balance model which provides relevant knowledge on the vertical profile of winds triggered by tornadoes. 
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INTRODUCTION 
 
Wherever observations come from, they can lead to the 
understanding of the effects but not to the knowledge of 
the causes which produce these effects. To understand 
the physics of a natural phenomenon, it is essential to 
clearly identify (beyond the observed facts), all 
elementary processes at the origin of the phenomenon. 
Mathematical theories on physics principles, 
subsequently leads to the development of models. 
Questions raised by observations lead to physics’ laws 
while observations can in no way serve as physics’ laws. 
The adverse effects of climate change modify 
considerably earth’s ecosystem and reveal human beans 
vulnerability. In fact, each year the occupants of the Earth 
suffer extreme events, often deadly, due to climate 
change and related phenomena as floods, landslides, or 
destruction of unsuitable habitats, etc. ... often causing 
irreversible  damage  like the eradication of entire coastal  
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cities. To fully understand the physical processes 
responsible for the formation of tornadoes and which in 
turn responsible for the appearance of rogue waves, it is 
essential to assimilate the concept of Troposphere 
Dynamic Balance and the vertical profiles of wind thereto, 
observed within cyclones and hurricanes (Mbane, 2012). 
Additional studies or experiments to identify the values of 
temperature and humidity, training the outbreak (or birth) 
of tornadoes over the oceans (including land) should be 
seriously considered. Space technology could then be 
used effectively, as decision tools in the prediction of 
tornadoes related rogue waves. We continue our quest 
for knowledge about "tornadoes’ rogue waves" by making 
use of Benjamin-Feir instability equations on gravity 
waves to simulate the behavior of tornadoes’ rogue 
waves that are generally born very far from the coast and 
yet unfortunately, sometimes close to boats or ships. 
Given the fact that mechanical transformations that occur 
on rogue waves, during their space and time evolution, 
also depend on the propagation milieu; our simulations 
will allow prospects that space technology observation 
unfortunately  cannot  allow  (until  now  rogue  waves, as  
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Figs. 7(a-d): simulation of sinusoidal primary wave propagation for different wave number (K0)  

         Fig.7a (K0=0.2); Fig.7b (K0=1.0); Fig.7c (K0=2.0); Fig.7d (K0=3.0) 

 

 

 

 

  

 

 
 

Figure 1. Tornadoes are triggered by passive deep 
convection generated by a heat hot source located at 
the surface of the earth. They appear as very high 
towers (12 to 14 Km) consisting of three floors: warm 
updrafts occupy floors 1 and 3 while warm downdrafts 
occupy floors 2. 

 
 
 

tornadoes that trigger them, are unpredictable). 
 
 

BASIC KINEMATICS AND THERMODYNAMICS OF 
TORNADOES 
 

Tornadoes result according to Mbane’s atmosphere 
dynamic balance model (Mbane, 2012), from combination 
of very deep and passive convection (Figure 1) with 
geostrophic winds (Figure 2) inside troposphere moister 
and warmer columns. These space weather phenomena 
are triggered by passive deep convection generated by a 
hot source located at the surface of the earth and appear 
(Figure 1) as very high towers (12 to 14 Km) consisting of 
three floors: warm updrafts occupy Floors 1 and 3 while 
warm downdrafts occupy Floors 2. According to 
photographs of Figure 3, over-land tornadoes trigger dust 
clouds whose base is thin compared to the peak which is 
very broad. Tornadoes can also electrify (Mbane, 2012) 
the troposphere column in which it is formed (Figure 3c). 
The broadest peaks of the dark clouds indicate the 
presence of hot downdrafts that prevent the progression 
of warm updrafts. 
 
 

FORMULATION OF BENJAMIN-FEIR EQUATIONS 
 

a) Physics behind Benjamin-Feir equations 
 
The   general   fluid   continuity    equation   is   given   by: 

 
 
 
 

 

 

 

Fiure 2. Streamlines of geostrophic winds triggered by tornadoes around their low pressure groove. a) Rotative in the 
Northern hemisphere, b) Contra-rotative in the Southern hemisphere.  
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Fiure 2. Streamlines of geostrophic winds triggered by tornadoes 
around their low pressure groove. a) Rotative in the Northern 
hemisphere, b) Contra-rotative in the Southern hemisphere. 
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This leads to the continuity equation for an 
incompressible fluid 
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The velocity perpendicular to the surface of the water and 
to the impermeable bottom is zero: 
 

0. nV


 , at z = -H or z =  (  is sea surface level)    (3) 

 

Here n


 is the unit vector normal to the surface. 

When the bottom is parallel to the undisturbed surface  

 
w = 0, z = -H                (4) 
 
and the kinematic boundary condition at the surface 
becomes: 
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where the surface of the water is allowed to change with 
time. 

The last condition comes from the Newtonian force on 
a moving fluid element 
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For an inviscid fluid this simplifies to 
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Figure 3. Tornadoes trigger dust clouds whose base is thin compared to the peak which is 
very broad. Tornadoes can also electrify (Mbane, 2012) the troposphere column in which it 
is formed (Figure 3c). The broadest peak indicates the presence of hot downdrafts that 
prevent the progression of warm updrafts. 
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When the flow is irrotational 
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The velocity potential is also given by 
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Given the continuity equation 
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The kinematic boundary condition at the bottom 
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The kinematic boundary condition at the surface 
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Integrating Equation (7) with respect to x, y, z, one can 
get the Bernoulli equation, the arbitrary functions of 

integration ),,(1 tzyC , ),,(2 tzxC , ),,(3 tyxC must be 

the same function C(t), which can be absorbed by the 
velocity potential, yielding exactly the same flow 
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Here we have made the assumption that g


is constant 

 gg  ,0,0


 making the gravitational force conservative 

and making it possible to define a potential energy. 
Furthermore we have made the assumption that the 

surface tension can be neglected. At the sea surface, z = 
  when tornadoes occur: PAS represents the atmosphere 

pressure  at  sea  surface  below  tornado  eye and P0 the  
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atmosphere pressure at level (Z = 0). Taking  constant 
and equal to 0 at sea surface, the boundary condition 
(13) becomes,  
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Ts is the sea surface temperature 
 
According to Equation (14), Tornadoes primary gravity 
wave height depends on both deepest of depression (that 
is, PAS tends to zero) and sea surface temperature TS. 

Equations (10, 11, 12 and 14) are basis for all the 
following calculations. By introducing the stream function 

),,( tyx , defined by ),,,(),,( tyxtyx   , 

Equations 12 and 13 become: 
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b) Materialization of the interface between Euler and 
Benjamin-Feir equations                     
 
Benjamin-Feir equations were obtained for the first time 
in 1967 (Benjamin, 1967) for ultra-deep waters and for 
deep waters. Benjamin-Feir equations were gotten  
 
 
 

 
 
 
 
and Dyachenko and Zakharov (2005). The use of 
kinematic boundary conditions (Equations 11 and 12) and 
dynamic (Equation 14), and the Fourier transform of the 
Dirac δ function and the development in Taylor series of 
hyperbolic functions yields the Fourier transform of the 
stream function ),,( tyx  at the free surface of water: 
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Equation (17) is inverted iteratively. It is natural to choose 
the starting guess as  

)1(
 . Then,      
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The Fourier transform of the velocity vector at the water 
surface is given by (19): 
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Equations 15 and 16 are modified using relations 17-18-
19, to obtain the Fourier transforms of the dynamic and 
kinematics boundary conditions. 
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Equations 20 and 21 are combined into a single equation 
by introducing the complex function b given by (22): 
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From that moment, we define the Fourier transforms of   

and ),,( tyx as function of b and its conjugate b *. 
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Then multiplied [eq. 20] by 2/1)2/( g  and [eq. 21] by 

2/1)2/( gi  . Sums of the terms are given by (25). 
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In Equation (26), the surface wave ),( tkb


 is decomposed 

into a principal component B and two minor components 
B' and B'': these components are all functions of t, t1= .t 

and t2= 2
t. 
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We derive the surface wave (26) with respect to time and 
substituted in (25). Then taking   =  .B, we obtain what 

we call the Benjamin-Feir integral Equation (Equation 
27). 
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METHODOLOGY AND APPROACH 
 
Determination of the coupled nonlinear Schrödinger equations 
(CNLSE) 
 
According  to  the  nonlinear   Schrödinger   equation   (NLSE),   the  
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evolution of an unstable wave group generates a single wave that 
can reach up to 3 times the amplitude of the initial carrier wave (that 
is, the wave energy is basically concentrated in a single wave 
number). Considering a surface wave whose main component   is 

of the form tietka .).,(   , then Benjamin-Feir integral 

equation for this type of wave has the form: 
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We consider the case of energy concentrated mainly around two-
wave numbers  
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Where A and B satisfy the CNLSE (Bespalov and Talanov, 1966; 
Karsten and Igor, 2000; Shener, 2010; Socquet et al., 2005; 
Zakharov and Kharitonov, 1970; Hasimoto and Ono, 1972; Feir, 
1967; Benjamin and Feir, 1967; Kharif and Pelinovsky, 2003; White 
and Fornberg, 1998; Wu and Yao, 2004; Yuen and Lake, 1980): 
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We now consider the following plane wave solution of CNLSE: 
 

A= A0. 
).(

).1( ati
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, B= B0. 

).(
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
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              (32) 

 

Where a, b, a , b  are small perturbations in amplitude and of 

the wave solution. We substitute (32) in (30) and (29), then linearize 
the resulting equations and use the normal mode approach, with 

the wave number, ),( LKK


, and the angular frequency,   of 

the perturbation, to obtain the following dispersion equation: 
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Approach 
 
Calculations are performed by a MATLAB program. The curves are 
shown in 3D and can be rotated according to our desire. We 
choose 300 iterations that produce figure with relevant color coding.  

 
 
RESULTS AND DISCUSSION 
 
In the following, we numerically solve our nonlinear 
dispersion relation (33) and quest for evolution of 
tornadoes’ primary waves that generally occur very far 
from the coast and yet unfortunately, sometimes close to 
big  boats. Figure  4  presents  tsunami  gravity wave and  
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Fiure 2. Streamlines of geostrophic winds triggered by tornadoes around their low pressure groove. a) Rotative in the 
Northern hemisphere, b) Contra-rotative in the Southern hemisphere.  

  

 
 

a b 

 
 

Figure 4. Tsunami gravity wave occurs like uninvited guest at a part. 

 
 
 
Figures 5(a-c) present various configurations of 
tornadoes’ primary waves. Full dynamics of modulational 
instability primary rogue waves subjected to their 
demodulation or filamentation (Figure 6). Simulations of 
phase’s modulations of sinusoidal waves are shown on 
Figures 7(a-d) for each value of wave number. Instead 

the growth rates “gain” or imaginary part of   (Atock et 

al., 2011) depend on different angles   between 

interacting tornadoes’ primary waves directions. 
Obviously, the rogue waves are generated by 
filamentation or interference of tornadoes’ primary waves 
whose directions of propagation are nearly parallel (that 

is, 0 < <   / 6).  

Due to high thermal inertia of liquid water, tornadoes 
over the oceans do not trigger stratocumuliform dark 
clouds that announce storms but only gravity waves as 
visual manifestation. For this reason, ocean’s tornadoes 
seem to come from nowhere as stated by many authors. 
All that ensures their unexpected character (expressed 
by the quasi-spontaneous passage from a calm situation 
to a sea greatly agitated). The results will have relevance 
to the nonlinear instability of colliding water waves, which 
may interact nonlinearly in a constructive way to produce 
large amplitude freak waves in the oceans. 
 
 

Conclusion 
 

The  existence  of  rogue waves is universally recognized  

and images on the extent of the damage caused by these 
monsters of the ocean are available. However, the critical 
values of temperature and humidity training, the 
formation of ocean tornadoes as well as their prediction 
are not completely known. This paper shows that rogue 
waves are a combination of complex processes that 
occur under accuracy conditions like interference 
between primary waves whose directions of propagation 
are nearly parallel. Rogue waves are not waves that 
appear from nowhere as stated by some authors: 
According to the nonlinear Schrödinger equation (NLSE), 
the evolution of unstable tornadoes’ wave group can 
generates a single wave that can reach up to 3 times the 
amplitude of the initial carrier wave (that is, the wave 
energy is basically concentrated in a single wave 
number).  

This paper presents the application of Benjamin-Feir 
equation to deep water gravity waves, which is an 
important tool for acquiring information on the 
scientifically conceivable reasons for the formation of 
rogue waves. In this regard, additional assumptions are 
implemented to make the transition from hydrodynamic 
Euler equations to Benjamin-Feir modulation instability. 
Considering only deep rivers (H tends to infinity), we try 
to avoid interactions between the bottom and the surface 
of the rivers (where the waves are located): stories 
describing the rogue waves, do not mention the 
appearance of ocean volcanoes. 

The  same  precautions recommended considering only
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Figure 5(a-c). Simulations of tornadoes primary waves for different wave number (K0) 
a) (K0=0.2); b) (K0=1.0); c) (K0=4.0). 

 
 
 

 

 

 

 

 

 
 
Figure 6. Primary wave demodulation processes. Originally, only mode 1 exists.
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Figure 7(a-d). simulation of sinusoidal primary wave propagation for different wave number 
(K0), a) (K0=0.2); b) (K0=1.0); c) (K0=2.0); d) (K0=3.0). 



 
 
 
 
very large rivers. This prevents interference between the 
primary waves and those produced by their reflection on 
the shores. The results presented in this paper are new, 
clear and neat. Tornadoes impacts on sea surface are 
now well known.  
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