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In this work we investigated some new aspects of a recently introduced hybrid method which was a 
combination of Genetic algorithm, Monte Carlo integration schema and variational method. We also 
added some new features to the method in order to reduce the computational costs. Now we have 
introduced the biased Genetic Monte Carlo Variational (BGMV). With the help of different components 
of the method like initial physical and computational parameters we have tried to find a more 
trustworthy method for nanostructure investigations. It is shown that criterions like saturation of a 
quantity with respect to different parameters of the Genetic Algorithm like number of Genetic iterations 
may not lead to accurate results. CPU time of the program as a function of the number of genetic 
iterations for different elitist percent is depicted. Exciton binding energy of GaAs0.7Sb0.3/GaAs is 
obtained. 
 
Key words: Genetic algorithm, variational method, Monte Carlo integration scheme, quantum well, exciton 
binding energy. 

 
 
INTRODUCTION  
 
In order to study the nanostructure systems, different 
theoretical approaches such as Monte Carlo (Heaedt, 
1985; von der Linden, 1992; Foulkes et al., 2001), 
Molecular Dynamics (Xiantao and Weinan, 2005; Entel et 
al., 2004; Drabold and Estreicher, 2007), tight Binding 
(Goringey et al., 1997; Suttont et al., 1988), Genetic 
Algorithm (Gutowskit, 1994), Envelope Function 
Approximation (Burt, 1999) have previously been devised. 
Among these vast numbers of methods, genetic 
algorithm is a mechanism put in place in order to simulate 
the Darwinian natural selection. By introducing the 
evolutionary algorithms (Schwefel, 1993; Rechenberg, 
1971) a new route into the mathematical solution of the 
optimization problems was opened and then Holland 
(1975)  applied  this  method  for  the  first time. Afterward,  
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Goldberg introduced a better algorithm (David, 1989). 
Nowadays the genetic algorithm has been used in 
different field of studies like, engineering (Mathur and 
Nikam, 2009), financial affairs (Lam et al., 2009), 
medicine (Ecemis et al., 2008), mathematics (Yoshimoto 
et al., 2003), chemistry (Sandeep and Bisht, 2006) and 
physics. In physics the genetic algorithm has been 
applied for study of crystal growth (Sayle and Johnston, 
2003), chaos theory (Tao et al., 2007), partition function 
evaluation (Grigorenko and Garcia, 2002), force field 
parameterization (Bukkapatnam et al., 2006), optimum 
materials structure (Ryan et al., 2007), powder diffraction 
data (Jove et al., 2001), solution of the differential 
equations (Burgess, 1999), simulation of semiconductor 
nanostructures (Dixit et al., 2008), Hamiltonian 
Diagonalization (Nandy et al., 2004), Schrödinger 
equation solution (Saha and Bhattacharyya, 2001) and 
applications to quantum Dot (Grigorenko et al., 2002), 
nanoclusters (Zhao, 2001), nanowires (Jia et al., 2006), 
nanoparticles    (Froemming     and    Henkelman,   2009)  
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Table 1. Material parameters for the GaAs and Al0.3Ga0.7As/GaAs. 
 

Material me 1  2  0  Reference 

GaAs 0.067 6.98 2.06 12.5 Senger et al. (2003) 

Al0.3Ga0.7As 0.067 6.93 2.15 12.5 Escorcia et al. (2004), Duque et al. (2008) 
 
 
 

and quantum wells (Rostami et al., 2008; Cakir et al., 
2010).  

Application of the Genetic algorithm to find best 
variational parameters (Hai-Qing et al., 2005) and the 
effect of these algorithm parameters like generation 
number (Nakajima and Abe, 2000; Bhaskar et al., 2000), 
mutation and crossover probability (Lee et al., 2000; Din 
and Tseng, 2002; Kumar et al., 2006; Carro-Calvo et al., 
2010) of some quantities have been done several times. 
However, a comprehensive study of the different 
components of the genetic algorithm on a physical 
quantity has not been performed. In this work we have 
used our recently introduced method (Solaimani et al., 
2011), Genetic-Monte-Carlo-Variational (GMV) in order to 
simulate a GaAs0.7Sb0.3/GaAs single quantum well. This 
method is a combination of the Genetic Algorithm, Monte 
Carlo method and the variational schema. The exciton 
binding energy is used as a target physical quantity in 
order to prove the accuracy and stability of the method. 
CPU time of the method is also presented to show the 
efficiency of this technique. The running time can be 
reduced through parallelization strategies as well (Zhou 
and Cao, 2012), but here we have tried to do it by 
manipulating our previous algorithm. Beside these facts, 
we have added some features in order to reduce the 
computational costs. For this purpose we have combined 
the previous GMV method with a deterministic walk 
around parameters of the trial wave function which we 
named the Biased GMV (BGMV). 
 
 
FORMALISM 

 
In this work we have used the Hamiltonian of the Senger et al. 
(2003) in the cylindrical coordinate at zero magnetic field which 
reads, 
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To solve the problem in the so-called variational method we have 
use the trial wave function: 
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where )( ,heii zf 
the envelope functions, e and h are indicated in 

the   electron   and   hole.  The    reduced    mass    is   defined    by 

)/)(1( 021 mme    where  γ1 and γ 2 are the Kohn–

Luttinger band parameters, which is presented in Table 1 (Senger 
et al., 2003). λ, a and b are the free parameters of this trial wave 
function that can be found by the minimization of 

the
, ,minex a bE H   , the lateral coordinate variable is ρ = 

ρe-ρh.  
Analytical solution of the Equation (1) is difficult because it is not 

separable along different degrees of freedom. Thus for most cases 
people try to solve it by the variational method (Bastard et al., 1982; 
Brum and Bastard, 1985; Lu et al., 1991; Andrey et al., 2007; 
Zhang et al., 2010.).  

The exciton binding energy is also defined as Eb = Eg + Ee + Eh - 
Eex where Eg is the energy gap, Eex is the expectation value of the 
Hamiltonian (1), Ee and Eh are computed by using, 
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We have solved these equations by bisection method (Press et al., 
2007). We used the Ben-Daniel-Duke boundary condition in order 
to include the effect of the effective mass mismatch in the well and 
barrier (Ben Daniel and Duke, 1966). We also used the Vegard law 
to find the effective mass of the electron and hole in the well (Singh, 
1995). 

The main steps of the BGMV method are given below: 
 
(a) Use Vegard law to estimate the parameters like effective mass 
of the well with the doping fraction x. 

(b) Find the roots of the equations:
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to find Eh and Ee.  
(c) Find the wave vectors Ke, ke, Kh and kh by continuity of fe and fh 
and first derivatives at interface 

where,
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 and we have similar 

function for hole. 
(d) Create an N×3 matrix for the initial population using a uniform 
random number generator between 0 and 1 for a, b and Lambda in 
the trial wave function which N is the number of members in the 
population.  

(e) Find the Eex=  H  for each member of the population 

using Monte Carlo integration scheme because it is flexible enough 
to be generalized to more dimensions and more number of degrees 
of     freedom.     Then     store     these     values     in         a     one 
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Figure 1. Variation of the exciton binding energy as a function of the 
number of genetic iterations for four different values, 0, 10, 25 and 60 of 
the  'epsilon_percent'. 

 
 
 
dimensional array.  
(f) Sort the energies obtained from previous step. 
(g) Retain 'elitist' percent of lowest energies for the next generation. 
(h) Generate 'epsilon_percent' of the next generation by the 
following method: define an infinitesimal value 'epsilon' and 
generate 'epsilon_percent' of the next population by adding and 
subtracting the 'epsilon' to the 'elitists'. 
(i) Generate 'mutprob' percent of the population by the mutation. 
(j) Generate the remaining number of the population by the 
crossover. 

(k) Find the Eex=  H  for new members of the population. 

(l) Merge new members and old ones to have a population with 
relative energies in an increasing order. 
(m) Go to step (g) until the termination criteria is achieved. 
 

The new added features to produce it from the routine GMV are as 
follows. Firstly, we have defined a variable 'epsilon_percent' which 
represents a probability. By this parameter we have generated 
some new members in the recent population of the genetic 
algorithm. For this purpose we have added or subtracted an 
infinitesimal value 'epsilon' to the most appropriate members in the 
old population (that is the elitists). One may use different percent of 
the population as the elitist. Secondly, we have investigated the 
effect of the amount of this elitist number. It means that how many 
members in a population are elitist? The last feature is the 
averaging technique in order to reduce the amount of the fluctuation 
of a physical quantity like exciton binding energy around its true 
value when we plot it as a function of the number of genetic 
iterations. 

 
 

RESULTS AND DISCUSSION  
 

In Figure 1, the variation of the exciton binding energy as 
a function of the number of Genetic iterations for four 
different  amounts  of  the  'epsilon_percent',   0,   10,   20 

and 60 is presented. As it can be seen the values on 
calculated exciton binding energy is in the range in which 
it was previously reported (Lu et al., 1991). It is also 
shown in Figure 1 that 'epsilon_percent' can be used as 
an accuracy regulation tool in order to find the true value 
of the exciton binding energy. The main idea in this 
technique is finding the global minima and changing the 
best members of the population (which have the most 
fitness) by means of an infinitesimal value around its 
previous value in order to increase the accuracy. In fact 
when the genetic algorithm selects a point as a good 
answer for the problem we seek its neighboring points as 
probable points which may lead to a better accuracy. As 
the Figure 1 shows when we select a larger value for the 
'epsilon_percent' we approximately get a better answer. 
For estimating the computational cost, CPU time versus 
number of genetic iteration for different values of the 
'epsilon_percent' was investigated.  The results which are 
shown in Figure 2 verify that the computational cost does 
not significantly change. 

In order to investigate the effect of elitists' percent on 
the exciton binding energy its behavior as a function of 
the number of genetic iteration was investigated and 
presented in Figure 3. As the diagram shows, an 
increase in the value of this number reduces the energy. 
Our calculations were done for 1000 member populations 
in 1000 generations thus this diagram may be different 
for other values of this parameter. For example if 60% of 
the populations are elitists (600 members) then 400 
members will be present in the procedure of the genetic 
algorithm. Thus in 1000 generations we may have good 
accuracy. In  order  to  show the effect the elitists percent  
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Figure 2. CPU time of the method as a function of the number of genetic iterations 
for four different values, 0, 10, 25 and 60 of the ‘epsilon_percent'. 

 
 
 

 
 
Figure 3. Variation of the exciton binding energy as a function of the number of 
genetic iterations for four different values, 10, 30, 60 and 90 of elitists percent. 

 
 
 
has on the computational cost, the variation of the CPU 
time as function of the genetic iteration numbers for 
different values of elitist percent (10, 30, 60 and 90) are 
monitored in Figure 4. As one can see for a larger value 
of the elitist percent, the CPU time  reduces  because the 

number of the members in the procedure of the genetic 
algorithm reduces. 

In Figure 5, we have presented the variation of the 
exciton binding energy as a function of the averaging 
number. The  initial  parameters  are presented in Table 2. 
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Figure 4. CPU time of the method as a function of the number of genetic 
iterations for four different values, 10, 30, 60 and 90 of elitists percent. 
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Figure 5. Variation of the exciton binding energy as a function of the number 
of the number of averaging. Descriptions are presented in the text. 

 
 
 

In order to show the effect of the averaging on a physical 
reduce the Generations and 
Monte_sampling_point_number the averaging effect is 
negligible.   This   fact  shows   that  since  the   envelope 

functions are slowly varying function thus with a small 
quantity like exciting binding energy we have changed 
different parts of these parameters and plotted them in 
other parts of Figure 5. As it can be clearly seen when we  
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Table 2. Initial parameters for different parts of the Figure 6.  
 

Parameter Generation 
MC sampling point 

number 
Population 

number 
Mutation 

probability 
Elitists 
percent 

Epsolion 
percent 

B 1000 700 1000 40 10 0 

C 1000 700 500 40 10 0 

D 500 700 1000 40 10 0 

E 1000 450 1000 40 10 0 

F 1000 700 1000 5 10 0 

G 1000 700 1000 40 10 40 

 
 
 

 

  

  

 

N
u

m
b

e
r 

o
f 
re

p
e

ti
ti
o

u
s

 m
e

m
b

ra
n

e 
o

f 
th

e 
p

o
p
u

la
ti
o

n
 

N
u

m
b

e
r 

o
f 
re

p
e

ti
ti
o

u
s

 m
e

m
b

ra
n

e 
o

f 
th

e 
p

o
p
u

la
ti
o

n
 

Number of genetic iteration Number of genetic iteration 

Number of genetic iteration N
u

m
b

e
r 

o
f 
re

p
e

ti
ti
o

u
s

 m
e

m
b

ra
n

e 
o

f 
th

e 
p

o
p
u

la
ti
o

n
 

      

 

  

  

 

N
u

m
b

e
r 

o
f 
re

p
e

ti
ti
o

u
s

 m
e

m
b

ra
n

e 
o

f 
th

e 
p

o
p
u

la
ti
o

n
 

N
u

m
b

e
r 

o
f 
re

p
e

ti
ti
o

u
s

 m
e

m
b

ra
n

e 
o

f 
th

e 
p

o
p
u

la
ti
o

n
 

Number of genetic iteration Number of genetic iteration 

Number of genetic iteration N
u

m
b

e
r 

o
f 
re

p
e

ti
ti
o

u
s

 m
e

m
b

ra
n

e 
o

f 
th

e 
p

o
p
u

la
ti
o

n
 

 
 

 

  

  

 

N
u

m
b

e
r 

o
f 
re

p
e
ti

ti
o

u
s
 m

e
m

b
ra

n
e 

o
f 

th
e 

p
o

p
u

la
ti
o

n
 

N
u

m
b

e
r 

o
f 
re

p
e
ti

ti
o

u
s
 m

e
m

b
ra

n
e 

o
f 

th
e 

p
o

p
u

la
ti
o

n
 

Number of genetic iteration Number of genetic iteration 

Number of genetic iteration N
u

m
b

e
r 

o
f 
re

p
e
ti

ti
o

u
s
 m

e
m

b
ra

n
e 

o
f 

th
e 

p
o

p
u

la
ti
o

n
 

  

 

Figure 6. Variation of the number of the repetitious members in the population as a function of the number of 
genetic iterations by changing the 'elitists_percent', 'epsilon_percent', and  the value of the mutation probability. 

 
 
 

number of the Monte Carlo sampling points we may 
achieve better accuracy. The effect of averaging on the 
Mutation_probability and 'epsilon_percent' for small 
number of the averaging is large. When we increase the 
number of averaging their fluctuations reduce. The most 
fluctuations can be seen in B and F cases. Maximum 
effect of the averaging on the exciton binding energy is 
about 0.7 mev.  

At last the numbers of the repetitious members in the 
population with changing the values of the previously 
discussed parameters like epsilon_percent, 
Mutation_probability and elitisist_percent are investigated 
and the results are shown in Figure 6. As we can see in 
this figure, for all cases when the value of these 
parameters increase the repetitious members decrease. 
In  addition,  when  the   number   of    genetic    iterations 



 
 
 
 
increases the number of repetitious members of the 
population oscillates around a constant value. When we 
increase the number of elitists the number of members in 
the genetic procedure reduces and thus the number of 
the repetitious member correspondingly is reduced. 
When the 'epsilon_percent' increases the repetitious 
numbers of members reduce because we have 
deterministically produced different members by adding 
or subtracting an infinitesimal value to some old members.  
Finally since we have produced new members by random 
changing of old members (from large to small or vice 
versa) and since our random generator, ran2 has a 
period of repetition of about 2×10

18
 (Press et al., 2007), 

thus when the value of the mutation probability increases 
the number of the repetitious member decreases. The 
number of the repetitious members is obtained by direct 
counting. Our technique helps to find the optimum initial 
parameters with a predetermined computational cost. 
Another fact is that since in our work each member has 
consisted of only 3 part (a, b, Lambda) therefore the 
repetitious members may be encountered in a large 
portion. However, for different situations with different 
number of parts in each member or in other physical 
situations we may see other results.  

It is clear from the Figures 1 and 2, that criterion like 
saturation of a quantity with respect to a parameter like 
number of Genetic iterations which is usually used as a 
termination criterion may not work correctly. As we see in 
the Figures 1 and 2 the diagrams are saturated in 
different levels. Now a physical principle may help to find 
the best initial parameters. This means that for solving 
these problems with a stochastic method like genetic 
algorithm we have to determine the effect of the initial 
parameters in order to find the physical quantities. This 
may be done by changing the initial parameters such as 
mutation probability or plotting the quantity as a function 
of mutation probability, generations or other 
computational parameters.  
 
 
Conclusion 
  
In this work, we have introduced a new modified version 
of our previously introduced GMV method (Solaimani et 
al., 2011), by adding some new deterministic 
computational parameters like 'epsilon_percent' in order 
to increase the convergence rate and reduce the 
computational costs which the results is presented in the 
diagrams of the CPU times. We have added a parameter 
'epsilon_percent' to the Previous GMV method which can 
be used as an accuracy regulation tool in order to find the 
true value of the exciton binding energy. As the Figure 1 
shows, when we select a larger value for the 
'epsilon_percent' we approximately get a better answer. 
By using the technique of averaging, its effect on the 
Genetic parameters such as Mutation_probability and 
'epsilon_percent'  are investigated. When we increase the 
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number of averaging their fluctuations reduce. The most 
fluctuations can be seen in B and F cases of Figure 5. 
Maximum effect of the averaging on the exciton binding 
energy is about 0.7 mev. Finally, the number of the 
repetitious members in the population is obtained by 
direct counting which helps to find the optimum initial 
parameters with a predetermined computational cost. 
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