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This paper investigates an M
[x]

/G/1 queueing system with an unreliable server, where the server may 
take an additional vacation after the essential vacation. If the system becomes empty, the server leaves 
the system and takes the essential vacation. At the end of the essential vacation, the server may return 
to the system with probability p or take another vacation with probability 1-p. When the additional 
vacation is completed, the server returns from the vacation. If there are no customers waiting for 
service in the system, the server waits idly for the first arrival and starts working. It is assumed that the 
server is subject to break down according to a Poisson process and the repair time obeys a general 
distribution. For such a system, we derive the system size distribution at a random epoch, as well as 
various system characteristics. Finally, we develop an iterative procedure to find the optimal threshold 
values under a linear cost structure. Some numerical experiments are also presented. 
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INTRODUCTION 
 
Queueing systems with vacations have been studied 
extensively in the past, mainly because of their wide 
applications in various fields such as production/inventory 
systems, communication networks, computer systems 
and so on (Doshi, 1986). A comprehensive and excellent 
discussion on the vacation models can be found in Levy 
and Yechiali (1975) and Takagi (1991). In this paper, we 
consider an M

[x]
/G/1 queue, in which an unreliable server 

operates an additional optional vacation. Being different 
from classical vacation policies, the vacation policy of our 
model is that when no customers are found in the 
system, the server leaves the system and takes the 
essential vacation. After the essential vacation, the serve 
may either remain idly in the system or takes an 
additional vacation. At an optional vacation completion 
epoch, the server waits for the customers in the system. 
Specifically, the server may perform secondary tasks 
utilizing the idle period, such as machine maintenance 
work. Consequently, this queueing model has potential 
applications in real life phenomenon, for example, 
computer/telecommunication systems. 
 
 
 
*Corresponding author. E-mail: yangdy@webmail.ntcb.edu.tw. 

According to the related literature of M
[x]

/G/1 queue with 
vacations, Baba (1986) first considered batch arrival 
queue with multiple vacations, where the server goes on 
vacations repeatedly till he finds at least one waiting 
customer at the end of a vacation. Choudhury (2002a) 
modeled a batch arrival M

[x]
/G/1 queueing system with a 

single vacation, which extends the results of Levy and 
Yechiali (1975) and Takagi (1991). The variations and 
extensions of these models can be referred to Lee et al. 
(1995), Krishna Reddy et al. (1998), Choudhury (2002b) 
and many others. More recent studies are as follows: Ke 
and Chu (2006) proposed a new vacation policy for the 
M

[x]
/G/1 queueing system where the server may leave for 

at most J vacations. The results in Ke and Chu (2006) 
generalized those of the multiple vacation policy and the 
single vacation policy M

[x]
/G/1 queueing system. Based 

on the supplementary variable technique, Ke (2007) 
analyzed an M

[x]
/G/1 queueing system with balking under 

a variant vacation. Choudhury et al. (2007) made an 
extensive analysis of a batch arrival queue with two 
phases of heterogeneous service and Bernoulli schedule 
vacation under multiple vacation policy. Choudhury 
(2007) considered a retrial M

x
/G/1 queueing system with 

two phases of heterogeneous service and Bernoulli 
vacation  schedule. Recently, Ke et  al.  (2010)  examined  



 
 
 
 
an M

[x]
/G/1 queueing system with a randomized vacation 

policy and at most J vacations. 
As for M

[x]
/G/1 queueing models with server 

breakdowns, Ke (2003) studied the optimal strategy of 
the controllable M

[x]
/G/1 queueing system with server 

breakdowns and multiple vacations. Ke and Lin (2006) 
applied the maximum entropy principle to study the 
system characteristics of the M

[x]
/G/1 queueing system 

with an unreliable server and delaying vacations. Ke and 
Chang (2009) dealt with a batch arrival retrial queue with 
general retrial times was investigated, where the server is 
subject to starting failures and provides two phases of 
heterogeneous service to all customers under Bernoulli 
vacation schedules. Recent work about M

[x]
/G/1 queues 

with server breakdowns and vacation was presented by 
Choudhury and Tadj (2011). They applied supplementary 
variables technique to deal with an M

X
/G/1 queue with 

two phases of service and Bernoulli vacation under N-
policy for unreliable server. 

To the best of our knowledge, there is no work that 
combines batch arrival, server breakdown and an 
additional optional vacation. This motivates us to 
investigate an M

[x]
/G/1 queueing system with an 

unreliable server under additional vacation policy. 
Conveniently, we represent this variant vacation system 

as [X]

A
M /G(G)/1/V  queue, where the first G and the 

second G represent the service time and repair time, 
respectively. VA represents the additional vacation. 
Moreover, this model can be applied to model many real 
world systems. For example, we consider a production 
system with a production machine. All arriving job orders 
arrive according to a compound Poisson process. After 
processing all jobs, the production machine undergoes 
maintenance. The production machine may be available 
to perform another optional job when maintenance is 
done. Upon the completion of each optional job, the 
production is ready for accomplishing the job orders. 
During a manufacturing process, the production may be 
interrupted when the production machine fails 
unpredictably. When the breakdown occurs, it is 
immediately sent for repair with a random time. This 

production system can be modeled as a [X]

A
M /G(G)/1/V  

queue, that is, the maintenance period can be interpreted 
as an essential vacation and the period to perform 
another optional job can be referred to the additional 
vacation. 

The rest of the paper is organized as follows: we make 
assumptions and give a brief description of the 

[X]

A
M /G(G)/1/V  queue. Next, we develop the differential-

equations governing the system. Some important 

performance measures of the [X]

A
M /G(G)/1/V  queue are 

derived thereafter. Subsequently, a long-run expected 

cost function per unit time for the [X]

A
M /G(G)/1/V   queue 

with a fixed vacation time is constructed to determine the 
joint optimum threshold values. Then, we present some 
numerical examples for illustrative purposes. 
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Based on various system parameters and cost elements, 
a sensitivity analysis on the optimal threshold value is 
also performed. Finally, some conclusions are drawn. 
 
 
Model description and assumption 
 
We consider a batch arrival queueing system, where 
customers arrive in batches according to a compound 
Poisson process with rate λ . Let Xk denote the number 

of customers belonging to the kth arrival batch, where Xk, 
k = 1, 2, 3 are independent and identically distributed (i. i. 
d.) random variables with a continuous 

distribution Pr[ ]
n

X n X= = , 1n ≥ , the probability 

generating function (PGF) ( )X z  and thk −  factorial 

moment of X , [ ( 1)...( 1)]E X X X k− − + . Arriving 

customers form a single waiting line based on the order 
of their arrivals; that is, according to the first-come, first-
served (FCFS) discipline. The service time provided by a 
single server is an independent and identically distributed 

random variable ( )S  with distribution function ( )S t , 

Laplace-Stieltjes transform (LST) *
( )S θ  and thk −  finite 

moment [ ]kE S ; for 1 , 2k = . The server can serve only 

one customer at a time. If the server is busy or on 
vacation or under repair, arrivals in the queue wait until 
the server is available. Subsequently, we employ the 
following scheme to discuss the additional vacation policy 
of our system. 

Whenever the system becomes empty, the server 
deactivates and leaves for a vacation with a random 
length V . Upon termination of the vacation period, the 

server inspects the system and decides whether to take 
additional vacation, to stay dormant in the system or to 
resume serving the customers exhaustively. If there is at 
least one customer found waiting in the queue upon 
returning from a vacation, the server immediately 
activates for service. As soon as the system empties, the 
server leaves the system and takes the essential 
vacation. At the end of the essential vacation, the server 
returns to the system and waits idle for customers in the 
system with probability p or may take another vacation 
with probability q ( = −1 p ). When the additional vacation 

is completed, the server returns from the vacation. If 
there are no customers waiting for service in the system, 
the server waits idly for the first arrival and starts working. 
Alternatively, one or more customers arrive at the idle 
state, and the server immediately starts providing service 

for the arrived customers. The vacation time V  has a 

distribution function ( )V x , LST * ( )V θ  and thk −  finite 

moment [ ]kE V ; for 1, 2k = . When the server is working, it 

may meet unpredictable breakdowns at any time but is 
immediately repaired. The server is subject to 
breakdowns at any time with Poisson breakdown rate α  

when it is working. Whenever service interruptions occur 
(breakdowns),   the  server  is  immediately  repaired  at a 
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repair facility. After the server is repaired, it returns and 
starts the remaining service to customers until there are 
no customers in the system. The repair time is an 
independent and identically distributed random variable 

R  with a general distribution function ( )R t , LST *
( )R θ  

and thk −  finite moment [ ]
K

E R ; for 1, 2k = . As soon as 

the broken server is repaired, the server immediately 
returns to the system and provides service. Although no 
service occurs during the repair period of a broken server, 
customers continue to arrive according to a compound 
Poisson process. A customer who arrives and finds the 
server busy or broken down must wait in the queue until 
the server is available. Immediately after the server is 
fixed, he starts to serve customers until the system 
becomes empty and the service time is cumulative. 
Naturally, various stochastic processes involved in the 
system are assumed to be independent of each other. 
 
 
ANALYSIS OF THE QUEUEING MODEL 

 
We first set up the steady-state difference-differential equations for 

the 
[X]

A
M /G(G)/1/V  queue by treating the elapsed service time and 

the elapsed vacation time as supplementary variables. Then we 
solve these system equations and derive the PGF at a random 

epoch. In steady-state, we assume that (0) 0S = , ( ) 1S ∞ = , 

(0) 0R = , ( ) 1R ∞ = , (0) 0V = , ( ) 1V ∞ = , and that ( )S x  and ( )V x  

are continuous at 0x = , and ( )R y  is continuous at 0y = , so that  

 

( )
( ) ,

1 ( )

dS x
x dx

S x
µ =

−

( )
( )

1 ( )

dR y
y dy

R y
η =

−
 and 

( )
( )

1 ( )

V x
w x dx

V x
=

−
. 

 
The state of the system at time t  is described by the random 

variables (r.v.s), namely: 
 

( )N t ≡  the number of customers in the system, 

( )S t− ≡  the elapsed service time, 

( )R t− ≡  the elapsed repair time,  

1
( )V t

− ≡  the elapsed time of the essential vacation, and 

2
( )V t

− ≡  the elapsed time of the additional optional vacation. 

 
For further development of this variant vacation model, let us define 

the r.v. ( )t∆  as follows: 

 

0,   if the server is idle in the system at time ,

1,    if the server is busy at time ,

( ) 2,   if the server is under repair at time ,

3,   if the server is on the essential vacation at time ,

4,   if 

t

t

t t

t

∆ =

the server is on the additonal optional vacation at time .t







  

 

Thus, the supplementary variables ( )S t− , ( )R t− , 
1

( )V t
−

 and 
2

( )V t
−

 

are introduced to obtain a higher Markov process { ( ), ( ), ( )}N t t tδ∆ , 

where ( ) 0tδ =  if ( ) 0t∆ = , ( ) ( )t tδ δ −=  if ( ) 1t∆ = , ( ) ( )t R tδ −=  if 

( ) 2t∆ =  and ( ) ( )
j

t V tδ −=  if ( ) 2t j∆ = +  ( 1,2j = ). 

 
 
 
 
Now, we define the following probabilities: 
 

0
( ) { ( ) 0, ( ) 0},

r
P t P N t tδ= = =  

( , ) { ( ) , ( ) ( ); ( ) },
n r

P x t dx P N t n t S t x S t x dxδ − −= = = < ≤ +  

 0x > , 1n ≥ , 
( , , ) { ( ) , ( ) ( ); ( ) | ( ) },n rQ x y t dy P N t n t R t y R t y dy S t xδ − − −= = = < ≤ + =  

0,  0,  1,x y n> > ≥  

, ( , ) { ( ) , ( ) ( ); ( ) }j n r jx t dx P N t n t V t x V t x dxδ − −Ω = = = < ≤ +  

0x > , 0n ≥ , 1,2.j =  

 

As we shall discuss the model in steady-state, that is, when t → ∞ , 

the aforementioned probabilities will be denoted by 
0

P , ( )
n

P x , 

( , )
n

Q x y , 
,

( )
j n

Q x , respectively. That is, 

0 0lim ( ),
t

P P t
→∞

=  ( ) lim ( , ) ,n n
t

P x P x t dx
→∞

= ( , ) lim ( , , )n n
t

Q x y Q x y t
→∞

=  and 

, ,( ) lim ( , )j n j n
t

x x t
→∞

Ω = Ω . 

 
According to Cox (1955), the Kolmogorov forward equations, which 
govern the system under steady-state conditions, can be written as 
follows: 
 

0 1,0 2,0
0 0

( ) ( ) ( ) ( ) ,P p x w x dx x w x dxλ
∞ ∞

= Ω + Ω∫ ∫                                 (1) 

 

0
1

( ) [ ( )] ( ) ( ) ( , ) ( ) ,
n

n n k n k n

k

d
P x x P x P x Q x y y dy

dx
λ α µ λ χ η

∞

−
=

+ + + = +∑ ∫  

0,  0,  1,x y n> > ≥                                                                           (2) 

 

1

( , ) [ ( )] ( , ) ( , ),
n

n n k n k

k

Q x y y Q x y Q x y
y

λ η λ χ −
=

∂
+ + =

∂
∑  

0,  0,  1,x y n> > ≥                                                                           (3) 

 

,0 ,0
( ) [ ( )] ( ) 0,

j j

d
x w x x

dx
λΩ + + Ω =  0x > , 0n = , 1,  2,j =         (4) 

 

, , ,

1

( ) [ ( )] ( ) ( ),
n

j n j n k j n k

k

d
x w x x x

dx
λ λ χ −

=

Ω + + Ω = Ω∑  0,x >  1,n ≥   

1,2.j =                                                                                          (5) 

 
These sets of equations are to be solved under the following 

boundary conditions at 0x = . 

 

1,0 2,0 1 0
0 0 0

(0) ( ) ( ) ( ) ( ) ( ) ( ) ,
n n n

P x w x dx x w x dx P x x dx Pµ λχ
∞ ∞ ∞

+= Ω + Ω + +∫ ∫ ∫  

 1,n ≥                                                                                          (6) 

 

1
0

1,

( ) ( ) ,  0,
(0)

0,                         1.
n

P x x dx n

n

µ
∞ =

Ω = 
 ≥

∫                                             (7) 

 

1,
0

2,

( ) ( ) ,  0,
(0)

0,                              1.

n

n

q x w x dx n

n

∞ Ω =
Ω = 

 ≥

∫                                             (8) 

 

and at 0y =  for fixed values of x  

 

( ,0) ( ),
n n

Q x P xα=  0x > , 1,n ≥                                         (9)  



 
 
 
 
with the normalization condition 
 

0 1, 2,
0 0 0 0 0

1 1 0 0

( ) ( , ) ( ) ( ) 1.
n n n n

n n n n

P P x dx Q x y dxdy x dx x dx
∞ ∞ ∞ ∞∞ ∞ ∞ ∞ ∞

= = = =

+ + + Ω + Ω =∑ ∑ ∑ ∑∫ ∫ ∫ ∫ ∫
   (10) 

 

Let us define the probability generating functions for { ( )}
n

P ⋅ ,{ ( )}
n

Q ⋅   

and 
,

{ ( )}
j n

Ω ⋅  as follows: 

 

1

( ; ) ( ),
n

n

n

P x z z P x
∞

=

=∑  1z < , 

1

( , ; ) ( , )
n

n

n

Q x y z z Q x y
∞

=

=∑ , 1z < , 

,

0

( ; ) ( ),
n

j j n

n

x z z x
∞

=

Ω = Ω∑  1z < , 1,2.j =  

 

Now multiplying Equation 2 by 
n

z  ( 1,2,3,...n = ) and then taking 

summation over all possible values of n , we get 

 

0

( ; )
[ ( ) ( ) ] ( ; ) ( ) ( , ; )dy,

P x z
a z x P x z y Q x y z

x
m a h

¥¶
+ + + =

¶
ò         (11) 

 

where ( ) (1 ( ))a z X zλ= − . 

 
Proceeding in the usual manner with Equations 3 to 6, then it 
follows that 
 

( , ; )
[ ( ) ] ( , ; ) 0,

Q x y z
a z Q x y z

y
h

¶
+ + =

¶
                                     (12) 

 

( ; )
[ ( ) ( )] ( ; ) 0,

j

j

x z
a z w x x z

y

¶ W
+ + W =

¶
 1,  2,j =             (13) 

 
and 
  

1 2
0 0 0

0 1 2 0

1
(0; ) ( ; ) ( ) ( ; ) ( ) ( ; ) ( )

                + ( ) (0; ) (0; ) ,

P z x z w x dx x z w x dx P x z x dx
z

X z P z z P

µ

λ λ

∞ ∞ ∞

= Ω + Ω +

− Ω − Ω −

∫ ∫ ∫        (14) 

 

where 0X > . 

 
Solving the partial differential equations (Equations 11 to 13), we 
have 
 

- ( )
( ; ) (0; )[1 - ( )]

A z x
P x z P z S x e= ,                                         (15) 

 
- ( )

( , ; ) ( , 0; )[1 - ( )]
a z y

Q x y z Q x z R y e= ,                          (16) 

 
and  
 

- ( )
( ; ) (0; )[1 - ( )]

a z x

j j
x z z V x eW = W , 1,  2,j =                         (17) 

 

Where *( ) ( ) (1 ( ( )))A z a z R a zα= + − . 

 
Utilizing Equation 4, we obtain 
 

-

1,0 1,0
( ) (0)[1 - ( )] ,x
x V x e

lW = W                                          (18) 
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-

2,0 2,0
( ) (0)[1 - ( )] .x
x V x e

lW = W                                          (19) 

 

Multiplying Equation 19 by ( )w x  on both sides and integrating with 

respect to x  over 0 to ∞ , we get : 

 

2, 2, 0
0

( ) ( ) = (0) ,
n n

x w x dx g
¥

W Wò   where 
*

0
( )Vγ λ= .                     (20)                                

where 
*

0
( )Vγ λ= . 

 
Inserting Equation 20 into Equation 8 leads to: 
  

2,0

1,0

0

(0)
(0)

qg

W
W = .                                                                         (21) 

 
Substituting Equation 21 into Equation 1, and after algebraic 
manipulation, we get: 
 

0

2 2,0

0

(0; ) (0)
q P

z
q p

l

g
W = W =

+
.                                         (22) 

 

From Equations 21 and 22, 
1.0

(0)Ω  can be written as: 

 

0

1,0

0 0

(0)
[ ]

P

q p

l

g g
W =

+
.                                                         (23) 

 
Integrating Equations 18 and 19 with respect to x  from 0 to ∞ , it 

yields the following result: 
 

-

,0 ,0 ,0 0
0

1
(0) [1 - ( )] (0)(1 - ),x

j j j
V x e dxl g

l

¥

W = W = Wò 1, 2.j =   (24) 

 
From Equations 22 and 24, one obtains: 
 

0 0

1,0

0 0

(1 - )

( )

P

q p

g

g g
W =

+
                                                         (25) 

 
and 
 

0 0

2,0

0

(1 - )qP

q p

g

g
W =

+
.                                                          (26) 

 
Let us define Ω  as the probability that no customers appear in the 

system when the server is on vacation. Then Ω  can be expressed 
as follows: 
 

0 0 0

1,0 2,0

0 0

(1 - )(1 )

( )

P q

q p

g g

g g

+
W= W + W =

+
.                           (27) 

 
Substituting Equations 15 and 17 into Equation 14, we can obtain 
after simplifying that: 
 

* *

0 0
0

0 0

1 2 0

(1 ) ( ( )) (0; ) ( ( ))
(0; ) ( )

( )

              (0; ) (0; ) .

P q V a z P z S A z
P z X z P

q p z

z z P

λ γ
λ

γ γ

λ

+
= + +

+

−Ω −Ω −

             (28)                       

 
Applying   Equations   22   and   23,  and   Equation   28   becomes: 



6086          Int. J. Phys. Sci. 
 
 
 

*

0

0

0 0

*

(1 ) ( ( ( ) ) 1)
1 ( )

( )
(0; )

( ( ) )

q V a z
P z X z

q p
P z

z S A z

g
l

g g

æ ö+ - ÷ç ÷ç - + ÷ç ÷ç ÷+çè ø
=

-
.   (29) 

 
From Equation 29, Equation 15 can be rewritten as: 
 

*

0

0

0 0 - ( )

*

(1 )( ( ( )) 1)
1 ( )

( )
( ; ) [1 - ( )]

( ( ))

A z x

q V a z
P z X z

q p
P x z S x e

z S A z

g
l

g g

æ ö+ - ÷ç ÷ç - + ÷ç ÷ç ÷+çè ø
=

-
   (30) 

 
It follows that: 
 

0

*

0

0 *
0 0

*

( ) ( ; )

(1 )( ( ( )) 1)
1 ( )

( ) 1 - ( ( ))
     .

( )( ( ))

P z P x z dx

q V a z
P z X z

q p S A z

A zz S A z

g
l

g g

¥

=

æ ö+ - ÷ç ÷ç - + ÷ç ÷ç ÷+çè ø
= ´

-

ò
            (31) 

 

From Equation 9, the relationship between ( ,0; )Q x z  and ( ; )P x z  is 

given by: 
 

( , 0; ) ( ; )Q x z P x za= .                                                         (32) 

 
Then the boundary condition (Equation 9) can be written as: 
  

- ( )
( , ; ) ( ; )[1 - ( )] .

a z y
Q x y z P x z R y ea=                                              (33) 

 
Inserting Equation 15 into Equation 33, we get:  
 

- ( ) - ( )
( , ; ) (0; )[1 - ( )] [1 - ( )] .

A z x a z y
Q x y z P z S x e R y ea=            (34) 

 
Using Equation 30, Equation 34 becomes: 
  

*

0

0

0 0 - ( ) - ( )

*

(1 )( ( ( )) 1)
1 ( )

( )
( , ; ) [1- ( )] [1- ( )] .

( ( ))

A z x a z y

q V a z
Pz X z

q p
Q x y z S x e R y e

z S A z

g
l a

g g

æ ö+ - ÷ç ÷ç - + ÷ç ÷ç ÷+çè ø
= ´ ´

-
 

                         (35) 
 

Now we derive ( )Q z  by solving the double integral of Equation 35 

with respect to x  and y , that is 
0 0

( , ; )Q x y z dxdy
∞ ∞

∫ ∫ . It results that: 

 
*

0
0 * *

0 0

*

*

(1 )( ( ( )) 1)
1 ( )

( ) 1 ( ( )) [1 ( ( ))]
( )

( ( )) ( ) ( )

[1 ( ( ))]
       ( ) .

( )

q V a z
Pz X z

q p S A z R a z
Q z

z S A z A z a z

R a z
P z

a z

γ
λ

γ γ α

α

 + −
− + 

+ − − = × ×
−

−
= ×

                                                                                          
                                                                                                     (36) 
 

Integrating Equation 17 with respect to x  over (0, )∞ , and using 

Equations 22 and 23, we have: 
 

*

0

1

0 0

[ ( ( )) 1]
( )

( ( ) 1)( )

P V a z
z

X z q pg g

-
W =

- +
                                          (37) 

 
and 

 
 
 
 

*

0

2

0 0

[ ( ( )) 1]
( )

( ( ) 1)( )

qP V a z
z

X z q pg g

-
W =

- +
.                                          (38) 

 

Thus, we can compute the unknown constant 
0

P  by the 

normalization condition (10). It follows that: 
 

0 0

0

0 0 0

(1 )( )

( ) ( )(1 )

H
q p

P
q p E V q

g r g

g g l g

- +
=

+ + +
,                                          (39) 

 

where (1 [ ])
H

E Rρ ρ α= +  and [ ] [ ]E X E Sρ λ= . From Equation 39, 

we have 1
H

ρ < , which is the steady-state condition under which 

the steady-state solution exists. 

Let ( )zΦ  be the PGF of the system size distribution at arbitrary 

time, and ( )zΦ  can be expressed by: 

 

0 1 2
( ) ( ) ( ) ( ) ( )z P P z Q z z zF = + + + W + W

* *

0 0 0

*

0 0 0

(1 ) ( ( ))( 1) (1 )( ( ( )) 1) [1 ( )][ ]

( [ ](1 ) [ ])[ ( ) 1]( ( ))

H
S A z z q V a z X z q p

E V q q p X zz S A z

r g g g

l g g g

- - + - - - +
= ´

+ + + --

( ) ( )z zz h= ´ ,                                                          (40) 

 

where 
*

*

(1 ) ( ( ))( 1)
( )

( ( ))

H
S A z z

z
z S A z

ρ
ξ

− −
=

−
 is the PGF of the number of 

customers in an M
[x]

/G/1 queue with server breakdowns, and 
*

0 0 0

0 0 0

(1 )( ( ( )) 1) [1 ( )][ ]
( )

( [ ](1 ) [ ])[ ( ) 1]

q V a z X z q p
z

E V q q p X z

γ γ γ
η

λ γ γ γ

+ − − − +
=

+ + + −
 denotes the 

system size distribution due to residual generalized-vacation period. 
 
 
Remark 1 
 
It should be noted that the system size distribution at a random 

epoch of an 
[X]

A
M /G(G)/1/V  queue in Equation 40 can be 

decomposed into two independent random variables: 
  
(i) the system size distribution of an M

[x]
/G/1 queue with server 

breakdowns; and 
(ii) the system size distribution due to residual generalized-vacation 
period. 
 
This confirms the stochastic decomposition property of Fuhrmann 
and Cooper (1985). 
 
 
Remark 2 
 

Suppose that we let 1p =  and 0α = , our model can be reduced 

to the M
[x]

/G/1 queue with a reliable server and single vacation. 

( )zΦ  can be written as: 

**

0

*

0

(1 ( ( ))) [1 ( )](1 )( 1) ( ( ))
( ) ,

[1 ( )]( [ ] )( ( ))

V a z X zz S a z
z

X z E VS a z z

gr

l g

- + -- -
F = ´

- +-
 which 

confirms the result obtained by Choudhury (2002a). 

 
 
System performance measures 

 
We consider system performance measures for the 

[ ]

A
M / G(G) /1 / V

X   queue  as  follows:  (i)  the expected number of  



 
 
 
 
customers in the system; (ii) the expected waiting time in the queue; 
(iii) the expected length of the completion period; (iv) the expected 
length of the idle period; and (v) the expected length of the busy 
cycle. The results are summarized subsequently. 
 
 
Expected number of customers in the system and expected 
waiting time in the queue 

 

First, let 
S

L  be the expected number of customers in the system 

and 
q

W  be the expected waiting time in the queue. By 

differentiating Equation 40 with respect to z , then taking the limit 

as 1z →  by using the L’hopital’s rule, we obtain: 

  

( )

( )

2 2 2 2

2 2 2

0

0 0 0 0

[ ( 1)] [ ](1 [ ]) [ ](1 [ ]) [ ] ( [ ]) ( [ ] [ ])

2(1 )

[ ][1 ( ) ] [ ]
       + .

2(1 ) [ ](1 ) ( )

S

H

H

E X X E S E R E X E R E S E X E R E S
L

E X q E V

q E V q p q

λ α λ α α λ

ρ

λ γ
ρ

γ λ γ γ γ

− + + + +
=

−

−
+

− + + +

                                                                                       (41) 
 

By using the Little’s formula, 
q

W  can be obtained and expressed 

as: 
 

( )

( )

2 2

2 22

0

0 0 0 0

[ ( 1)] [ ](1 [ ]) [ ](1 [ ]) [ ]
[ ] [ ]

2 [ ](1 )

[1 ( ) ] [ ][ ]( [ ] [ ])
       .

2(1 ) 2(1 ) [ ](1 ) ( )

q

H

H

E X X E S E R E X E R E S
W E S E R

E X

q E VE X E R E S

q E V q p q

α λ α
α

ρ

λ γαλ

ρ γ λ γ γ γ

− + + +
= +

−

−
+ +

− − + + +
 

                                                                                       (42) 
 
 
Expected length of the completion period, the idle period and 
the busy cycle 

 

Let *( )H θ  and *( )I θ  be the LST of the completion period 

(including busy period and breakdown period) and idle period for 

the 
[X]

A
M /G(G)/1/V  queue. Applying the arguments by Takagi 

(1991) and Tang (1997), *( )H θ and *( )I θ  can be written as:  

 

( ) ( )* * * *

0 0 0 0 0 0
( ) (1 ) [ (1 ( ( )))] ( ( )),H q V X H p q X Hq g l q g g g q= + - - + +

 (43) 
 

( ) ( )* *

0 0 0 0
( ) (1 ) ( )I q V p q

l
q g q g g g

l q

æ ö÷ç ÷= + - + + ç ÷ç ÷ç +è ø
,               (44) 

 

where 
* * *

0
( ) [ ( ( ))]H G X Hθ θ λ λ θ= + −  is the LST of the completion 

period in the ordinary [X]
M /G/1  queueing model with server 

breakdowns. 

Now, we further define that [ ]E H , [ ]E I  and [ ]E C  are the 

expected length of completion period, the expected length of idle 
period and the expected length of the busy cycle, respectively. 
From Equations 43 and 44, we have: 
 

0 0 0
(1 ) [ ] ( )

[ ]
(1 )

H

H

q E V p q
E H

r g l g g

l r

é ù+ + +ê úë û=
-

,                                (45) 

 

0 0

0

( )
[ ] (1 ) [ ]

p q
E I q E V

g g
g

l

+
= + + .                                          (46) 
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Then, it yields that  
 

0 0 0
(1 ) [ ] ( )

[ ] [ ] [ ]
(1 )

H

q E V p q
E C E H E I

g l g g

l r

+ + +
= + =

-
.            (47) 

 
 
Reliability indices 

 
Here, we develop two main reliability indices of the presented 
model, namely, the system availability and failure frequency under 

the steady-state conditions. We define ( )
v

A t  as the system 

availability at time t, which is the probability that the server is either 
working for a customer or remaining idle in the system. The steady-

state availability of the server is given by lim ( )v v
t

A A t
→∞

= . It follows 

that: 
 

0 0 10
( , 1) lim ( )

v z
A P P x dx P P z

¥

®
= + = +ò . 

 
From Equations 31 and 39, we obtain: 
 

0 0

0 0 0

(1 ) ( )

( ) [ ](1 )

H

v

q p
A

q p E V q

r g g
r

g g l g

- +
= +

+ + +
.   

 

Next, let the steady-state failure frequency of the server be 
f

M . 

Following the argument by Li et al. (1997), we have: 
 

0
( , 1)

f
M P x dxa

¥

= ò . 

 

Applying Equation 31 again, it yields that 
f

M αρ= . 

 
 
Optimization of the cost model 
 
We are interested in situations where the server deactivates and 
leaves for the first essential vacation with a fixed length T whenever 
the system is empty. At the end of the essential vacation, the server 
returns to the system and waits idle for customers in the system 
with probability p or may take another vacation of the same length T 

with probability q ( 1 p= − ). Thus, the vacation time of length is fixed 

rather than variable. This queueing model can be regarded as a 

special case of the 
[X]

A
M /G(G)/1/V  queue. It follows that [ ]E V T= , 

2 2[ ]E V T=  and 
0

T
e

λγ −= . Determination of an optimal policy is an 

important issue, which has received considerable attention for a 
queueing system (Tadj and Choudhury, 2005). To this end, we 
develop a steady-state expected cost function per unit time for the 

[X]

A
M /G(G)/1/V  queue with a fixed vacation time, in which p and T 

are decision variables. Our objective is to determine the joint 

optimal thresholds (say * *( , )p T ), so as to minimize this cost 

function. To do this, let us define the cost elements in the following: 

h
C ≡  holding cost per unit time for each customer present in the 

system; 
 

S
C ≡  setup cost for per busy cycle. 

 
Employing the definition of each cost element and its corresponding 
system performance, the expected cost function per unit time is 
given by: 
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( )

0

2 2 2

0

0 0 0 0 0 0 0

( , )
[ ]

[ ][1 ( ) ] (1 )
            ,

2(1 ) (1 ) ( ) (1 ) ( )

S

h S

H
h h h S

C
F p T C L

E C

T E X q
C L C C

q T q p q T q p q

λ γ λ ρ

γ λ γ γ γ λ γ γ γ

= +

− −
= + +

− + + + + + +

                                                                                       (48) 
 
where 
 

( )
2 2 2 2[ ( 1)] [ ](1 [ ]) [ ](1 [ ]) [ ] ( [ ]) ( [ ] [ ])

2(1 )
h H

H

E X X E S E R E X E R E S E X E R E S
L

λ α λ α α λ
ρ

ρ

− + + + +
= +

−

. 

Since 
h

L  is independent of p and T, we omit this term. Now, we are 

interested in obtaining the joint optimal thresholds ( , )p T  , say 

* *( , )p T , which minimizes 
0
( , )F p T   is equivalent to minimize the 

following equation: 
 

( )

2 2 2

0 1 0 2

0 0 0 0 0 0

[ ](1 ) 2 (1 ) (1 )
( , )

2 (1 ) ( ) ( )

h S HC T E X q C A T q A
F p T

T q p q T p q T

λ γ λ ρ γ

λ γ γ γ λ γ γ λ γ

+ + − + +
= =

+ + + + + +
,

                                                                                      (49) 
 

where 
2

1
[ ] / 2

h
A C E Xλ=  and 

2
(1 )

s H
A C λ ρ= − . 

Differentiating ( , )F p T  with respect to p, we have: 

 

[ ]

2 2

0 2 2 0 1 2 2 2 1 2

2 2

0 0 0

( )( , )

( ) ( )

T

T T T T

AT A AT A AT Ae AT AF p T

p T p q T e T pe qe T e

λ

λ λ λ λ

γ λ γ λ

λ γ γ λ γ λ λ

−

− − −

+ − − + − −∂
= =

∂ + + +  + + +  .
                                                                                       (50) 
 
This implies that for any p  in (0, 1), 

  
2

2 1

2

2 1

2

2 1

0   if  ( 1) ,
( , )

0   if  ( 1) ,

0    if  ( 1) .

T

T

T

A T e A T
F p T

A T e A T
p

A T e A T

λ

λ

λ

λ

λ

λ

−

−

−

> + − >
∂

= + − =
∂ 

< + − <  
 
Apparently, the following results can be obtained: 

  

(i) When 
2

2 1
( 1)

T
A T e AT

λλ −+ − > , ( , )F p T  is an increasing function 

in [0,1]p ∈ . Based upon the “first derivative test”, it implies that: 

 
2 2

1 1 2

20 1
( ) min ( , ) (0, )

T

T Tp

A T A T e A
h T F p T F T

T T e e

l

l l
l l

-

- -£ £

+ +
= = =

+ +
          (51) 

 

As shown in Equation 51, ( )h T   is non-linear and complex. It is 

rather difficult to derive the closed-form expression of 
*

T  to 

minimize ( )h T . The bisection algorithm proposed to calculate the 

optimal value 
*

T  is described as follows: 
 

Input: endpoints 
1

0T =  and 
2
( 0)T > ; tolerance ε ; maximum 

number of iterations I . 

Output: approximate solution 
*

T  and the minimum cost *( )h T  

Step 1: Set 1i = . 

Step 2: While i I≤  do Steps 3-6 

Step 3: Compute 
*

2 1
( ) / 2T T T= +  

Step 4: If 
*

( )
0

T T

dh T

dT =

=  then 
*

T  is the optimum point. STOP. 

 
 
 
 

Else if 
*

( )
0

T T

dh T

dT =

<  then 
*

1
T T=   

Else 
*

( )
0

T T

dh T

dT =

>  then 
*

2
T T=  

Step 5: Set 1i i= + . 

Step 6: Until 
2 1

T T ε− < , where 610ε −= . STOP. 

 

(ii) When 
2

2 1
( 1)T

A T e AT
λλ −+ − = , which is equivalent to 0T =  and 

( , )F p T  is independent of p . It yields that 

0 1
min ( ,0) (1 )S H

p
F p C λ ρ

≤ ≤
= −  for [0,1]p ∈ . 

(iii) When 
2

2 1
( 1)T

A T e AT
λλ −+ − < , ( , )F p T  is a decreasing 

function in [0,1]p ∈ . From the “first derivative test”, we have: 

 
2

1 2

0 1
( ) min ( , ) (1, )

Tp

A T A
g T F p T F T

T e
l

l
-£ £

+
= = =

+
.                          (52) 

 

Differentiating ( )g T  with respect to T , it can be seen that 

 
2

1 2 1

2

( 1) 2( )

( )

T T T

T

A T A e e A T edg T

dT T e

l l l

l

l l l

l

- - -

-

+ - + +
=

+
.            (53) 

 

Since 
2

2 1
( 1)T

A T e AT
λλ −+ − < , it follows that  

2 2 2 2

1 2 2 2
( 1) ( 1)T T

AT A T A T e A T e
λ λλ λ λ λ− −> + − > − . Using the “first 

derivative test” again, one sees that ( ) / 0dg T dT >  from Equation 

53. Thus, the minimum of ( )g T is achieved when  T  approaches 

to zero. That is, 
0

min lim ( ) (1 )S H
T

g g T C λ ρ
→

= = − . 

Summarizing the preceding discussed results, we find that the 

minimum of ( , )F p T , * *( , )F p T , occurs at (i) * 0p =  and * 0T ≠  or 

(ii) *p  is an arbitrary number ( * [0,1]p ∈ ) and * 0T = . 

Subsequently, a numerical illustration is provided to capture the 

effect of system parameters and cost elements on the 
*

T . 

 
 
NUMERICAL COMPUTATIONS 
 
Here, some numerical examples are provided to illustrate 
the optimal threshold policy based on changes in the 
values of the system parameters and cost elements. 
First, we perform an extensive computation with the 
following parameters: 

 
i. The batch arrival rate is 1.2λ = ; 

ii. Geometric batch size with mean [ ] 2.5E X = ; 

iii. The mean service time per batch [ ] 0.3E S = ; 

iv. The breakdown rate 0.05α = ; 

v. The mean repair time is [ ] 0.2E R = ; 

vi. The holding cost 10
h

C =  and the set-up cost 600
S

C = . 

 
A computer program using MATLAB software was 

implemented. The expected cost of the [X]

A
M /G(G)/1/V  

queue  with a fixed vacation time under different values of
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Table 1. The long-run expected cost for different values of p  and T . 

 

          T  
p

 
0 1 2 3 4 5 6 7 8 

0.0 65.520 53.834 54.857 62.703 73.538 85.893 99.093 112.798 126.825 

0.1 65.520 53.999 54.891 62.705 73.536 85.892 99.093 112.798 126.825 

0.2 65.520 54.167 54.925 62.707 73.535 85.891 99.093 112.798 126.825 

0.3 65.520 54.339 54.960 62.709 73.534 85.890 99.092 112.798 126.824 

0.4 65.520 54.514 54.995 62.711 73.532 85.890 99.092 112.798 126.824 

0.5 65.520 54.692 55.030 62.714 73.531 85.889 99.092 112.798 126.824 

0.6 65.520 54.873 55.066 62.716 73.529 85.888 99.091 112.798 126.824 

0.7 65.520 55.058 55.102 62.718 73.528 85.887 99.091 112.797 126.824 

0.8 65.520 55.247 55.139 62.720 73.527 85.886 99.090 112.797 126.824 

0.9 65.520 55.439 55.176 62.722 73.525 85.885 99.090 112.797 126.824 

1.0 65.520 55.636 55.213 62.724 73.524 85.885 99.090 112.797 126.824 
 
 
 

 
 

Figure 1. The optimal value of T  versus λ . 

 
 
 

p  and T  was shown in Table 1. One can easily see from 

Table 1 that (i) the minimum cost occurs at 0p =  or 1 

when T  is fixed; (ii) the cost is a constant for any p  

when 0T = ; and (iii) the cost function is concave up 

when p  is fixed. Next, we perform a sensitivity analysis 

on the *
T  under various system parameters and cost 

elements. The following six cases are considered as 
follows: 
 
Case 1: [ ] 2.5E X = , [ ] 0.3E S = ,  0.05α = , [ ] 0.2E R = , 

10
h

C =  and 600
S

C =  for different values of λ . 

Case 2: 1.2λ = , [ ] 2.5E X = , 0.05α = , [ ] 0.2E R = , 

10
h

C =  and 600
S

C =  for different service rates (1/ [ ])E S . 

Case 3: 1.2λ = , [ ] 2.5E X = , [ ] 0.3E S = , [ ] 0.2E R = , 

10
h

C =  and 600
S

C =  for different values of α . 

Case 4: 1.2λ = , [ ] 2.5E X = , [ ] 0.3E S = , 0.05α = , 

10
h

C =  and 600
S

C =  for different repair rates (1/ [ ])E R . 

Case 5: 1.2λ = , [ ] 2.5E X = , [ ] 0.3E S = , 0.05α = , 

[ ] 0.2E R =  and 600
S

C =  for different values of 
h

C . 

Case 6: 1.2λ = , [ ] 2.5E X = , [ ] 0.3E S = , 0.05α = , 

[ ] 0.2E R =  and 10hC =  for different values of 
S

C . 

 
The numerical illustration is graphically presented in 

Figures 1 to 6. We observe from Figures 1 to 6 that (i) *
T  

decreases as  one of λ , α  and 
h

C  increases; and (ii) *
T  
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Figure 2. The optimal value of T  versus service rate 1/ [ ]E S . 

 
 
 

 
 

Figure 3. The optimal value of T  versus α . 

 
 
 

increases as one of service rate 1/ [ ]E S , repair rate 

1/ [ ]E R  and 
S

C  increases. Moreover, it is interesting to 

mention that the repair rate 1/ [ ]E R  rarely affects *
T  

when 1/ [ ]E R  is sufficiently large. 

Conclusions 
 

In this paper, we investigated an [X]

A
M /G(G)/1/V  queue, 

in which the server may take an additional vacation after 
the     essential     vacation.     Some    important   system  
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Figure 4. The optimal value of T  versus repair rate 1/ [ ]E R . 

 
 
 

 
 

Figure 5. The optimal value of T  versus 
h

C . 

 
 
 
characteristics were also performed. Then, the expected 

cost function per unit time for the [X]

A
M /G(G)/1/V  queue 

with a fixed length T  was constructed. We optimized the 

joint threshold values of  ( , )p T  to  minimize the expected 

cost per unit time. More importantly, an efficient iterative 
procedure was developed to determine the joint optimum 

thresholds * *
( , )p T . We finally presented some numerical 

results    to    illustrate    the    effect   of   various   system
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Figure 6. The optimal value of T  versus 
S

C . 

 
 
 

parameters and cost elements on the *
T . The analysis of 

this model would be helpful for further performance 
evaluation in many real systems such as flexible 
manufacturing systems, production systems, inventory 
systems, and many other related systems. 
 
 
ACKNOWLEDGEMENTS 
 
The authors would like to thank the editor and two 
anonymous referees, whose constructive comments and 
suggestions have led to a substantial improvement in the 
presentation of the paper. This work was partly supported 
by the National Science Council of Republic of China 
(Contract No. NSC 100-2221-E-141-001-). 
 
 
REFERENCES 
 
Baba Y (1986). On the M

[x]
/G/1 queue with vacation time. Oper. Res. 

Lett. 5:93-98. 
Choudhury G (2002a). A batch arrival queue with a vacation time under 

single vacation policy. Comput. Oper. Res. 29:1941-1955. 
Choudhury G (2002b). Analysis of the M

x
/G/1 queueing system with 

vacation times. Sankhyā, Series B. 64:37-49. 
Choudhury G (2007). A two phase batch arrival retrial queueing system 

with Bernoulli vacation schedule. Appl. Math. Comput. 188:1455-
1466. 

Choudhury G, Tadj L, Paul M (2007). Steady state analysis of an M
x
/G/1 

queue with two phase service and Bernoulli vacation schedule under 
multiple vacation policy. Appl. Math. Model. 31:1079-1091. 

Choudhury G, Tadj L (2011). The optimal control of an M
x
/G/1 unreliable 

server queue with two phases of service and Bernoulli vacation 
schedule. Math. Comput. Model. 54:673-688. 

Cox DR (1955). The analysis of non-Markovian stochastic processes by 
the   inclusion    of    supplementary   variables.   Proc.   Camb.   Phil.  

   Soc. 51:433-441. 
Doshi BT (1986). Queueing systems with vacations-a survey. Queueing 

Syst. 1:29-66. 
Fuhrmann SW, Cooper RB (1985). Stochastic decompositions in the 

M/G/1 queue with generalized vacations. Operat. Res. 33:1117-1129. 
Ke JC (2003). Optimal strategy policy in batch arrival queue with server 

breakdowns and multiple vacations. Math. Method Oper. Res. 58:41-
56. 

Ke JC (2007). Operating characteristic analysis on the M
[x]

/G/1 system 
with a variant vacation policy and balking. Appl. Math. Model. 
31:1321-1337. 

Ke JC, Chu YK (2006). A modified vacation model M
[x]

/G/1 system. Appl. 
Stoch. Models. Bus. Ind. 22:1-16. 

Ke J-C, Lin CH (2006). Maximum entropy solutions for batch arrival 
queue with an un-reliable server and delaying vacations. Appl. Math. 
Comput. 183:1328-1340. 

Ke JC, Chang FM (2009). M
[x]

/(G1, G2)/1 retrial queue under Bernoulli 
vacation schedules with general repeated attempts and starting 
failures. Appl. Math. Model. 33:3186-3196. 

Ke J-C, Huang K-B, Pearn, WL (2010). The randomized vacation policy 
for a batch arrival queue. Appl. Math. Model. 34:1524-1538. 

Krishna Reddy GV, Nadarajan R, Arumuganathan R (1998). Analysis of 
a bulk queue with N-policy multiple vacations and setup times. 
Comput. Oper. Res. 25:957-967. 

Lee SS, Lee HW, Yoon SH, Chae KC (1995). Batch arrival queue with N 
policy and single vacation. Comput. Oper. Res. 22:173-189. 

Levy Y, Yechiali U (1975). Utilization of idle time in an M/G/1 queueing 
system. Manage. Sci. 22:202-211. 

Li W, Shi D, Chao X (1997). Reliability analysis of M/G/1 queueing 
systems with server breakdowns and vacations. J. Appl. Prob. 
34:546-555. 

Tadj L, Choudhury G (2005). Optimal design and control of queues. 
TOP. 13:359-412. 

Takagi H (1991). Queueing analysis:a foundation of performance 
evaluation. vol I. Vacation and priority systems, Part I. North-Holland, 
Amsterdam. 

Tang YH (1997). A single-server M/G/1 queueing system subject to 
breakdowns-some reliability and queueing problems. Microelectron. 
Reliab. 37:315-321.  


