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Rapid progress in the analysis and construction of high-nonlinearity structures has been made over the 
last three decades. The use of a new method is necessary to accuracy and stability to improve 
performance of this structure. The Fletcher-Reeves method belongs to a group of methods called 
conjugate gradient methods which attempt to locate a local minimum function. The approach of the 
proposed method was based upon the principle of conservation of energy. All nonlinear effects due to 
material properties, large displacements or local failure can be incorporated in the nonlinear dynamic 
analysis. Fletcher-Reeves algorithm was applied to calculate the set of displacements to minimize the 
energy of structural system. In this paper, a theory for nonlinear dynamics response analysis of high 
nonlinearity structure was developed based on the minimization of the total potential dynamic work. 
 
Key words: Fletcher-Reeves method, optimization of energy, finite element method, perturbation technique, 
analyzing modal, nonlinear dynamic response. 

 
 
INTRODUCTION 
 
The aim of this study is to develop a new method to for 
non-linear analysis of structures with high degree of 
freedom. The proposed theory for nonlinear analysis of 
3D space structure is based on minimization of the total 
potential dynamic work. The minimization of the total 
potential dynamic work is indirect method which is based 
on principle of convergence of energy in structures. 
Conventional methods such as superposition methods 
are direct method (Dehghan, 2002). They are usually 
employed for the solution of equilibrium equations of 
structures. However, the conventional methods use for 
structural analysis of 3D nonlinear space structures 
overestimates the displacements when the structures is 
stiffening and underestimate when it is softening. For the 
conventional method, the number of iteration increases 
with increase in degree of freedom and these methods 
need large computer storage for solution of equation of 
motion (Roy and Dash, 2002). The material is 
homogeneous and isotropic. The stress–strain 
relationship of all material remains within the linear elastic 
range during the whole nonlinear response. The external 
loads are displacement independent. Large displace-
ments  and   large  rotations  are  allowed. For  the   initial 
 

 
 
*Corresponding author. E-mail: hamidreza@siswa.um.edu.my. 

shape analysis, a linear and a nonlinear computation 
procedure are set up. These structures have many 
advantages such as prefabrication, ease of transportation 
and erection, relatively low cost and provision for 
coverage of large clear spans and high strength, large 
flexibility and elasticity. The design process is a relatively 
complex problem. In the present study, we consider the 
effect of dynamic loads in tension structures and describe 
a Fletcher-Reeves method for the determination of free 
and forced vibration analysis of structures. The structure 
can be analyzed as discrete system or continuous 
membrane. A unified approach to the static analysis of 
both linear and nonlinear structures is to consider the 
determination of equilibrium as an iterative process of 
minimizing the total potential energy. Regarding this fact, 
the non-linear systems have no fixed sets of eigenvectors 
and eigenvalues. The new sets of eigenvectors and 
eigenvalues must be calculated at each time step and the 
stiffness matrix must be revaluated at end of each time 
step (Guo and Chen, 2007). This makes the use of 
conventional methods extensively time consuming and 
costly. In the dynamic problems, the differential equations 
arising from the equilibrium of the dynamic forces acting 
on the mass is solved by implicit or explicit methods. 
They assume the structural properties to remain constant 
during the interval, but revaluate them at the end of time 
step. This  cannot  be   sufficient   for    highly   non-linear 
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structures. It is important to revaluate both the stiffness 
and damping during the time step. The revaluation 
process makes the methods more expensive to use. 
Also, the reduction of time consumed, cost and the high 
accurate result justify the used of indirect methods, such 
as, optimization theory (Celebi et al., 2009). 
 
 
EQUATION OF MOTION FOR A SYSTEM 
 
The equation of motion for a multi degree (MDOF) 
system can be written as (Argyris et al., 1979): 
 

M + C (t)  + K (t) x = P (t)                       (1) 

 
Where: M = mass matrix, C (t) = Damping matrix, K (t) = 

stiffness matrix, x = Displacement vector, x  = Velocity 

vector, x  = Acceleration vector and P (t) = Load vector 

 
The assumption of a constant mass in the case of both 
MDOF systems is arbitrary as it could be represented as 
a time varying quantity. Since m is a non-zero constant 
value, both sides of Equation 1 can be divided by m, and 
for- 
 

P= , Q = , F =  

 
Equation 1 can be written as: 
 

+ P +QX=F                         (2) 

 
The mathematical solution of Equation 2 depends on the 
values of P, Q and F. Equation 2 is a linear differential 
equation if P and Q are independent of x and remains so 
even if P and Q are functions of t (Bradford et al., 1999). 
 
 
The method of Fletcher-Reeves 
 
The method avoids explicit construction and inversion of the 
Hessian matrix k, by using the iterative formula (Fletcher, 2007): 
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In the first iteration Hi = I, which is the identity matrix. Thus the first 
step is in the direction of steepest descent. The slow convergency 
of the steepest descent method is then overcome by choosing the 
sequence of H such that as i approach k, Hk becomes 
approximately equal to k -1. For linear problem the method 
converges in n+1 steps in which case Hn+1 = k -1. It finds the solution 
to the second equation that is closest to the current estimate and 
satisfies the curvature condition. This update maintains the 
symmetry and positive definiteness of the Hessian matrix. The 
essential feature of the method is a recursion formula for updating 
an initial approximation to the Hessian matrix of second partial 
derivatives of the function to be minimized (Ademoyero et al., 
2004). The iterative method applied ensures that each step in the 
procedure leads to a function decrease until a stationary point is 
reached. The function to be minimized is f(x) where x denotes the 
argument vector of the decision variables x1, x2,. . , xn. 

 
 
The expression for the total potential energy 

 
The total potential energy is written as: 
 
W = U+V                  (7) 
 
Where: W = the total potential energy, U = the strain energy of the 
system and V = the potential energy of the loading. 
 
Taking the unloaded position of the assembly as datum, we have 
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Where: M = total number of members, J = total number of cable 
joints, Fji = external applied load on joint j in direction i, and Xji= 
displacement of joint j in direction i. 
 
The condition for structural equilibrium is that the total potential 
energy of the system is at minimum, and is written as; 
 

0 jiXW                                (9)  

 
Thus, at the solution, the gradient vector of the total potential 
energy function is zero. 

 
 
The gradient of the total potential energy  
 
Differentiating Equation 9 with respect to Xji gives gji, which is the 
element of the gradient vector g as follows (Hashamdar et al., 
2011): 
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Where:  T  jn  
the initial tension in member jn, T jn  the 

instantaneous tension in member jn,  e jn  elastic elongation of 

member  jn, E = young  Modulus  of  Elasticity,   A = cross-sectional  

http://en.wikipedia.org/wiki/Hessian_matrix


 
 
 
 

area of cable, L jn  
length of member jn, and Q = number of 

member meeting at joint j.  
 

The expression for g ji  can then be written as: 
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The strain energy of the member jn is given as: 
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Differentiating jnU  with respect to jne  yields 
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The initial and elongated length of member jn may be expressed as: 
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Where jiX  is the coordinate of joint j in direction i. Simplifying 

Equation 15 and substituting for L jn in Equation 14, yields the 

following expression for e jn : 
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Differentiating Equation 10 with respect to jiX  yields 
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Substituting Equations 10 and 17 into Equation 18 yields the 
expression for the gradient as follows: 
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Where )( jnjnjnjn eLTt   is the tension coefficient of member jn. 

 
 
Total potential energy in the direction of descent 
 
The correct value of X for which W is at minimum can be found by 
the iterative process; 
 

)()()()1( kjikkjikji VSXX               (19) 

 
Where:  the suffices (k) and (k+1) denote the (k)th and (k+1)th 
iterate respectively 

jiV = the element of the direction vector  

S )(k = the steplength which defines the position along )(kjiV where 

the total potential energy is at minimum. 
 

The expression for jiV  when the Fletcher-Reeves formulation 

method is used is given by: 
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The stationary point in the direction of descent can be found by 
expressing the total potential energy as a function of the step length 

along jiV . Thus the required value of S )(k  can be determined by 

the condition and is given as follows (Daston 1979); 
 

0)()(  kk SW                              (21) 

 
 
NUMERICAL AND EXPERIMENTAL TESTING 
 
The analytical method was used to experiment with mathematical 
model and experimental work.  
 
 
Theoretical 
 
Theoretical analysis (mathematical modelling) structural property 
matrices below for a pin jointed member with three degrees of 
freedom at each end as follows. 

The lumped mass matrices for a pin jointed member: 
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Where Where m   is the mass and L is the length of member  is the mass and L is the length of member.  
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Figure 1. Grid lines of the flat net. 

 
 
 

Table 1. The specifications of flat net and cables. 
 

Description Details 

Overall dimensions 3000*4000 

Spacing of the cables 500 mm 

Number of free joints 35 

Diameter (mm)  15.34 

Section Area (mm
2
)  142.90 

Young’s Modulus 192.60 KN/ mm
2
 

 
 
 

 
 

Figure 2. Construction of frame steel. 

 
 
 
 
The stiffness matrix for a pin jointed member: 
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Where T is the axial force in the axial force and 
21,  and

3 are 

the corresponding direction cosines. 
 
 
Experimental work 
 
The mathematical model chosen is a 7*5 flat net with 105 degrees 
of freedom. The 7*5 net was built as an experimental model and 
tested in order to verify the static and dynamic nonlinear Fletcher-
Reeves theory. The construction of the experimental model is 
shown in Figure 1. 

The specifications of erected rectangular net and cables are 
given in Table 1. Each steel cable was initially tensioned to about 1 
KN and then left for two weeks to permit the individual wires in the 
strands to bed in; then, the tension on the cables were readjusted 
to 11.5 KN. This tension was maintained throughout the test 
programme by checking at interval times. The wedge and barrel 
used on hollow cylindrical steel to provide endcaster degree of 
freedom for boundary condition of cables. Endcaster joints are used 
to fix boundary condition. General view of steel frame is shown in 
Figure 2 and 3. Specifications of steel frame made are given in 
Table 2. 

 
 
RESULT AND DISCUSSION 
 
Static test 
 
Any deficiency in the model could influence the dynamic 
behavior and make subsequent comparison of 
experimental and theoretical values difficult. Hence, a 
static test was carried out to investigate the degree of 
symmetric behavior on the frame. The investigation 
consisted of checking the degree of symmetric behavior 
about the major and minor axes. The degree of 
symmetric behavior about the minor axis was 
investigated by first placing an increasing load on joint 11 
and the resultant displacement was compared with those 
obtained by placing similar loads on joint 25. The degree 
of symmetric behavior about the major axis was similarly 
studied by loading first joint 16 and then joint 20. Table 3 
shows the degree of symmetric behavior about the minor 
and major axis respectively, and also shows the 
percentage difference between the experimental and 
calculated displacements. The average lack in symmetric 
behavior about the minor and major axis over the load 
range as measured by the percentage difference in the 
movements of selected joints is approximately 3.4%.  
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Figure 3. General view of steel frame. 

 
 
 

Table 2. Features of steel frame made. 
 

Frame supported specification 

Column 1400 mm (box) Height 

Beam 300mm * 400 mm (box) Length 

Beam Size 100*200*9 mm (hollow section) 

Column Size 200*200*9 mm (hollow section) 

 
 
 

Table 3. Deflections due to concentrated load on joint 11. 
 

Load (N) = 2400 Theoretical (T) Z axis (m) Experimental (E) Z axis (m) (T – E)/T*100 

Deflections node 18 127.9E-03 125.2E-03 2.11 

Deflections node 11 142.3E-03 141.5E-03 0.56 

Deflections node 4 67.78E-03 65.28E-03 3.69 

Deflections node 25 78.68E-03 77.28E-03 1.78 

Deflections node 32 29.54E-0 29.24E-0 1.02 

Deflections node 15 20.70E-03 20.32E-03 1.84 

Deflections node 16 54.46E-03 53.23E-03 2.26 

Deflections node 17 104.2E-03 101.5E-03 2.59 

Deflections node 19 104.2E-03 102.1E-03 2.02 

Deflections node 20 59.30E-03 57.22E-03 3.51 

Deflections node 21 20.70E-03 20.52E-03 0.87 

Deflections node 1 7.726E-03 7.700E-03 0.34 

Deflections node 7 7.726E-03 7.700E-03 0.34 

Deflections node 29 5.590E-03 5.40E-03 3.4 

Deflections node 35 5.590E-03 5.40E-03 3.4 
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Figure 4. Coherence graph of channel 1 and 2 based on references 3 and 28. 

 
 
 

The values between the calculated and measured 
static deflections are in the same value to each other. A 
static test checked the stiffness of the boundary and then 
shows the degree of error for any elastic deformation of 
the frame is probably zero. The result verifies the frame is 
symmetric. Test with different pattern and intensities of 
static loading in order to compare the experimental and 
theoretical values of the static deformation showed that 
the deflection calculated by the proposed nonlinear 
method gives reasonably accurate results. 
 
 
Modal test 
 
The objectives of the modal testing described are to 
verify the dynamic proposed theory. The modal analysis 
is defined as the process of characterizing the dynamics 
of a structure in terms of its modes of vibration. It turns 
out that the eigenvalues and eigenvectors which define 
the resonant frequencies and mode shapes of the modes 
of vibration of the structure. The structure is excited by 
impact hammer on nodes 3 and 28. Two nodes were 
selected for more evolution of received data. Figure 4 
shows the visual comparison of coherence graph based 
on references 3 and 28. The signals output came out as 
reference 3, and were suitable because the ratios of 
amounts based on reference 3 were higher than the ratio 
amounts of reference 28 and close to  the  amount one. It 

means that, the received signals have linear behavior 
and it is sufficient to analyze modal. 
 
 
Optimization of modal parameters 
 
Scrutinizing of frequency response function is needed to 
apply a new technique. In present study, the newest 
method such as Nyquist plot for optimization modal 
parameter was used. Figure 5 shows sprawling 
frequencies on reference 28, which indicated the stability 
of the system is not enough and an unsuitable ratio 
amplitude frequency exist between output and input 
signal. Hence, node 3 was selected for reference. 
Figures 6 and 7 show that, the whole theoretical and 
experimental modes shapes were close to each other 
and verify the proposed theory. The net had to be excited 
five times for each setup to reach a suitable response for 
each of nodes. 

The comparisons between theoretical and experimental 
natural frequencies are presented in Table 4. 
 
 
Conclusion  
 
The values between the calculated and measured static 
deflections are in good agreement. The comparison of 
experimental    and    theoretically   predicted   values   of  
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Figure 5. Nyquist diagram of an FRF for node 1 based on reference 28. 

 
 
 

 
 

Figure 6. Mode shape 1 of the structure (theoretical). 

 
 
 
dynamic response shows that the response calculated by 
the proposed nonlinear r method gives reasonably 
accurate results. The proposed method was found to be 
stable  for  time  steps  equal  to  or   less   than   half  the 

 

 
 

Figure 7. Mode shape 1 of the structure (experimental). 

 
 

 
smallest time period of the system. The experimental 
work carried out by static and dynamic testing of the flat 
net showed good agreement between the experimental 
result  and theoretically predicted values. The percentage  
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Table 4. Theoretical and experimental natural frequencies. 
 

Pretension load (N) = 11500 

Natural frequencies (Hz) 

References 3 

T
  

E
  

%

E

TE



   

Theoretical Experimental 

Mode 1 2.9708 2.9531 0.60 

Mode 2 6.4601 6.4142 0.71 

Mode 3 8.0102 7.8945 1.44 

Mode 4 9.1213 9.1023 0.21 

Mode 5 14.243 14.553 2.18 

Mode 6 17.347 17.235 0.65 

Mode 7 23.762 23.151 2.57 

 
 
 
differences between the theoretical and experimental 
results did not in any case exceed 10%. This was thought 
to be acceptable. Finally, it can be concluded that, the 
Fletcher-Reeves algorithm was more efficient in terms of 
computing time and storage practically in high nonlinear 
structures.  
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