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All available models of soil shrinkage curves, despite their essential differences, are based on fitting 
the model parameters. We try to construct a model that enables one to predict the shrinkage curve 
based on physical parameters, that is, parameters that can be measured or calculated without fitting, 
independently of an experimental shrinkage curve. Such a model is constructed for real aggregates of 
clay soils (i.e., soils with clay content approximately > 40% by weight). The intra-aggregate matrix is 
considered to be a clay matrix that embraces silt and sand grains. An available microstructure-based 
model of the clay matrix shrinkage curve is used. For data analysis we derive an estimate for the liquid 
limit of the intra-aggregate matrix. We compare predicted and observed shrinkage curves using 
available data on aggregates of 31 different swelling soils that are mostly clay soils. As expected the 
generalized model works for clay soil aggregates with clay content approximately >40% (21 of 31 soils 
under study). The obtained results of the clay soil aggregates are a prerequisite of the next step relating 
to the shrinkage modeling of an aggregated soil without fitting. 
 
Keywords: Modeling without fitting; shrinkage; aggregates; clay microstructure. 

 
 
INTRODUCTION 
 
A theoretical description and eventual prediction of the 
shrinkage curve of a swelling soil is of great interest 
because dependable modeling of the shrinkage 
characteristics of soils is an important prerequisite for the 
prediction of their hydraulic properties. For the present 
there are a number of approaches for obtaining the 
expressions describing observable shrinkage curves. A 
thermodynamics-based approach to clay-water systems 
enables the derivation of a shrinkage curve equation of a 
disaggregated clay soil at water contents below the air-
entry point (Sposito, 1973; Sposito and Giraldez, 1976; 
Giraldez et al., 1983). A group of approaches are based 
on the different geometrization of experimental shrinkage 
curves as a combination of three straight lines (McGarry 
and Malafant, 1987), three straight lines (including basic 
or normal shrinkage (Mitchell, 1992)) and three 
curvilinear parts that are approximated by exponential 
equations (Braudeau et al., 2004) or polynomial 
equations (Tariq and Durnford, 1993). Still another group 
of approaches is based on the approximation of 
experimental shrinkage curves by different parametric 
expressions (Nelder, 1961, 1962 - logistic model; 
Groenevelt and Bolt, 1972; Kim et al., 1992; Olsen and 
Haugen, 1998, Peng and Horn, 2005; Cornelis et al., 
2006). With all their differences the above approaches 
have two important general features in common. First, all 
these approaches are based on either thermodynamic, 

i.e., macroscopic, considerations or experimental 
shrinkage curves. For this reason the approaches do not 
use concepts of both intra- and interaggregate soil 
structure in constructing the expression approximating a 
shrinkage curve. Second, the parameters of the 
approaches are only found by fitting of the model 
shrinkage curve to an experimental one. Even those 
parameters that are not formal and have a physical 
meaning cannot be measured independently of a 
shrinkage curve or calculated from such measurements. 

A model that does not possess the two above limiting 
features has been recently proposed (Chertkov, 2000, 
2003). The model relates to the shrinkage curve of a pure 
clay matrix or clay paste at different water contents. The 
model links the shrinkage curve of a clay matrix with its 
microstructure and pore-size distribution. Parameters of 
the model shrinkage curve can be found independently of 
the latter. The model was validated using relevant 
available data (Tessier and Pédro, 1984; Bruand and 
Prost, 1987). In this paper that model is referred to as the 
basic one. Lately, the basic model has been applied to 
the development of a physically based model for the 
water retention of clay pastes (Chertkov, 2004). One can 
consider the basic model as a semi-finished product or 
first  step.  The  natural  second  step  in   developing  the 
model is the transition to shrinkage of real aggregates 
because in any case the intra-aggregate matrix is a clay  



 
 
 
 
matrix that, in general, embraces silt-sand grains and 
possible microcracks. The next step (beyond the scope of  
this work) is the transition to an aggregated soil. The 
objectives of this work are: 
 
• to generalize the basic model to the case of paste-like 

mixture of clay, silt, and sand at sufficiently high clay 
content (approximately >40% by weight) and without 
cracks, i.e., to the case of an intra-aggregate clay soil 
matrix; 

• to substantiate, using the basic model, a simple 
relation between the liquid limit of a clay soil and the 
moisture content of the clay soil aggregates at zero 
suction; 

• to compare the shrinkage data from Bronswijk and 
Evers-Vermeer (1990) for aggregates of 31 different 
(mostly clay) swelling soils from the Netherlands and 
the results of the shrinkage curve prediction of the soil 
aggergates, based on the above generalization (see 
the first objective) and substantiation (see the second 
objective). 

 
A detailed summary of the basic model, including the 

links between the shrinkage curve of a clay matrix and its 
microstructure, can be found in Chertkov (2003, 2004). 
Here, for the reader’s convenience we start from a brief 
summary of the model points that are most necessary. 
 
 
Brief summary of the basic model 
 
Shrinkage curve of a clay matrix in relative 
coordinates 
 
In the form )(ζv  where ζ  is the relative water content of 
the clay, i.e., the ratio of the current value of the 
gravimetric water content to the maximum possible value 
- the liquid limit, and v is the relative volume of drying 
clay, the shrinkage curve of a clay matrix is presented as 
(Figure1). 
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where zv  and sv  are indicated in Figure 1; 
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is the shrinkage limit of the clay matrix; Fz  is the pore 
volume fraction occupied by water (saturation degree) at 
a water content corresponding to the shrinkage limit 
( zζ ); and 
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is the minimum water content in the normal shrinkage 
area (air-entry point). 
 
 
Estimating the zF  parameter 
 
One can estimate zF  from zv  and sv  values, and then 

zζ  (Eq.(2)) and nζ  (Eq.(3)) parameters of the pure 

clay, and thereby express the shrinkage curve of )(ζv  

(Eq.(1)) through parameters sv  and zv  only. In general, 

011 1. ≅< <vz  and )2.0andzmin(s03.0 ≅<≅< vv . 

In the case 11.0z =v  we have 0z =F  (and zζ , nζ  

from Eqs.(2) and (3)). If 1z11.0 << v  
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is the zero suction point.        hζζ =  Figure 1.  The general form of the shrinkage curve of a clay matrix (Chertkov’s (2000). Fig.2)  

 
 
and the constant values of 9≅γ  and 57.13≅A  flow 
out of the clay microstructure consideration. 
 
 
Shrinkage curve of a clay matrix in customary 
coordinates 
 
One can recalculate the dependence )(ζv  as the 

shrinkage curve of the clay matrix in the form )(wV  (the 
specific volume vs. gravimetric water content of the clay 
matrix; see Figure 1) using the vV ↔  correspondency 
as 
 

)ss/( ρvvV = ,                                                           (9) 

and the ζ↔w  correspondency as 
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where wρ  is the density of water; and sρ  is the density 
of the solid phase (clay particles). Similarly, one can 
recalculate the dependence )(ζv  as the shrinkage curve 

of the clay matrix in the form )(ϑe  (void ratio vs. 
moisture ratio of the clay matrix) using the ve ↔  
correspondency as 
 

1s/ −= vve ,                                                        (11) 

and the ζϑ ↔  correspondency as 
 

ζϑ
s
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Determination of the parameters of the clay matrix 
shrinkage curve 
 
The sρ , sv , and zv  parameters can be found 

irrespective of the shrinkage curve of a clay matrix. The 
density of clay particles, sρ  is measured by standard 

methods   (Blake  and  Hartge, 1986).   For   a   clay   the 
minimum relative volume zv  and the relative volume sv  

of clay particles at the liquid limit, can be calculated from 
measured values of the specific volume of the clay matrix 
in oven-dried state, zV  and the liquid limit, Mw  of the 

clay matrix using Eqs.(9) and (10) at zvv =  and 1=ζ , 

respectively. It is worth noting that, as applied to the 
shrinkage curve of a clay matrix, the immediately 
measured sρ , sv , and zv  parameters reflect the 

specifics of different physical-chemical processes that are 
connected with clay mineralogy, concentration and type 
of cations in water. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2.  The assumed intra-aggregate matrix of a clay soil with 
sufficiently high clay content. 
 
 
Some microstructure relations of a clay matrix 
 
Connected or nearly connected clay particles outline 
micropores (matric pores). The dimension of connected 
clay particles increases and their thickness decreases 
with water content. The basic model gives the following 
estimates that will be needed below: 
 
 
 

mz03.0z r≅∆                                                   (13)    and 

 
 

mM01.0M r≅∆                                                (14) 

 
where z∆  is the thickness of plate-like clay particles of a 

clay matrix in the zero shrinkage area; M∆  is that at the 

liquid limit; mzr  is the maximum external dimension of 

pores (or the maximum dimension of clay particles) in the 
zero shrinkage area; and mMr  is that at the liquid limit 

(the external pore dimension includes the pore dimension  
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itself and half thicknesses of two opposite clay particles 
from those outlining the pore). 
 
 
Generalization of the basic model to the case of an 
intra-aggregate clay soil matrix 
 
Our aim in this section is to generalize the basic model 
and to consider the shrinkage curve model of an intra-
aggregate matrix that consists of a clay matrix embracing 
silt and sand grains and includes no cracks (Figure 2). 
Hereafter, the term “intra-aggregate matrix” only means 
such a structure as in Figure 2. We assume that this 
model can be applied to the intra-aggregate matrix of a 
clay soil with sufficiently high clay content (approximately 
>40% by weight). This assumption will be checked below 
using available data. 
 
 
Relations between an intra-aggregate matrix and that 
of a corresponding pure clay 
 
One can use the relative coordinates ξ and u for the 
swelling soil of any structure. ξ is the ratio of a current 
value of the gravimetric water content of the soil to the 
maximum possible value in the solid state (the liquid 
limit). u is the ratio of a current value of the soil volume to 
the maximum possible value of the volume. In the range 

10 ≤< ξ  there are values zξ  and nξ  of the shrinkage 

limit and air-entry point, respectively. Relative volumes 

zu  and nu  correspond to the relative water contents zξ  

and nξ . Finally, one can introduce a relative volume of 

the solid phase, su  (the ratio of the volume of all solid 

components of the soil to the maximum possible volume 
of the latter), and a relative volume of the non-clay solid 
phase, Su  (the similar ratio for all solid components 

except for the the clay particles). 
We are interested in the particular case of the swelling 

soil structure shown in Figure 2 - the intra-aggregate 
matrix. Only in this case are there simple  linear  relations  
between the water content (ξ) and volume (u) of the 
structure and those (ζ, v) of the corresponding pure clay 
matrix as 

ξζ =                                                                      (15)      
and 
 

)S1/()S( uuuv −−= .                                           (16) 

 
These relations follow immediately from Figure 2 
(coincidence of pore space of the intra-aggregate matrix 
and corresponding clay matrix) and the above definitions  
 
 

 Silt-sand 
grains 

Clay 

Fig.2 
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of (ζ, v), (ξ, u), and Su . In particular, it follows from 

Eq.(15) and the definitions of zζ , nζ . zξ , and nξ  that 

 

zz ξζ = ,      nn ξζ = .                                            (17) 

 
Similarly, it follows from Eq.(16) and the definitions of 

zv , sv , zu , su , and Su  that 

 
 

)S1/()Sz(z uuuv −−=                                            (18)       

and 
 
 
 

)S1/()Ss(s uuuv −−= .                                           (19) 

 
 
The shrinkage curve of an intra-aggregate matrix in 
relative coordinates 
 
According to Eqs.(15) and (17) in the presentation of the 
shrinkage curve of an intra-aggregate matrix one can use 
the same water content variable, ζ and water content 
parameters, zζ  and nζ  that were used for the 

corresponding pure clay. Then the shrinkage curve of the 
intra-aggregate matrix (Figure 2) in relative coordinates, 

)(ζu  is obtained after replacement of v, zv , and sv  in 

Eq.(1) of the basic-model dependence, )(ζv  for the 
pure-clay matrix, from Eqs.(16), (18), and (19). The 
simple term rearrangement shows that the relative 
volume of the non-clay solid phase, Su  falls out of the 

)(ζu  dependence and the latter takes exactly the same 
form as Eq.(1) after replacement of all v values by u 
values 
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The zF  parameter in Eq.(20) keeps the same meaning 
and value as in Eq.(1). In the force of Eqs.(18) and (19) 

)s1/()sz()s1/()sz( uuuvvv −−=−− . Therefore 

Eqs.(2) and (3) also keep the same form after the 
replacement of uv →  as 
 

z
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z F
u
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It is worth reiterating that ζ, zζ , nζ and zF  in Eqs.(1)-

(3) and Eqs.(20)-(22) are the same, but vu ≠ , ss vu ≠ , 

zz vu ≠ , and nn vu ≠  (see Eqs.(16), (18), and (19)). 

Thus, the )(ζu  curve of the intraaggregate matrix 

(Figure 2) is qualitatively similar to )(ζv  of clay matrix in 

Figure 1 with the replacement of v, zv , sv , and nv  by u, 

zu , su , and nu , respectively. 

 
 
The shrinkage curve of an intra-aggregate matrix in 
customary coordinates 
 
Relations that are given by Eqs.(9)-(12) are a particular 
case of similar relations for any soil. Therefore, one can 
recalculate the )(ζu  dependence as the shrinkage curve 

of the intra-aggregate matrix in the form, )(wU  (the 
specific volume vs. the gravimetric water content of the 
intra-aggregate matrix) using 
 

)ss/( ρuuU =                                                  (23)      and 
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where sρ  is the average density of the solid phase. The 

)(wU  dependence of the intra-aggregate matrix is 

qualitatively similar to )(wV  of the corresponding clay 
matrix in Figure 1. Similarly, one can recalculate the 

)(ζu  dependence as the shrinkage curve of the intra-

aggregate matrix in the form )(ϑe  (the void ratio vs. the 
moisture ratio of the intra-aggregate matrix) using                            
 
  1s/ −= uue                                                  (25)      and 
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u
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Estimating the zF  parameter for the intra-aggregate 
matrix 
 
The zF  parameter entering Eq.(20) (and simultaneously 

Eq.(1)) can be estimated using zu , su , and Su . First, 

using Eqs.(18) and (19) one finds the zv  and sv  

parameters of the corresponding clay matrix. Then the 
algorithm of subsection 2.2 permits one to estimate zF . 
The relative volume of the non-clay solid phase in the 
intra-aggregate matrix, Su  can be estimated preliminarily 

by the clay content and densities of different solid 
components (see section 6 and Appendix). 
 
 
Determination of the parameters of the intra-
aggregate-matrix shrinkage curve 
 
Thus, in general, the shrinkage curve of an intra-
aggregate matrix is determined by four parameters: sρ , 

zu , su , and clay content. All these parameters can be 

found irrespective of the shrinkage curve of the intra-
aggregate matrix. sρ  is measured by standard methods 

(Blake and Hartge, 1986). Clay content is also measured 
by standard methods (Gee and Bouder, 1986). Finally, 

zu  and su  can be calculated (similar to zv  and sv ) 

from measured values of the specific volume of the intra-
aggregate matrix in the oven-dried state, zU  and the 

liquid limit, Mw  of the intra-aggregate matrix, using 

Eqs.(23) and (24) at zuu =  and 1=ζ , respectively. 

 
 
A relation between the zero-suction point and the 
liquid limit 
 
As one can see from the stated above, the liquid limit is 
an important parameter that is independent on the 
shrinkage curve, and at the same time determines one of 
its parameters ( sv  or su ). Our aim here is to suggest an 

estimated relation between the liquid limit and water 
content of a clay matrix at zero suction based on clay 
microstructure concepts from the basic model. This 
simple relation will be used in the following. 

The zero suction point on the water content  axis,  hζ   

is 
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between the air-entry point (Figure1, nζζ = ) and the 

liquid limit ( 1M ==ζζ ). This point corresponds to the 

maximum swelling of a clay matrix. Therefore, one can 
assume that at the zero-suction point, hζ  the sizes of 

pore majority and clay particle majority outlining the pores 
are maximally possible for keeping the connections 
between the clay particles in their network, i.e., for 
keeping the network integrity. At a water content in the 
range 1h <<ζζ  at least a part of the connections is 

broken. We assume that at ζ  close to unity the separate 
disconnected clay particles make up the majority of all of 
them. Below we estimate the hζ  value assuming the 

beginning of the network destruction at hζζ > , the 

majority of separate disconnected clay particles at ζ  
close to unity, and using the basic-model concepts. 

Figure 3a shows the two-dimensional illustrative 
scheme of a clay particle network before disconnections, 
i.e., at hζζ ≤ ; r is a pore size. At a given ζ the r size 

varies between the minimum and maximum values. The 
maximum, )(m ζr  depends on ζ. The maximum size of 

the separate clay particles after disconnections at 

hζζ >  is )h(mmh ζζ == rr . At a given ζ after 

disconnections (Figure 3b) the distance rδ  between clay 
particle edges varies between the minimum and 
maximum values. The maximum at a given ζ, )(m ζδr  

as a function of ζ reaches the maximum 
)1(mmM == ζδδ rr  at 1M == ζζ . Thus, the volume 

of the clay particle system increases between water 
contents hζζ =  and 1M == ζζ  by  

3)mh/)mMmh(( rrr δ+  times. That is (Figure 1), 

 
3)mh/mM1(h/1h/M rrvvv δ+== .         (27) 

 
Let us estimate mMrδ . One can represent the maximum 

distance, mMrδ  between clay particle edges at 1=ζ  as 

 

hmM ∆δ ⋅= Kr                                                 (28) 

 
where h∆  is the mean thickness of disconnected clay 

particles, )(ζ∆  at hζζ > . The clay particles are 

considered to be totally disconnected at the liquid limit,  
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Figure 3. The two dimensional illustrative scheme of a clay particle network (a) before 
disconnections at hζζ ≤   and (b) after disconnections at 1M =≅ ζζ . r is a clay 

particle (or pore) size; rδ is a distance between the edges of the disconnected clay particles; ∆  
is the mean thickness of the clay particles.         

 
 
 

1M == ζζ  if hmM ∆δ >>r (see Figure 3b), i.e., K>>1. 

Usually “much greater” sign means more than, at least by 
10 times, i.e., 10≅K . Replacing mMrδ  in Eq.(27) from 

Eq.(28) at 10≅K  one obtains 
3)mh/h101(h/1 rv ∆+≅ .                                       (29) 

 
Because 1Mhz =<< ζζζ  (Figure 1) one can write 

the inequality. 
 

mz/zmh/hmM/M rrr ∆∆∆ << .                      (30) 

 
Accounting for Eqs.(13) and (14) and Eq.(30) one can 

rewrite Eq.(29) as 33.1h/131.1 << v . As an estimate 

we take 76.12/)33.131.1(h/1 ≅+=v  and 57.0h ≅v . 

 
According to Eq.(1) one can write 

h)s1(sh ζvvv −+= . Thus, hζ  depends on sv  as 

)s1/()s57.0(h vv −−=ζ . In the usual range 

2.0s03.0 <≅< v  it gives 55.0h46.0 <≅<≅ ζ . 

Accounting for that the above-accepted value of 10≅K  

is approximate, the variation of the hζ  value within the 

limits of this range is not significant, and in the following it 
is reasonable to take the estimate of 5.0h ≅ζ . 

Therefore, in the case of a clay matrix the ratio, h/1 ζ  of 

the liquid limit to the water content corresponding to the 
zero suction value is approximately equal to two. In the 
case of an intra-aggregate matrix (Figure 2) the ratio of 
the liquid limit to the zero-suction water content is the 
same because pore spaces of the intra-aggregate matrix 
(Figure 2) and corresponding clay matrix coincide. 

The feasibility of the above generalization of the basic 
model and the simple relation between the liquid limit and 
zero-suction water content (this section) will be checked 
in the following using available data. 
 
 
Data used in this work for the model validation 
 
We used data from Bronswijk and Evers-Vermeer (1990). 
The data were obtained on natural aggregates of seven 
soils in the Netherlands. Four-five horizons  in  the  range  
of 0-110 cm were studied for each of the soil locations. 
The clay minerals of the seven profiles consist mainly of 
illite (30-40%) and smectite (20-40%). Table 1 
reproduces the data from Bronswijk and Evers-Vermeer’s  

 

 

r 

(a) 

r 
∆∆∆∆

(b) 
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Table 1. Data that were used as input in checking the generalized model for aggregates of 31 soils from Bronswijk and Evers-
Vermeer (1990): the density of clay particles, silt, and sand (ρs); the clay content (Cw) - the weight fraction of clay particles of 
mineral parts (clay, silt, and sand); CaCO3 content (kw) - the weight fraction of the soil; the organic matter content (ow) - the 
weight fraction of the soil; the void ratio in the oven-dried state (ez); and the void ratio at the zero-suction point (eh)  
 
Soil 
no. 

Location Depth 
(cm) 

Horizon ρρρρs 
(g/cm3) 

Cw kw ow ez eh 

1 Oosterend 0-22 A11 2.52 0.399 0 0.103 0.46 1.77 
2  22-42 ACg 2.60 0.407 0 0.069 0.36 1.45 
3  42-78 C1g 2.66 0.581 0.025 0.045 0.42 1.5 
4  78-120 C2g 2.68 0.241 0.069 0.022 0.53 0.9 
5 Nieuw Beerta 0-26 Ap 2.64 0.454 0.014 0.048 0.49 1.38 
6  26-34 A12 2.61 0.459 0.008 0.039 0.47 1.5 
7  34-56 C11g 2.62 0.516 0.017 0.022 0.48 1.66 
8  56-75 C12g 2.68 0.391 0.033 0.019 0.50 1.40 
9  75-107 C13g 2.69 0.593 0.003 0.030 0.56 1.63 
10 Nieuw Statenzijl 0-29 Ap 2.65 0.520 0.090 0.033 0.45 1.32 
11  29-40 AC 2.67 0.629 0.106 0.029 0.49 1.4 
12  40-63 C21 2.69 0.524 0.113 0.027 0.56 1.68 
13  63-80 C22g 2.66 0.558 0.098 0.028 0.57 1.65 
14  80-100 C23g 2.69 0.596 0.116 0.022 0.58 1.8 
15 Schermerhorn 0-21 A11 2.59 0.348 0.117 0.059 0.54 1.19 
16  21-52 A12 2.61 0.429 0.111 0.062 0.54 1.58 
17  52-77 C21g 2.62 0.321 0.176 0.037 0.82 1.60 
18  77-100 C22g 2.63 0.162 0.188 0.031 0.80 1.10 
19 Dronten 0-22 Ap1 2.66 0.368 0.099 0.026 0.47 1.07 
20  22-38 A12 2.66 0.456 0.081 0.022 0.57 1.54 
21  38-60 C22g 2.63 0.353 0.066 0.076 0.67 1.77 
22  60-90 C23g 2.59 0.159 0.058 0.070 1.02 2.35 
23  90-110 C24g 2.57 0.202 0.046 0.105 1.12 2.05 
24 Bruchem 0-18 A11 2.52 0.581 0 0.099 0.29 1.5 
25  18-30 A12 2.60 0.558 0 0.075 0.34 1.35 
26  30-58 C11g 2.64 0.596 0 0.037 0.33 1.38 
27  58-85 C12g 2.59 0.517 0 0.038 0.41 1.45 
28 Kats 0-35 Ap 2.67 0.308 0.102 0.021 0.47 0.95 
29  35-60 C21g 2.67 0.464 0.136 0.016 0.45 1.2 
30  60-80 C22g 2.70 0.419 0.157 0.013 0.50 1.35 
31  80-95 C23g 2.69 0.162 0.095 0.003 0.60 1.4 

 
 
 
(1990) Table 1 on density of the solid phase ( sρ ), clay 

content ( wC ), 3CaCO  content ( wk ), and organic 

matter content ( wo ). Figure 4 for soil no. 7 (Table 1) is 

representative for 21 soils with clay content 4.0w >≅C  

(Table 1; soils no. 1-3, 5-14, 16, 20, 24-27, 29, 30). 
Figure 5 for soil no. 4 (Table 1) is representative for ten 
soils with clay content 4.0w <C  (Table 1; soils no. 4, 

15, 17-19, 21-23, 28, 31). Figures 4 and 5 reproduce the 
measured shrinkage curves in the form of )(ϑe  from 
Bronswijk and Evers-Vermeer (1990). These curves are 

shown by white circles. The black circle and triangle 
correspond to Bronswijk and Evers-Vermeer’s (1990) 
data on air-entry point ( nn ϑ=e ) and zero-suction point 

( hh ϑ=e ), respectively. In six cases the air-entry point 

and zero-suction point coincide (Table 1; soils no.3, 5, 8, 
11, 27, and 28) The experimental void ratio in the oven- 
dried state, ze  and the experimental he  value for all the 

soils are given in Table 1. In addition to the input data 
that are presented in Table 1 we will need the density of  
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Figure 4. The shrinkage curve of natural aggregates of clay soil no. 7 (Table 1) from the 
Netherlands. White circles show the experimental curve (Bronswijk and Evers-Vermeer, 
1990). The black circle and triangle show the experimental air-entry point and zero-suction 
point, respectively. The solid line shows the model predicted curve. The black square shows 
the model predicted liquid-limit point. 

 
 
 
solids of organic matter, oρ . We take below 

3cmg3.1o
−⋅=ρ  (Hillel, 1998, p.315, Table 12.1). 

Finally, it is worth reiterating that all input data from Table 
1 and oρ  were obtained independently of the measured 

shrinkage curves. Bronswijk and Evers-Vermeer (1990) 
note a broad variety of the soils under study, including 
those with relatively low clay content, and a strong 
variation of the shrinkage curves from one soil to another. 

The maximum deflections of the separate experimental 
points of the averaged shrinkage curves plotted by 
Bronswijk and Evers-Vermeer (1990) in their original 
figures for soils no. 5, 6, 8, 9, 20, 31 (according to our 
numbering in Table 1) permit one to estimate the 
experimental standard deviation as 04.0≅eδ . 
 
 
DATA ANALYSIS USING THE MODEL 
 
Fitting of model parameters is widespread in soil science 
as a way of demonstrating a correspondence between 
data and a model. Therefore, it is worth emphasizing that 
the following checking of the generalized model and the 

ratio of the liquid limit to the zero-suction water content is 
based on the way that is usual in physics and consists of 
two steps. The former is the model prediction of a 
shrinkage curve for a given set of input data. The latter is 
the comparison between the predicted and the observed 
shrinkage curves. They are considered to be in 
compliance if discrepancies between them are within the 
limits of the experimental standard deviations, eδ . 

Unfortunately, Bronswijk and Evers-Vermeeer (1990) 
do not give data on the liquid limit of the soils under 
study. For this reason we cannot separately check that 
the ratio of the liquid limit to zero-suction water content is 
approximately equal to two, and then the generalized 
model. Therefore, the model and the approximate ratio 
value will be checked together. 

Predicting a shrinkage curve for a given set of sρ , 

wC , wk , wo , ze  and he  from Table 1 and the above 

oρ  value, we consider two variants. In the former variant 

we take into account the presence of 3CaCO  and 

organic matter. With that we assume that the solid 
density of clay particles, silt, sand, and 3CaCO  coincide.  
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                                                   Figure 5.  As in figure 4 for soil no.4 (Table 1).                        
  
 
 
Furthermore, in this variant we neglect any small possible 
change of 3CaCO  and organic matter content with 

drying. In the latter variant we neglect the presence of 

3CaCO  and organic matter. Results of these two 

variants will be compared in the next section. The 
scheme of the shrinkage curve prediction in the first 
variant for a given set of sρ , wC , wk , wo , oρ , ze  

and he  is as follows. 

 
1. Knowing he  one can estimate the void ratio at the 

liquid limit, Me   as 

 
         h2M ee ≅ .                                                   (31) 

 
 

2. From Eq.(25) at 0=ζ  ( zee = , zuu = ) and at 

1=ζ  ( Mee = , 1=u ), one estimates su  and zu  as 

 
)1M/(1s += eu , )1M/()1z(z ++= eeu .            (32) 

 
 
From sρ , oρ , wo , wk , and wC  one estimates (see 

Appendix) 

3. ]w)1o/s(1/[)ww1(wv ookCc ⋅−+−−= ρρ      (33) 

where vc  is the volume fraction of clay solids of the total 

solids. 
4. Because v1 c−  is the volume fraction of non-clay 

solids of the total solids one estimates.  
 

s)v1(S ucu ⋅−= .                                               (34) 

 
5. Then one estimates zv  and sv  from Eqs.(18) and 

(19). 
 
6. Based on zv  and sv  one estimates zF  from Eqs.(4)-

(8). 
 
7. Based on su , zu , and zF  one estimates zζ  and 

nζ from Eqs.(21) and (22), and after that the shrinkage 

curve in the form )(ζu  from Eq.(20). 

8. Finally, using the )(ζu  curve and Eqs.(25)-(26) one 

can predict the shrinkage curve in the form )(ϑe . 
 
9. Additionally, one can successively estimate (see 
Appendix) 
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)]w1(ows/[wsv oooo −+⋅⋅= ρρρ ,                (35) 

 
where vo  is the volume fraction of organic-matter solids 

of the total solids, the average density of solids, sρ  as 

 

vo)v1(ss oo ρρρ +−= ,                                    (36) 

 
and the liquid limit in terms of gravimetric water content 
(from Eq.(24) at 1=ζ , Mww =  and Eq.(25) at 1=u , 

Mee = ) as 

 

s/wMM ρρ⋅= ew .                                           (37) 

 
In the second variant when we neglect the presence of 

3CaCO  and organic matter, the oρ , wk , and wo  

data are not needed; vc  (Eq.(33)) that is used in Eq.(34) 

coincides with  
 

wC ; and in additional point 9 ss ρρ =  and 

s/wMM ρρ⋅= ew . 

 
 
RESULTS AND DISCUSSION 
 
Figure 4 for soil no. 7 (Table 1) is typical for 21 soils with 
clay content 4.0w >≅C  (Table 1; soils no. 1-3, 5-14, 

16, 20, 24-27, 29, 30). Figure 5 for soil no. 4 (Table 1) is  
typical for ten soils with clay content 4.0w <C  (Table 1; 

soils no. 4, 15, 17-19, 21-23, 28, 31). Figures 4 and 5 
show the model predicted )(ϑe curves (solid lines) and 

( M,M eϑ ) points (black squares) for the variant 

accounting for the presence of 3CaCO  and organic 

matter. Calculations according to the second variant, 
when we neglect the presence of 3CaCO  and organic 

matter, showed that model predicted shrinkage curves 
that were obtained with and without accounting for the 
presence of 3CaCO  and organic matter, practically 

coincide. 
The comparison between the experimental and the 

corresponding model predicted shrinkage curves for 
aggregates of 21 soils with clay content, 4.0w >≅C  by 

weight (see Figure 4 as an example), visually shows the 
agreement between them within the limits of the 
experimental standard deviations, 04.0≅eδ  for 20 soils 
and a small discrepancy only in the case of soil no. 13.  

 
 
 
 
This discrepancy is likely connected to random reasons, 
e.g., with a little larger experimental error than for other 
soils. In connection with soil no.13 it should be noted that 
the use in future direct data on the liquid limit ( Me  or 

Mw ) will enable one to raise the prediction accuracy of 

the shrinkage curve. Except for that the direct Me  data 

permit a specification of the estimated relation between 

Me  and he  (Eq.(31)) accounting for a slight 

dependence of the relation on sv . Thus, the major result 

is as follows: for all the soils under study with clay content 
>≅ 40% by weight, the discrepancies between 
experimental and predicted shrinkage curves of soil 
aggregates are within the limits of the experimental 
standard deviation, 04.0≅eδ . 

The comparison between the experimental and the 
corresponding  model   predicted   shrinkage   curves   for 
aggregates of ten soils with clay content, 4.0w <C  by 

weight (see Figure 5 as an example), visually shows that 
discrepancies between them are out of the limits of the 
experimental standard deviations. This is expected. With 
that, the largest discrepancies take place for the five soils 
with especially small wC  (Table 1, see soil no.4 - 

241.0w =C , soil no.18 - 162.0w =C , soil no.22 - 

159.0w =C , soil no.23 - 202.0w =C , and soil no.28 - 

308.0w =C ). Appreciable, but weaker discrepancies 

take place for four soils with a little larger 
37.032.0w −≅C  (soils no.15, 17, 19, and 21). Finally, 

the unexpectedly small discrepancy between the data  
and prediction for soil no.31 with small 162.0w =C  is 

likely due to random reasons. In any case the ratio value, 
13.5s/z =vv , that was found in the course of 

calculations for this soil no. 31, is out of the limits of a 
physical range ( 3s/z ≤vv ) for pure clays (Chertkov, 

2000). This fact shows that the unexpectedly small 
discrepancy between the generalized model and data for 
this soil is formal and random. 

These comparison results lead to two major 
consequences: 
- the generalized model and ratio, 2h/M ≅ee  work at 

the sufficiently high clay content of soil aggregates, at 
least, > 40% by weight (i.e., for clay soils); 
- at the sufficiently low clay content (< 40% by weight) the 
generalized model is not applicable (that was expected). 
 
Four approximations were accepted: 
 
- we neglected the possible intra-aggregate microcracks 
in  the  structure  frame  of  Figure  2  at  the  basic-model 



 
 
 
 
generalization; 
- we neglected the possible dependence of hζ  on sv  in 

estimating the ratio of the liquid limit to the zero-suction 
water content. 
- we neglected the possible differences between solid 
densities of clay, silt, and sand at the shrinkage curve 
prediction for Bronswijk and Evers-Vermeer’s (1990) 
data; and 
- we neglected the presence of 3CaCO  and organic 

matter in the second variant of the shrinkage curve 
prediction for Bronswijk and Evers-Vermeer’s (1990) 
data. 

The above mentioned results and their consequences 
show that at sufficiently high clay content (>40% by 
weight) all the four approximations are reasonable 
because their effects are within the limits of experimental 
errors.   In   particular,   the   volume   of   intra-aggregate 
microcracks is negligible at high clay content. A similar 
result was obtained in the basic model as applied to data 
from Bruand and Prost (1987) on a clay-silt-sand mixture 
of high clay content. Finally, inapplicability of the model 
under study at a low clay content is natural and expected. 
In this case the intra-aggregate structure, unlike that in 
Figure 2, is assumably a combination of a silt-sand 
skeleton with small aggregates in the pores of the latter. 
The volume of such an intra-aggregate structure should 
include an essential contribution of the microcrack-like 
voids. 
 
 
Summary and Conclusion 
 
An earlier proposed model permits one to predict the 
shrinkage curve of a clay matrix without fitted parameters  
and to link the shrinkage curve to the clay matrix 
microstructure and pore size distribution. The input data 
include the minimum relative volume of a clay matrix 
( zv ), the relative volume of clay particles at the 

maximum water content ( sv ), and the density of the clay 

particles ( sρ ). These parameters have a clear physical 
meaning and can be measured or calculated without 
fitting, independently of the experimental shrinkage 
curve. This work considers the natural second step in 
developing the model, the transition to shinkage of real 
aggregates, because in any case the intra-aggregate 
matrix at sufficiently high clay content is a clay matrix 
that, in general, embraces silt-sand grains and possible 
microcracks. We consider relations between the intra-
aggregate matrix and the matrix of a corresponding pure 
clay. The relations enable a generalization of the 
shrinkage curve expression of a clay matrix to the 
shrinkage curve expression of an intra-aggregate matrix 
in the relative and customary coordinates (i.e., the 
specific volume vs. the gravimetric water content or the 
void ratio vs. the moisture ratio). Four physical  
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parameters determine the shrinkage curve of clay soil 
aggregates: the minimum relative volume of the intra-
aggregate matrix ( zu ), the relative volume of the solid 
phase of the intra-aggregate matrix at maximum water 
content (i.e., at the liquid limit) ( su ), the average density 

of the solid phase ( sρ ), and the weight fraction of the 

clay of the soil mineral components (clay, silt, and sand) 
( wC ).  

These parameters can be measured irrespective of the 
shrinkage curve, i.e., without fitting. Then we derive a 
clay microstructure-based relation between the water 
content corresponding to the zero-suction point of clay 
soil aggregates and the liquid limit of the latter. This 
relation is then used in the data analysis. For the model 
validation we use the shrinkage data from Bronswijk and 
Evers-Vermeer (1990) for aggregates of 31 different 
swelling soils (mostly clay soils,  i.e.,  with  clay  content > 
40% by weight) from the Netherlands. The comparison 
between the experimental and model predicted shrinkage 
curves of 21 data sets with sufficiently high clay content 
(approximately > 40% by weight) shows that the 
differences between them are within the limits of 
experimental error. For the other ten data sets, however, 
the differences are out of the limits of experimental error. 
That is, as expected, the generalized model works at a 
sufficiently high clay content of clay soil aggregates, at 
least, > 40% by weight. The obtained results, relative to 
modeling the shrinkage of clay soil aggregates, are a 
prerequisite of the next step (beyond the scope of this 
work), that is the transition to shrinkage modeling of an 
aggregated soil without fitted parameters. 
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Appendix 
 
The volume fraction of organic-matter solids of the total 
solids, vo  is found as follows. According to definitions of 

oρ , sρ , vo , and wo  one can write 

 
)]v1(svo/[vow oooo −+⋅⋅= ρρρ .                   (A1) 

 
Solving Eq.(A1) one obtains the vo  value that was 

indicated in Eq.(35) and permits one to estimate vo  from 

the data of Table 1 and oρ . 
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The volume fraction, vc  of clay solids of the total 

solids, is found as follows. From definitions of wk , wo , 

and wC  (Table 1) one can write the weight fraction of 

clay of the soil, wc  as 

 
)ww1(ww okCc −−= .                                       (A2) 

 
The ratios, )v1/(v oc −  and )w1/(w oc −  give the 

volume and weight fractions of clay solids of the 
summary clay, silt, sand, and 3CaCO  solids. Because 

sρ  is considered to be similar for clay, silt, sand, and 

3CaCO , these ratios coincide. That is, 

)w1/()v1(wv oocc −−⋅= .                                     (A3) 

 
Replacing in Eq.(A3) wc  from Eq.(A2) and vo  from 

Eq.(35) we obtain the vc  value that was indicated in 

Eq.(33) which permits us to estimate vc  from Table 1 

and oρ . 
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