
`` 

International Journal of the Physical Sciences Vol. 6(2), pp. 229-236, 18 January, 2011 
Available online at http://www.academicjournals.org/IJPS 
DOI: 10.5897/IJPS10.662 
ISSN 1992 - 1950 ©2011 Academic Journals 
 
 
 
 
 
 

Full Length Research Paper 

 

An analytical approach on a mass grounded by linear 
and nonlinear springs in series 

 

Mahdi Bayat1, Massoumeh Bayat2 and Mahmoud Bayat1* 

 
1
Department of Civil Engineering, Islamic Azad University, Shirvan Branch, Shirvan, Iran. 

2
Department of Computer Engineering, Islamic Azad University, Shirvan Branch, Shirvan, Iran. 

 
Accepted 30 December, 2010 

 

In this paper, He’s variational approach method is used to solve large amplitude free vibration of a 
mass grounded by linear and nonlinear springs in series. The conservative oscillation system is 
formulated as a nonlinear ordinary differential equation having linear and nonlinear stiffness 
components. By doing some simple mathematical operations on this method, we can obtain their 
natural frequencies. The main objective of present study is to obtain highly accurate analytical solution, 
which is valid for whole solution domain, for free vibration of a conservative oscillator with inertia and 
static type cubic nonlinearities. Other numerical results are finally presented and discussed to validate 
the present analysis. 
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INTRODUCTION 
 
Many physical phenomena can be parted into linear or 
nonlinear according to the type of differential equations of 
motion. The linearity, nonlinearity or exponential form of a 
conservative system can be essentially determined by 
the algebraic relationship between restoring forces and 
displacement/deflections. Many practical engineering 
components can be modeled utilizing oscillatory systems 
such as elastic beams supported by two springs or mass 
on-moving belt or nonlinear pendulum and vibration of a 
milling machine (Dimarogonas and Haddad, 1992; Ganji 
et al., 2009). Due to many usages of “two degree of 
freedom systems” some of which were discussed above, 
solving the equations of motion for a mechanical system 
associated with linear and nonlinear properties was 
attempted through transformation into a set of differential 
algebraic equations using intermediate variables; which 
are introduced here to transform the equations of motion 
for a TDOF system into the Duffing equation (Telli and 
Kopmaz,     2006).     Many    analytical    and    numerical 
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approaches have been investigated due to the limitation 
of existing exact solutions and even if an exact solution is 
obtainable, the required calculations may be too 
complicated to be practical, or it might be difficult to 
interpret the outcome. Very recently, some promising 
approximate analytical solutions are proposed, such as 
Exp-function method (Mohyud-Din, 2010), Adomian 
decomposition method (Wazwaz, 2005), variational 
iteration method (Fouladi et al., 2010), homotopy-
perturbation method (Bayat et al., 2010; Shaban et al., 
2010), homotopy analysis method (Kimiaeifar et al., 
2009a; Kimiaeifar et al., 2009b), Energy balance (Bayat 
et al., 2011), variational approach method (He, 2007; Liu, 
2009; Wang, 2009), Newton–harmonic balancing (Lai et 
al., 2009), differential transformation (Omidvar et al., 
2010), Max-Min approach (He, 2008), Hansan Sengunpta 
method (Uwamusi, 2009) and rational solution to 
cosmological puzzles (Yang, 2009). 

In this study, He’s variational approach method is used 
to find analytical solutions for nonlinear free vibrations of 
a mass grounded by linear and nonlinear springs. It is 
shown that the solutions are quickly convergent and their 
components can be simply calculated. The results of the 
VAM are  compared  with  the  numerical  one,  it  can  be
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Figure 1. Nonlinear free vibration of a system of mass with serial linear and nonlinear stiffness on 

a frictionless contact surface. 

 
 
 

observed that VAM is accurate and require smaller 
computational effort. An excellent accuracy of the VAM 
results indicates that this method can be used for 
problems in which the strong nonlinearities are taken into 
account. 
 
 
GOVERNING EQUATION OF MOTION 
 
System with linear and nonlinear springs in series 
 
In this section, we will consider the system shown in 

Figure 1.  2k  and β  describe the parameters of the 

second spring since it has a hardening/softening cubic 
nonlinear characteristic.  

The following relationship represents the deflection of 
this spring and the force acting upon it 
 

3 3

2 2 2 2 ,F k x x k x k xβ ε= + = +
                     (1) 

 

where 2k  and β   are the coefficients associated with the 

linear and nonlinear portions of spring force, andε  is 

defined as; 

 

2
k

β
ε =

                                     (2) 
 
As it is shown in Figure 1, x  is the net deflection of 

nonlinear spring and defined as 
 

2 1
,x y y= −

                         (3)
 

 

The case of 0β >  corresponds to a hardening spring 

while a negative β  indicates a softening one. Here, it is 

assumed that 0, 1β ε> < and  ε  will  be  employed 

as a perturbation or book keeping parameter. The 
equations of motion of the system in Figure 1 can easily 
be obtained as follows: 
 

3

1 1 2 2 1 2 2 1
( ) ( ) 0,k y k y y k y yε− − − − =

 
 

2 1
,x y y= −

                                                          
(4.a) 

 
3

2 2 2 1 2 2 1
( ) ( ) 0.m y k y y k y yε+ − + − =&&

       
      (4.b) 

 
Let the new (intermediate) variables u  and υ be 

defined as follows: 
 

1 : ,y u=
                     

 (5.a) 

 
Then, we can rewrite the Equation (4) in a different form 
 

3

1 2 2 0,k u k kυ ε υ− − =
                   

 (6.a) 

 
3

2 2( ) 0 .m u k kυ υ ε υ+ + + =&&&&
                  

 (6.b) 

 
Solving Equation (6.a) for u  yields 

 
3

,u ξ υ ε ξ υ= +                       
 (7) 

 
where 
 

2 1k kξ =
                                   

 (8) 

 
By differentiating twice with respect to time from Equation 
(7) and substituted into Equation (4.b) one finds; 
 

2 2 3

2 2
(1 3 ) 6 0,m m k kξ ε ξυ υ ε ξυυ υ ε υ+ + + + + =&& &

   
(9) 

 
The problem of solving Equations (4) is reduced to 
solving Equation (9).  It  is  interesting  to  observe  that  a 
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term proportional to velocity squared appears, suggesting 
that the system contains a dissipative element although 
this is not the case. Equation (9) can be considered as a 
kind of the Duffing equation whose mass and linear 
spring coefficients are time dependent. If one defines 
Equation (9) as an ordinary differential equation inυ ,then 

analytical solutions to be presented in this section will 
also be in terms ofυ .Therefore, it seems meaningful to 

give the initial conditions inυ It should be emphasized 

that any initial condition forυ  leads to different initial 

values of 1y  and 2y .For a general initial condition

0
(0)υ υ= ,one finds; 

 
2

1 0 0

2

2 0 0

( 0 ) ( 0 ) (1 ) ,

( 0 ) ( 0 ) ( 0 ) (1 ) .

u y

y u

ξ υ ε ξ υ

υ ξ ε ξ υ υ

= = +

= + = + +      

(10) 

 
Equation (10) relates the initial amount of relative variable 
υ  to those of the original ones. In this study, it is 

assumed that 
1 2 0
(0) (0) 0 (0) 0y y υ υ= = → = =& && &  

and 0(0) Aυ υ= =  for all solutions, either the analytical 

or the numerical. 
Equation (9) can be written as; 

 
2 2 2 2 3

(1 3 ) 6 0,
e e

ε η υ υ ε η υυ ω υ ε ω υ+ + + + =&& &
    

 (11) 

 
where 
 

2 2 , .
(1 ) 1

e

k

m

ξ
ω η

ξ ξ
= =

+ +                    

 (12) 

 
 
SOLUTION PROCEDURES 
 
Basic concept of VAM  

 
He suggested a variational approach which is different from the 
known variational methods in open literature (He, 2007). Hereby we 
give a brief introduction of the method: 
 

( ) 0u f u′′ + =
                            

 (13) 

 
Its variational principle can be easily established utilizing the semi-
inverse method (He, 2007): 
 

/ 4
2

0

1
( ) ( )

2

T

J u u F u dt
 ′= − + 
 

∫
                       

 (14) 

 
where T is period of the nonlinear oscillator, f

u
F =

∂
∂ .Assume 

that its solution can be expressed as 

 

)cos()( tAtu ω=
                           

       (15) 

 

where A  and   ω    are   the   amplitude   and   frequency   of   the 

Bayat et al.        231 
 
 
 
oscillator, respectively. Substituting Equation (15) into Equation (14) 
results in:  
 

/ 4
2 2 2

0

/ 2
2 2 2

0

/ 2 / 2
2 2

0 0

1
( , ) s i n ( c o s )

2

1 1
s i n ( c o s )

2

1 1
s i n ( c o s )

2

T

J A A t F A t d t

A t F A t d t

A t d t F A t d t

π

π π

ω ω ω ω

ω ω ω
ω

ω ω
ω

 
= − + 

 

 
= − + 

 

= − +

∫

∫

∫ ∫
  

    (16) 

 
Applying the Ritz method, we require: 
 

                                                           (17) 
 

                                                                        (18) 
 
But with a careful inspection, for most cases we find that 
 

/ 2 / 2
2 2

20 0

1 1
sin ( cos ) 0

2

J
A tdt F A t dt

π π
ω

ω ω

∂
= − − <

∂ ∫ ∫            (19) 

 
Thus, we modify conditions Equation (17) and Equation (18) into a 
simpler form: 
 

0=
∂

∂

ω

J       

                              (20) 
From which the relationship between the amplitude and frequency 
of the oscillator can be obtained. 
 
 
APPLICATION OF SOLUTION PROCEDURES 
 
Applying VAM 
 
In Equation (9), its variational principle can be easily obtained: 
 

2 2 2 2 4

0
0

1 3 1 1
( ) 1 ( )

2 2 2 4

t

J u u u u u d tε η ω ε
  

= − + + +  
  

∫ &

      

(21) 

 

Choosing the trial function    )cos()( tAtu ω=   into Equation 

(21) we obtain: 
 

2 2 2 2 2

/4

0
2 2 2 4 4

0

1 3
sin 1 cos

2 2
( )

1 1
cos cos

2 4

T

A t A t

J A d t

A t A t

ω ω ε η ω

ω ω ε ω

  
− +  

  =
  

+ +  
  

∫  

        (22) 

 
The stationary condition with respect to A leads to: 
 

( )
( )

2 2 2 2 2

/ 4

0
2 2 2 4 4

0

2 2 2 2

/ 2

2 2 3 40

0

/ 2
2 2 2 2

0

2 2 3 4

0

1 3
sin 1 co s

2 2
0

1 1
co s co s

2 4

sin 1 3 cos
0

co s co s

(sin 3 cos )

( cos co s

T

A t A t
J

d t
A

A t A t

A t A t
d t

A t A t

t A t d t

A t dt A t

π

π

ω ω ε η ω

ω ω ε ω

ω ε η

ω ε

ω ε η

ω ε

  
− +  

∂   = =
 ∂  

+ +  
  

 − +
 = =
 + + 

= − +

+ +

∫

∫

∫
/ 2 / 2

0 0
) 0d t

π π
=∫ ∫

          (23) 
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Table 1.Comparison of frequency corresponding to various parameters of system. 
 

 Constant parameter 
 

Relative error (%) 

m  A  ε  
1k  2k  VAMω  

Rung-Kotta
 (Telli and  Kompmaz, 2006)

 

V A M N S

N S

ω ω

ω

−
 

1 0.5 0.5 50 5 2.220265 2.220231 0.00153 

1 0.5 0.5 50 5 3.162277 3.175501 0.41644 

1 2 0.5 5 5 1.889822 1.903569 0.72170 

1 2 0.5 5 50 2.192645 2.195284 0.12021 

3 5 1 8 16 1.612706 1.615107 0.14866 

3 5 1 10 5 1.739775 1.749115 0.53398 

5 10 2 12 16 1.545360 1.545853 0.03189 

5 30 5 15 5 1.731282 1.731382 0.00 

10 200 5 5 250 0.707107 0.707107 0.00 

10 100 10 5 25 0.707106 0.707106 0.00 

1 0.5 - 0.5 50 5 2.038315 2.038209 0.00520 

2 2 -0.1 10 10 1.434860 1.446389 0.00520 

3 4 -0.02 30 10 1.313064 1.318370 0.40247 

4 10 -0.008 6 3 0.703731 0.705412 0.23830 

 
 
 
 Solving Equation (23), according toω , we have 

 
/2 /2

2 2 3 4

02 0 0

/2
2 2 2

0

( cos cos )
)

(sin 3 cos )

A t dt A t dt

t A t dt

π π

π

ω ε
ω

εη

+
=

+

∫ ∫

∫
          (24) 

 
Then we have  

 

( )( )2 2

0

2

4 3 4 3
,

4 3
V AM

A A

A

ω εη ε
ω

εη

+ +
=

+
                         (25)

  (25) 

 
According to   Equations (15) and (25), we can obtain the following 
approximate solution: 

 

( )( )2 2

0

2

4 3 4 3
( ) cos

4 3

A A
t A t

A

ω εη ε
ν

εη

 + +
 =
 + 
 

         (26) 

 

The first-order analytical approximation for ( )u t is 

 

( ) ( )

( ) ( )

2 2

0

2

3
2 2

0

2

4 3 4 3
( ) cos

4 3

4 3 4 3
cos

4 3

A A
u t A t

A

A A
A t

A

ω εη ε
ξ

εη

ω εη ε
ε ξ

εη

  + +  =
  +  

  

  + +  +   +    

      

(27) 

 
Therefore, the first-order analytical approximate displacements  

1( )y t  and 2( )y t  are 

 

( )( )
1

2 2

0

2 2

( )

4 3 4 3
( ) ( ) cos

4 3

y u t

A A
y t u t A t

A

ω εη ε

εη

=

 + +
 = +
 + 
 

        (28) 

 
 
RESULTS AND DISCUSSION 
 
To demonstrate the accuracy of the VAM, the procedures 
explained in previous sections are applied to obtain 
natural frequency and corresponding displacement of a 
mass grounded by linear and nonlinear springs in series. 
Comparisons of angular frequencies for different 
parameters via numerical is presented in Table1. The 
maximum relative error between the VAM results and 
numerical results is 0.72170%.To further illustrate and 
verify the accuracy of the presenting analytical approach, 
comparison of VAM numerical solution (Telli and 

Kopmaz, 2006) are presented in Figures 2 to 4 for  ( )tυ

.The effect of amplitude A  has been studied in Figure 

(5).A comparison of the time history oscillatory 
displacement response for the a mass with numerical 

solutions is presented in Figures 6 to 7 for 
1
( )y t  and 

Figures 8 to 9 for 
2
( )y t . As shown in Figures 2 to 9, it is 

apparent that the Variational Approach Method has an 
excellent agreement with the numerical solution using 
Rung-Kotta and these expressions are valid for a wide 
range. 
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Figure 2. Comparison of analytical solution of ( )tν  based on time with the 

numerical solution for  
1 2

1, 2, 0.5 , 5, 5 0m A k kε= = = = =
. 

 
 
 

 
 

Figure 3. Comparison of analytical solution of ( )tν  based on time with the 

numerical solution for 
1 2

3, 5 , 1, 8 , 1 6m A k kε= = = = =
. 

 
 
 

 
 

Figure  4. Comparison of analytical solution of d

d t

ν  based on time with the 

numerical solution for 
1 2

1, 2 , 0 . 5 , 5 , 5 0m A k kε= = = = =
.
 

 
 
 

Conclusion 
 
In   this   paper,  the   variational   approach  method  was 

employed to solve the governing equations of non-linear 
oscillation of a mass grounded by linear and nonlinear 
springs     in    series.    Excellent    agreement    between

VAM 

Rung-Kotta V (t) 

t 

V (t) Rung-Kotta 

VAM 

t 

Rung-Kotta 

VAM 

V (t) 
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Figure 5. Comparison of analytical solution of 
d

dt

ν
 based on time with the numerical solution for 

1 2
3, 2, 1, 8, 16m A k kε= = = = =

. 

 
 
 

 
 

Figure 6. Comparison of analytical solution of 
1( )y t  based on time with the numerical solution for 

1 2
1, 2, 0.5 , 5, 50m A k kε= = = = =

.
 

 
 
 

 
 

Figure 7. Comparison of analytical solution of 1dy

dt
 based on time with the numerical solution for 

1 21, 2, 0.5 , 5, 50m A k kε= = = = =
 

A=2 

A=4 

A=6 

A=10 

V (t) 

Rung-Kotta 

VAM 

y1 (t) 
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Rung-Kotta 

VAM 
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VAM 
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Figure 8. Comparison of analytical solution of 
2 ( )y t  based on time with the numerical solution for 

1 2
1, 2, 0.5 , 5, 50m A k kε= = = = =

. 

 
 
 

  

Figure 9. Comparison of analytical solution of 2dy

dt
 based on time with the numerical 

solution for 
1 2

1, 2, 0.5 , 5, 50m A k kε= = = = =
.
 

 
 
 

approximate frequencies and the exact one are 
demonstrated and discussed. The method can be a 
powerful mathematical tool for studying of nonlinear 
oscillators. According  to  the  results,  the  precision  and 

convergence rate of the solutions increase using 
Variational Approach Method. We  can  suggest  VAM  as 
strongly nonlinear method as novel and simple method 
for   oscillation  systems  which  provide  easy  and  direct 

Rung-Kotta 

VAM 

y1 (t) 

t 

VAM 

Runge- Kutta 

t 
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procedures for determining approximations to the 
periodic solutions. 
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