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The theory and practical utilization of simplification of the original general expressions for the reflection 
of compression and shear waves at a boundary as a function of the densities and velocities of layers in 
contact are presented in this paper. The original general expressions are highly non-linear and 

presumed to defy physical insight. Elimination of the properties of Vs and ΔVs in favour of  and Δ 
enabled the success of a two-term approximation and revealed the surprising effects of Poisson’s ratio 
on P-wave reflection coefficient which was a neglected elastic constant. The simplified equation was 
further expressed in terms of angular reflections to obtain first order reflectivity expression in terms of 
Rp and Rs. The number of unknown parameters is thus reduced by assuming that the fractional changes 
in material parameters are small across layer interfaces. Simplification of the equation has brought into 
existence the Amplitude Variation Offset (AVO) attributes with successful practical utilization in 
hydrocarbon delineation in many oil fields including the Niger Delta Slope. Determination of the terms 
of the linearized equation from rock properties and seismic events remains of vital value in practice as 
demonstrated in the evaluation of hydrocarbon potential in North-Built field. 
 
Key words: Compressional and shear waves, densities, velocities, Poisson’s ratio, amplitude variation offset 
(AVO) attributes, hydrocarbon. 

 
 
INTRODUCTION 
 
Knott (1899) and Zoeppritz (1919) deduced the general 
expressions for the reflection of compression and shear 
waves at a boundary as a function of the densities and 
velocities of layers in contact. The unwieldy nature of the 
equations makes visualising how the variation of a 
particular parameter will affect the reflection coefficient 
curve very difficult (Castagna, 1993). Realising that the 
simplifications and approximations of the equations are 
desirable in order to apply them, Aki and Richards (1980) 
gave a more convenient form.  This work is thus aimed at 
the practical utilization of the Zoeppritz equations 
approximations in North-Built field of the Niger Delta 
Slope.  

The  Zoeppritz’s  equations   satisfying   four   boundary  

conditions are in the following forms (Sheriff and Geldart 
1982): 
 
 

1022221111 cossincossincos  ABABA 
        (1) 

 
 

1022221111 sincossincossin  ABABA 
      (2) 

 
 

110222122111111 2cos2sin2cos2sin2cos  ZABZABZA 
 (3) 

 
 

111022222221111111 2sin2cossin2cos2sin  ABABA   (4) 
 

Where  
 ;piii VZ 

 
 

s iii V 
            (5) 
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Fig. 1: Fig. 1: Stresses and displacement across the boundary of elastic mediaStresses and displacement across the boundary of elastic media
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Figure 1. Stresses and displacement across the boundary of elastic media. 

 
 
 

 

pi

s i

i

i

i
V

V

Z





  i = 1, 2…..n                         (6) 
 
These equations yield amplitudes that are accurate up to 
the critical angle as their description does not include 
head-wave energy (Sheriff, 2002). The equations assume 
continuity of stress and displacement at the interface.  

At an interface, the densities and velocities in each of 
the media must be known, and then 

 
212121 and,,,Z,Z 

can be derived. If 
 

0A
 and 

 
1  are known, then 

 
122,  and
 can be computed to 

obtain amplitudes
 

2121 ,,, BandBAA
. 

For a normal incident P-wave, 
 

2121 ,,  and  reduce 

to zero hence
 1coscos 21   , then

 0sinsin 21   .  
In practice, detectors only respond to the longitudinal 

component of the waves, therefore, 
 

21 BandB
 do not 

exist. Thus:  
 

 
021 AAA 

                                    (7) 
 

That is 
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T is the transmission coefficient. 

Therefore, 
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If the incident wave intercepts the interface obliquely, the 
situation becomes more complicated because the R is a 
tortuous function of the angle of incidence; the densities 
of the two bounding media; the ratio of velocities of the 
two media and the Poisson’s ratio contrast of the two 
media (Figure 1). 

Aki and Richards (1980) and Waters (1981) gave the 
equations in matrix form as: 
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APPROXIMATION OF ZOEPPRITZ’S EQUATIONS 
 
The Zoeppritz’s equations are highly non-linear with 
respect to velocities and densities (Spratt et al., 1993). 
From the matrix description of the Zoeppritz equations, 
Aki and Richards (1980) derived the following formula: 
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Where the elastic properties are related as follows to 
those on each side of the interface 
 

 2)()(
1212 PPPPPP VVVandVVV 

       (12) 
 

     2
1212 SSSSSS VVVandVVV 

       (13) 
 

     21212   and                  (14) 
 
The angle 

angles 
   2.. 12  ei . 

 
By proposing a polynomial fit for the reflectivity that is 

accurate for an angle of incidence up to 35°, Shuey 
(1985) modified Equation (11) by eliminating the 

properties 
 

SS VV ,
 in favour of  

 

     21212   and                 (15) 
 
The substitution is effected using the equation 
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0R
and the amplitude at NI were factored out by the 

differential of Equation (11) thus resulting in 
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Multiplying Equation (17) through by 
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Equation (22) displays, which combinations of elastic 

properties are effective in successive ranges of angle . 
The first term gives the amplitude at normal incidence 

  0 , the second term characterises R () at 
intermediate angles, and the third term describes the 
approach to critical angle.  
Castagna et al. (1998) adopted Swan, (1993) approach 
to express the Aki and Richards (1980) (Equation 12) for 
the Richards and Frasier (1976) approximation in terms 
of the angular reflections A, B and C: 
 

         222 tansinsin CBAR 
               (23) 
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Spratt et al. (1993) derived the first order reflectivity 
expressions from Equation (11) (in order to reduce the 
number of parameters that can be uniquely found) by 
assuming that the fractional changes in material 
parameters are small across the interface. 

Assuming the incident angle is small while only terms 

to first order in 2sin  are retained, Equation (13) 
becomes: 
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Rearranging the terms gives: 
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SP RandR

are the compression and shear reflectivity 

respectively (correct to first order in the ’s).  
 

If  
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 = 2, then 2* = 2 and 0* = 0 and the expression 
reduces to 
 

      2sin2 SPP RRRR 
                                (29) 

 
In most sedimentary basins, small changes in density can 
be expressed as small changes in (compressional) 
velocity, (Ross, 2000) such that 
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   is an expansion 
coefficient for other effects in higher-order corrections.      
Using Equation (30), (24) and (25) can be rewritten as 

Equations (31) and (32) respectively assuming 
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By substituting equation (31) into equation (32) and 

letting 
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which can be further reduced to 
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The simplification of the P-wave reflection coefficient 
given by Zoeppritz to various expressions (Equations 12 
to 34) has enabled the determination and application of 
what is popularly referred to as  Amplitude  Variation  with  
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Offset (AVO) attributes. The three most commonly used 
approximations are: 
 

     2sinBAR 
                                              (35) 

 

      22 sin2tan1 sp RRR 
                     (36) 

 

    22 sincos PRNIR 
           (37) 

 

Where, R = reflection coefficient;  = angle of incidence; 
A = AVO intercept; B = AVO gradient.  

Equation (35) is the original two-term Shuey (1985) 
equation, where the higher terms have been dropped by 
limiting the angle of incidence to θ < 30°. Equation (36) 
was introduced by Fatti et al. (1994) while Verm and 
Hilterman (1995) introduced Equation (37). A is the 
normal incidence (NI) attribute while B is the Poisson 
Reflectivity (PR) attribute.  

Within the range of incidence angles (up to 35°) 
typically used in exploration (Seriff et al., 1980), 
Equations (35) to (37) can be considered equivalent, 
hence we have: 
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               (38a)  
 

 
sp RRB 2
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   Pseudoshear          (38c) 
 

   BARRPR sp  2
                                     (38d) 

 
Rs is normal incidence S-wave reflection coefficient which 
is called pseudo shear because it is strictly the shear only 
when Vp/Vs = 2 (Hendrickson et al. 1991). From the 
approximations of Zoeppritz’s equations, determination of 
A and B values of the linearized version of the equation 
becomes imperative. This can be obtained from rock 
property measurements in well logs (Oladapo and 
Adetola, 2005) and seismic events (Figure 2). 
 
 
PRACTICAL UTILIZATION  
 
Ostrander (1984) in the first practical approach to AVO, 
proposed a method that could distinguish between gas-
related amplitude anomalies and non-gas-related 
anomalies. The change in zero-offset reflectivity R0, or 
intercept, is the most diagnostic feature. The seismic 
response depends on the encasing geology, porefill, and 
interference effects (Veeken and Rauch-Davies, 2006). 
AVO interpretation may  be  enhanced  by  cross  plotting  
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Figure 2. AVO Gradient and intercept. 
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Figure 3. AVO Crossplot from a Niger Delta slope prospect. The highlighted points (red) on the crossplot 
indicate points that are anomalous due to fluid effects. 

 
 
 
the AVO NI (Normal Incidence) intercept (A) and gradient 
RP (Poisson Reflectivity) (B) two parameters obtained 
from Shuey’s two-term approximation of Zoeppritz’s 
equations (Smith and Gidlow, 1987; Foster et al., 1993; 
Ross, 2000; Veeken et al., 2002; Oladapo et al., 2009; 
Kim et al., 2011; Hossain et al., 2012). Under a variety of 
reasonable petrophysical assumptions, brine-saturated 
sandstones and shale follow a well-defined “background” 
trend  in  an  Intercept-Gradient  plane.  Hilterman  (1987) 

observed that A and B are generally negatively correlated 
for background rocks. Deviations from the background 
trend may be indicative of hydrocarbons or lithology with 
anomalous properties. Typical attributes crossplot from 
Niger Delta Slope field is presented in Figure 3.  

In the Niger Delta, AVO analyses have been 
successfully utilized for the detection and mapping of gas 
(Osuntola et al., 1997; Oladapo et al., 2009). A semi 
quantitative AVO analysis of a horizon (termed BB  within  
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Figure 4.  Sub-Stacks Amplitude maps of Buit-BB horizon. 

 
 
 
time window of 2.668 s) within Buit North field of Niger 
Delta Slope was evaluated using the two parameter AVO 
attributes.  Applications of Intercept and Gradient for Buit-
North Field Evaluation are: 
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Solving this for B and for A for near and far stack: 
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Pairs of far and full, and the near and far offset data 
(using Equations 39 and 40) were utilised for generating 
BB horizon substacks maps (Figure 4). The average 
angles used for the sub-stacks are near 10°, far 22.5°, full 
27.5°. Using Amplitude/Background normal (a/b or AOB) 
approach, Equations 39 and 40 becomes: 
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Figure 5. Intercept (A) amplitude map of Buit-BB horizon. 
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Similar computations were undertaken for the full and far 
data. The average of the two results utilised for 
generating Intercept and Gradient maps (designated L 
and M respectively) shown in Figures 5 and 6 are as 
follows: 
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 (48) 
 
The above equations exhibit the dependence of intercept 
and gradient on a/b (AOB) values of near, far and full 
stack. The computation is analogous to regression with 
four points, once for near and full and twice for far stack. 
The horizon is characterised by higher amplitudes on 
both the intercept and gradient sections that are 
diagnostic of class III gas sand using the classifications of 
Rutherford and Williams (1989).  The seismic attribute A 
(or L), B (or M) and Background normal (Bn) maps 
(Figures 4, 5, 6 and 7) show rising AVO profiles within the 
horizon.  
 
 
Conclusion 
 
These semi-quantitative AVO tools are effective 
hydrocarbon indicators (HCI) as displayed within BB 
horizon. Hydrocarbon potential rating (which is apparently 
higher at the north-western flank of the field) can be 
achieved    using   the   approximation    attributes.    This  
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Figure 6. Gradient (B) map of Buit-BB horizon. 

 
 
 

 
 

Figure 7. Background normal (bn) map of Buit-BB horizon. 
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assumption is based on the consistently higher AVO 
profile (AVO gradient and normal incidence amplitude) 
characterising the north-western section of the horizon. 
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