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This paper builds on the review of structural health monitoring (SHM) and damage assessment 
approaches provided in a companion paper by presenting an application of the damage locating vector 
(DLV) approach to the experimental (Phase II) data obtained from the experimental benchmark structure 
of the IASC-ASCE task group on SHM, which is a laboratory (scaled) size steel frame. Different damage 
conditions were simulated in the frame for braced and unbraced configurations, and the DLV technique 
was used to detect and localize damage. The damage identification results were presented and the 
successes and limitations of the DLV method in detecting and locating the simulated damages were 
discussed. 
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INTRODUCTION 
 
Structural health monitoring (SHM) is the process of 
implementing a damage identification strategy for civil 
infrastructures. Damage identification problem involves 
detection, localization and assessment of the extent of 
damage in a structure so that it’s remaining life can be 
predicted and possibly extended. SHM encompasses 
both local and global methods of damage identification. 
The local methods include visual inspections and non-
destructive evaluation tools, such as acoustic emission, 
ultrasonic, magnetic particle inspection, radiography and 
eddy current. All these techniques, however, require 
apriori localization of the damaged zone and easy access 
to the portion of the structure under inspection. As an 
alternative that overcomes these limitations, global 
vibration based methods have been widely developed 
over the years (Sohn et al., 2003; Chang et al., 2003; 
Gunes and Gunes, 2012).  

Most of the existing damage identification methods can 
be classified into two groups:  model-based  and  non-model 
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or feature-based methods. The model-based methods 
are essentially model updating procedures in which the 
mathematical model or the physical parameters of a 
structure is calibrated or updated using vibration 
measurements from the physical structure (Zimmerman 
and Kaouk 1992; Fritzen et al., 1998). Analytical 
sensitivities of response parameters to changes in 
physical properties are used to update modeling 
assumptions, physical sizing, elastic moduli, etc. The 
feature-based approaches detect structural changes by 
detecting damage features in the measured data without 
the need for an analytical model of the structure. The 
main task here is the extraction of damage features 
sensitive to structural changes, so that damage can be 
identified from the measured vibration response of civil 
engineering structures. Natural frequency based metrics, 
mode shape based metrics, structural damping based 
metrics, modal strain energy based metrics, flexibility 
based methods and other matrix perturbation 
approaches, pattern recognition, neural networks and 
other statistical approaches, non-linear methods based 
on advanced time-variant transforms are the most 
commonly utilized features proposed in  the  literature  for 
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detecting damage in civil engineering structures. The 
reader is referred to the companion paper (Gunes and 
Gunes, 2012) for a critical review of the damage 
assessment methodologies based on up-to-date research 
and applications reported in the literature.  

The objective of this paper is to present the damage 
localization application performed on the experimental 
benchmark structure of the IASC-ASCE task group on 
SHM using the damage locating vector (DLV) method. 
The performance of the DLV method, therefore, is 
investigated under realistic conditions of measurement 
noise, modelling errors and modal truncation which are 
inherent complications introduced with experimental data. 
A brief summary of the method is provided, application 
details are presented and the results are discussed. 
 
 
Damage locating vector (DLV) method 
 
The DLV approach was developed to map flexibility changes to 
spatial localization of damage. The basic features of the technique 
are described next, a more detailed discussion of the theoretical 
background, discussion on robustness and other issues as well as 
application to the ASCE benchmark structure analytical (Phase I) 
data may be found in the studies of Bernal (2002) and Bernal and 
Gunes (2004). 

The basic idea in the DLV approach is that the vectors that span 
the null-space of the change in flexibility from the undamaged to the 
damaged states, when treated as loads on the system, lead to 
stress fields that are zero over the damaged elements. Depending 
on the number and location of the sensors, the intersection of the 
null stress regions identified by the DLVs may or may not contain 
elements that are not damaged in addition to the damaged ones. 
Elements that are undamaged, but which cannot be discriminated 
from the damaged ones by changes in flexibility (for a given set of 
sensors) are inseparable. The steps of the DLV localization can be 
summarized as follows: 
 

1. Compute the change in flexibility as; 
 

U DDF F F                                                             (1) 

 
2. Obtain a singular value decomposition of DF, namely; 
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where s2 are ‘small’ singular values. For ideal conditions, the s2 
values are zero and the DLV vectors are simply the columns of V 
associated with the null space. For the noisy conditions that prevail 
in practice, however, the values in s2 are never equal to zero and a 
cutoff is needed to select the dimension of the effective null space. 
The steps to make the determination are presented subsequently; 
the theoretical support can be found in Bernal (2002) and is omitted 
here for brevity. 
 

1. Consider a vector in V say Vj  
2. Compute the stresses in an undamaged model of the structure 
using Vj as loads. 
3. Reduce the independent internal stresses in every element to a 
single value denoted as characterizing stress, σ to discriminate 
between large and small stresses. The characterizing stress is 
defined in such a way that the strain energy per unit length (or unit 
area or volume, in 2-D or 3-D elements, respectively) is proportional 

 
 
 
 
to σ2. For a truss bar, for example, σ can be taken as the absolute 
value of the bar force, whereas for a planar prismatic beam element 
for which two end moments (mi and mj) exist, σ can be taken as 

)( mjmmm iji  22
. The reciprocal of the maximum value of the 

characterizing stress is denoted as cj. 
 

4.  Compute the svn index as: 
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where 
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5.  The vector Vj can be treated as a DLV if: 
 

0.2jsvn                                                                        (5) 

 

Once the DLV vectors have been identified, the localization proper 
is carried out as follows: 
 

6. Compute, for each DLV vector, the normalized stress index 
vector as; 
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7. Compute the vector of weighted stress indices, WSI, as: 
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where 
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and ndlv is the number of DLV vectors. 
 

8.  The potentially damaged elements are those having WSI <1. 
 

It is worth noting that the DLV method was introduced as a 
technique that can be used to map the changes in the flexibility 
matrices FU and FD of the undamaged and damaged states, 
respectively to damage locations. The method summarized herein 
assumes that the synthesized flexibility matrices at both states are 
readily available. To obtain these matrices, however, one needs to 
perform modal identification to extract the modal frequencies and 
the arbitrarily scaled mode-shapes and then obtain the mass 
normalized mode shapes to synthesize the flexibility matrix. For 
completeness, the extraction of the flexibility matrices can be 
summarized as in the following. 
 

Assuming that small vibration amplitude data have been used to 
obtain the matrices of a state-space realization, in continuous time, 
one can write: 
 

 x Ax Bu                                                                        (9a) 

 

 y Cx Du                                                                        (9b) 
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Figure 1. (a) Benchmark structure, (b) beam-column connection and (c) a sample accelerometer. 

 
 
 
where A, B, C, D are the matrices of realization, x is the state 
vector, u is the input and y is the measured output. Introducing a 
change of basis to displacement-velocity (D-V) state, the D-V 
complex eigenvectors can be computed as; 
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where  and  are the displacement partition of the eigenvectors 

and eigenvalues of the system matrix A and p=0, 1, or 2 for 
displacement, velocity and acceleration sensing, respectively.  

Taking a Fourier transform of Equations 9a and b, solving for the 
state vector from Equation 9a and substituting the result into 
Equation 9b one gets; 
 

  
1
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The Fourier transform of the output vector can be expressed in 
terms of that which corresponds to the displacement vector, yD as: 
 

( ) ( ) ( )p
Dy i y                                                 (12) 

 

Since the flexibility (F) relates yD() to u() at =0, defining 
Boolean matrices q1 and q2 so that (F.q1) and (u.q2) are the 
columns of the flexibility and the rows of the input associated with 
collocated sensors, respectively, one can write: 
 

( 1)
1 2

pFq CA Bq                                                 (13) 

 
In the case of full collocation, that is, when q1 and q2 are both 
identities, Equation 13 gives the flexibility matrix directly. This, 
however, is a special case of full collocation and in general, one is 

required to use the information given in Equation 13 to extract the 
mass normalization constants provided that there is, at least, one 
collocated input-output coordinate. Further details of the mass 
normalization procedure can be seen in the study of Gunes (2002). 
Hence, once the flexibility matrices at both the undamaged and 
damaged states are synthesized, then one can apply the 
localization procedure as explained in the foregoing. 
 
 
IASC-ASCE experimental benchmark structure 
 
The experimental benchmark problem is the 4-story, 2-bay by 2-bay 
steel-frame scale-model structure as shown in Figure 1. The 
structure is 2.5 × 2.5 m in plan and is 3.6 m tall. The nine vertical 
columns are bolted to a steel base frame, and the lower flanges of 
two of the base beams are encased in concrete, fixing the steel 
frame to the concrete slab. The members are hot-rolled, grade 300 
W steel which are specifically designed for this scale model test 
structure. The columns are B100 × 9 sections and the floor beams 
are S75 × 11 sections. In each bay, the bracing system consists of 
two 12.7 mm (0.5 in) diameter threaded steel rods placed in parallel 
along the diagonal. One floor slab is placed in each bay per floor: 
four 1000 kg slabs at each of the first, second and third levels, four 
750 kg slabs on the fourth floor. These masses are fixed to the 
structure using two channel sections to bolt each mass to the steel 
frame. The mass of each channel section is approximately 9.75 kg 
for a total of 19.5 kg per mass for two channels. Fifteen 
accelerometers were placed throughout the frame to measure the 
responses of the test structure and on the base of the frame; 2 per 
floor measuring the north-south motion of the structure (along the 
strong axis), and 1 measuring the east-west motion of the structure 
(along the weak axis) as shown in Figure 2. A series of ambient and 
forced excitation, including hammer and shaker tests were 
conducted on the structure with various damage scenarios as 
shown in Table 1. The shaker tests consisted of a low amplitude 
vibration introduced by an electromagnetic shaker installed at the 
roof level on top of a steel plate, at a 45° angle off the main 
direction  of  the  frame.  The  shaker  level  chosen for the test  was
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Figure 2. Geometry of the ASCE benchmark structure (a) vertical elevation and (b) floor plan (numbering is for the 
first floor sensors, the pattern continues in the subsequent floors and 3 sensors per floor). 

 
 

 
Table 1. Description of test cases. 
 

Case Configuration 

1 Fully braced configuration 

2 All east side braces removed 

3 Removed braces on all floors in one bay on southeast corner 

4 Removed braces on 1st and 4th floors in one bay on southeast corner 

5 Removed braces on 1st floor in one bay on southeast corner 

6 Removed braces on all floors on east face, and 2nd floor braces on north face 

7 All braces removed on all faces 

8 Configuration 7 + loosened bolts on all floors at both ends of beam on east face, north side 

9 Configuration 7 + loosened bolts on floors 1 and 2 at both ends of beam on east face, north side 

 
 
 
sufficient to produce vibrations larger than those of the ambient 
vibration tests. In order to capture the induced force to the frame, 
the acceleration of the shaker was recorded as well. The impact 
tests were conducted using a Dynatron 5803 A12 Lb Impulse 
Hammer. The location of the impacts was at the southeast corner of 
the first level of the frame. In the tests, damage is simulated by 
removing braces in the structure or by loosening the bolts at beam-
column connections (Dyke et al., 2004). This study presents the 
damage localization results obtained using the impact hammer test 
data. 
 
 
Estimation of modal parameters 
 
A critical issue encountered with modal identification techniques is 
the selection of the correct system/model order which is related to 
the number of degrees-of-freedom (DOF) of the structure. If a 
model order higher than the one actually present in the data is 
assumed, computational modes will arise in order to fulfill the 
specified model order rather than to represent the dynamic system 
properties. In order to overcome this limitation, the identification is 
carried   out   for  increasing   model   orders.  The  plots  called  the 

stabilization/consistency diagrams are generated to track the modal 
parameters as a function of increasing model order. After all the 
solutions are combined in this diagram, physical modes can then be 
separated from the spurious computational modes by looking for 
poles which appear at nearly identical frequencies for the different 
model orders considered.  

Figure 3 illustrates the stabilization diagrams for the four tests 
selected. Note that the system order plotted on the y-axis indicates 
the size of the state matrix A, which is equal to twice the number of 
modes excited. Once the diagram is prepared, the user is left with 
the task of separating the physical modes from the computational 
ones and choosing an estimate among several alternatives that 
best represents a mode. The consistent-mode indicator function 
(CMI) can be utilized as a measure to select the best out of two 
alternatives (Pappa, 1994). Using the stabilization diagrams 
together with the CMI function, the identified modal parameters for 
the selected tests are as shown in Table 2. Note that both the fully 
braced test case (Test 1) and unbraced test case (Test 7) are 
selected to represent the two healthy systems and Tests 4 and 9 
represent the damage scenarios for these two structures, 
respectively. Eigensystem realization algorithm (ERA) was 
performed  by  computing several realizations  with  varying  Hankel
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Figure 3. Stability diagrams for the modal frequencies: (a) Test 1, (b) Test 4, (c) Test 7 and (d) 
Test 9. 
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Table 2. Modal properties of the braced structure: Healthy and damaged cases. 
 

No. 

Braced structure 

Test 1 (undamaged case)  Test 4 (damaged case) 

f (Hz) Zai (%) CMI (%) Mode  f (Hz) Zai (%) CMI (%) Mode 

1 7.44 0.77 92 TR  7.25 0.85 89 TR 

2 7.65 0.64 86 TR  7.56 0.65 97 TR 

3 14.45 0.39 88 TO  13.93 0.24 76 TO 

4 19.86 0.32 90 TR  19.66 0.36 77 TR 

5 20.88 0.42 69 TR  19.93 0.59 80 TR 

6 24.74 0.27 89 TR  - - - - 
 

Translation Dominated = TR, Torsion Dominated = TO and Strongly Coupled = SC. 
 
 
 

Table 3. Modal properties of the unbraced structure: Healthy and damaged cases. 
 

No. 

Unbraced structure 

Test 7 (undamged case)  Test 9 (damaged case) 

f (Hz)  (%) CMI (%) Mode  f (Hz)  (%) CMI (%) Mode 

1 2.63 0.36 85 TO  2.57 0.53 98 TO 

2 3.60 0.74 84 SC  3.39 0.90 86 SC 

3 4.32 0.50 82 TR  4.16 0.36 99 TR 

4 8.44 0.36 92 SC  8.38 0.36 100 SC 

5 11.93 0.49 98 TR  11.66 0.39 93 TR 

6 13.91 0.38 83 SC  13.58T 0.50 91 SC 

7 16.15 0.32 91 TR  16.03 0.30 99 TR 

8 21.58 0.37 73 TR  20.35 0.81 68 TR 

9 23.57 0.66 74 TR  21.05 0.67 69 TR 

- - - - -  23.24 0.74 81 TR 
 

Translation Dominated = TR, Torsion Dominated = TO and Strongly Coupled = SC. 
 
 
 

matrix size, forming a stabilization diagram as shown in Figure 3, 
and selecting the best-extracted modal parameters. The realization 
leading to a higher complex mode indicator function (CMI) was 
selected as the correct mode as shown in Tables 2 and 3. 
 
 

Localization of damage 
 

The previously explained damage locating vector approach was 
used to localize damage. The weighted stress index (WSI) was 
computed using a statical model of the structure with a 
characterizing stress selected based on the type of structure. The 
potentially damaged elements were identified as those having 
WSI<=1.0. It should be mentioned that DLVs were computed strictly 
from the data and the undamaged topology was required to 
compute the stress fields caused by the DLVs.  

A three-dimensional 12-DOF shear building model was used to 
represent the undamaged state of the structure and the 
characterizing stress was selected as the story shears and the 
average of the end moments of the beams for the braced and the 
unbraced structure, respectively. The associated WSI indices of 
both cases computed for the frames in north-south and east-west 
directions are tabulated as shown in Table 4. 
 
 

RESULTS AND DISCUSSION 
 

As shown in Table 4, although, the approach successfully 

localized the first and the second floor beams of the 
frames in the north-south direction as potentially 
damaged with WSI<1.0, for the unbraced frame; only the 
fourth floor of the north-south frame has a WSI  less than 
1 in the braced frame case. The first floor of the north-
south frame, with a WSI=4.62, appears to be a ‘false 
negative’ localization. Approximation in the extraction of 
the flexibility coefficients as well as  the discrepancy 
between the model used to compute the stress field from 
the DLVs and the real structure at the healthy state are 
the   two   main   sources  of errors that could lead to this 
‘false negative’ identification. The ‘false negative’ results 
are alerts that should have happened but did not, so in 
this case, it refers to the case when a truly damaged 
member is identified as undamaged. From the damage 
identification point of view, this is an undesirable and a 
riskier situation than ‘false positives’, because if an 
undamaged member is identified as potentially damaged, 
that is not much of a harm, but if a truly damaged 
member is not detected, the outcome can be disastrous. 
In this case, however, one could speculate that it is the 
error in the estimation of the flexibility that has dominated 
since only one dominantly torsional mode  was  identified.



Gunes and Gunes          1515 
 
 
 

Table 4. Weighted stress index for the braced and unbraced frame. 
 

Floor 

WSI-braced frame (Case 4) 

[removed braces on 1st and 4th floors] 

 WSI-unbraced frame (Case 9) 

[loosened bolts on floors 1 and 2] 

North-South East-West  North-South East-West 

1 4.62 6.73  0.25 4.36 

2 7.87 6.92  0.31 4.59 

3 5.09 9.68  7.31 5.51 

4 0.97 5.71  2.03 3.09 

 
 
 
Still, the DLV method provided a ‘true’ ranking of the 
elements for the potentially damaged set which can be a 
very useful feature in prioritization for the screening 
purposes. 
 
 
Conclusion 
 
A previous study by Bernal and Gunes (2004) had 
applied the DLV method to simulated vibration data using 
the IASC-ASCE benchmark structure model. In this 
study, the same technique was applied to the 
experimental vibration data obtained from the real 
structure for different damage scenarios in braced and 
unbraced configurations. The method was successful in 
the identification and localization of damage to a large 
extent, with the exception of a false negative localization. 
Further research is currently under-way to improve the 
accuracy and the robustness of the method for its reliable 
use in real-life structures. 
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