Full Length Research Paper

Some properties of certain classes of analytic functions related with uniformly convex functions

Khalida Inayat Noor* and Khalil Ahmad
Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan.

Accepted 15 June, 2011

Abstract

In this paper, we extend the concept of k-uniform convexity. Making use of the principle of subordination and a family of integral operators, we introduce and investigate some new subclasses of analytic functions. Several inclusion results with some interesting consequences are proved. The rate of growth of Hankel determinant for the functions in these classes is also studied.

Key words: k-uniformly convex, univalent, starlike, conic regions, subordination, Hankel determinant, bounded boundary rotation.

INTRODUCTION

Let A denote the class of functions $f(z)$ of the form:
$f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$,
which are analytic in the open unit disc $E=\{z:|z|<1\}$. Let S be the subclass of A which consists of functions which are univalent in E. Also let $S^{*}(\gamma)$ and $C(\gamma)$ be the subclasses of S which contain starlike and convex functions of order $\gamma(0 \leq \gamma<1)$ respectively.

In Komatu (1990), the following two parameter family of integral operator Q_{a}^{σ} for $f \in A$, is defined by:

$$
\begin{equation*}
Q_{a}^{\sigma} f(z)=\frac{a^{\sigma}}{\Gamma(\sigma) z^{a-1}} \int_{0}^{z} t^{a-z}\left(\log \frac{z}{t}\right)^{\sigma-1} f(t) d t \tag{2}
\end{equation*}
$$

where $z \in E, \quad a>0, \quad \sigma \geq 0$, see also Chun and Srivastava (2004).
If $f(z)$ is given by (1), then from (2), we can write:

[^0]\[

$$
\begin{equation*}
Q_{a}^{\sigma} f(z)=z+\sum_{n=2}^{\infty}\left(\frac{a}{a+n-1}\right)^{\sigma} a_{n} z^{n}, \quad(a>0, \sigma \geq 0) . \tag{3}
\end{equation*}
$$

\]

Some special cases of Q_{a}^{σ} have been discussed; for example, see Flett (1972), Goodman (1983) and Jung et al. (1993). From (3) we can easily derive the following:

$$
\begin{equation*}
z\left(Q_{a}^{\sigma+1} f(z)\right)^{\prime}=a Q_{a}^{\sigma} f(z)-(a-1) Q_{a}^{\sigma+1} f(z) \tag{4}
\end{equation*}
$$

In this paper we shall use the operator Q_{a}^{σ} to introduce the generalized concept of k-uniformly convexity.
For $k \in[0, \infty)$, the domain Ω_{k} is defined as follows (Kanas, 2003):
$\Omega_{k}=\left\{u+i v: u>k \sqrt{(u-1)^{2}+v^{2}}\right\}$.
For fixed k, Ω_{k} represents the conic region bounded, successively, by the imaginary axis $(k=0)$, a parabola ($k=1$), the right branch of hyperbola $(0<k<1)$ and an ellipse $(k>1)$. Also, we note that, for no choices of $k(k>1), \Omega_{k}$ reduces to a disc. We define the domain $\Omega_{k, \gamma}$ as follows (Noor et al., 2009):
$\Omega_{k, \gamma}=(1-\gamma) \Omega_{k}+\gamma, \quad(0 \leq \gamma<1)$.
The following functions, denoted by $p_{k, \gamma}(z)$, are univalent in E and map E on $\Omega_{k, \gamma}$ such that $p_{k, \gamma}(0)=1$ and $p_{k, \gamma}^{\prime}(0)>0$:
$p_{k, \gamma}(z)=\left\{\begin{array}{l}\frac{1+(1-2 \gamma) z}{1-z},(k=0) \\ 1+\frac{2(1-\gamma)}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2},(k=1) \\ 1+\frac{2(1-\gamma)}{1-k^{2}} \sinh ^{2}\left[\left(\frac{2}{\pi} \operatorname{arcos} k\right) \operatorname{arctanh} \sqrt{z}\right],(0<k<1) \\ 1+\frac{(1-\gamma)}{k^{2}-1} \sin ^{2}\left(\frac{\pi}{2 R(t)^{2}} \int_{0}^{\frac{1(z)}{\sqrt{t}}} \frac{1}{\sqrt{1-x^{2}} \sqrt{1-(t x)^{2}}} d x+\frac{(1-\gamma)}{k^{2}-1},(k>1),\right.\end{array}\right.$
where $u(z)=\frac{z-\sqrt{t}}{1-\sqrt{t z}}, t \in(0,1), z \in E \quad$ and $\quad z \quad$ is chosen such that $k=\cosh \left(\frac{\pi R^{\prime}(t)}{4 R(t)}\right), \quad R(t)$ is the Legendre's complete elliptic integral of the first kind and $R^{\prime}(t)$ is complementarily integral of $R(t)$, (Kanas et al., 1998, 1999; Noor at el., 2009). The function $p_{k, \gamma}(z)$ is continuous as regard to k and has real coefficients for $k \in[0, \infty)$.
We now define the following subclasses of analytic functions related with the class P of Caratheodory functions (Noor, 2011).

Definition 1.1: Let $P\left(p_{k, \gamma}\right) \subset P$ denote the class of functions $p(z)$ which are analytic in E with $p(0)=1$ and which are subordinate to $p_{k, \gamma}(z)$, written as $p \prec p_{k, \gamma}$, where $p_{k, \gamma}(z)$ is given by (7) and $p(E) \subset p_{k, \gamma}(E)$.
We note that $P\left(p_{0,0}\right)=P$ and $P\left(p_{0, \gamma}\right)=P(\gamma)$, where $p \in P(\gamma)$ implies $\operatorname{Re} p(z)>\gamma, z \in E$. It can easily be verified that $P\left(p_{k, \gamma}\right)$ is a convex set.

We extend the class $P\left(p_{k, \gamma}\right)$ as follows:
Definition 1.2: Let $p(z)$ be analytic in E with $p(0)=1$.

Then $p \in P_{m}\left(p_{k, \gamma}\right)$ if and only if, for $m \geq 2,0 \leq \gamma<1$, $k \in[0, \infty), \quad z \in E$, we have:
$p(z)=\left(\frac{m}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{m}{4}-\frac{1}{2}\right) p_{2}(z), \quad p_{1}, p_{2} \in P\left(p_{k, \gamma}\right)$.
From (18), it can easily be seen that the class $P_{m}\left(p_{k, \gamma}\right)$ coincides with the class $P\left(p_{k, \gamma}\right)$ for $m=2$. Also $P_{m}\left(p_{0, \gamma}\right)=P_{m}(\gamma)$, see Noor (2011). For the class $P_{m}\left(p_{0,0}\right)=P_{m}$, we refer to Goodman (1983).
Related to the class $P_{m}\left(p_{k, \gamma}\right)$, we define the following function classes. For these classes we assume that $m \geq 2, k \in[0, \infty), 0 \leq \gamma<1$ and $z \in E$.
$k-\cup R_{m}(\gamma)=\left\{f: f \in A\right.$ and $\left.\frac{z f^{\prime}}{f} \in P_{m}\left(p_{k, \gamma}\right)\right\}$,
$k-\cup V_{m}(\gamma)=\left\{f: f \in A\right.$ and $\left.\frac{\left(z f^{\prime}\right)^{\prime}}{f^{\prime}} \in P_{m}\left(p_{k, \gamma}\right)\right\}$,
and, for $\alpha \geq 0$,
$k-\cup M_{m}^{\alpha}(\gamma)=\left\{f: f \in A\right.$ and $\left.\left\{(1-\alpha) \frac{\not f^{\prime}}{f}+\alpha \frac{\left(f^{\prime}\right)^{\prime}}{f^{\prime}}\right\} \in P_{m}\left(p_{k, \gamma}\right)\right\}$.
For $k=0$, these classes reduce to the known classes $R_{m}(\gamma), V_{m}(\gamma)$, and $M_{m}^{\alpha}(\gamma)$ which, respectively, contain the functions of bounded radius, bounded boundary and bounded Mocanu rotation of order γ, see Goodman (1983) and Noor (2011).

We now define some new subclasses of A.
Definition 1.3: Let $f \in A$. Then $f \in k-\cup R_{m}(\gamma, \sigma, a)$ if and only if $Q_{a}^{\sigma} f \in k-\cup R_{m}(\gamma)$ for $k \in[0, \infty)$, $0 \leq \gamma<1, m \geq 2, a>0, \sigma \geq 0$ and $z \in E$. The class $k-\cup V_{m}(\gamma, \sigma, a)$ can be defined by the relation given as:

$$
\begin{align*}
& f \in k-\cup V_{m}(\gamma, \sigma, a) \text { if and only if } \\
& z f^{\prime} \in k-\cup R_{m}(\gamma, \sigma, a) \text {. } \tag{12}
\end{align*}
$$

It can easily be seen that $f \in k-\cup V_{m}(\gamma, \sigma, a)$ if and
only if $Q_{a}^{\sigma} f \in k-\cup V_{m}(\gamma)$.
Definition 1.4: Let $f \in A$. Then $f \in k-\cup M_{m}^{\alpha}(\gamma, \sigma, a)$ if and only if $Q_{a}^{\sigma} f \in k-\cup M_{m}^{\alpha}(\gamma)$ for $z \in E$. For different permissible choices of parameters, we obtain several known as well as new subclasses of A as special cases.

PRELIMINARY RESULTS

The following lemma is a generalized version of a result proved in Kansa (2003).

Lemma 2.1: Noor (2011). Let $0 \leq k<\infty$ and let β, δ be any complex numbers with $\beta \neq 0$ and $\operatorname{Re}\left(\frac{\beta k}{k+1}+\delta\right)>\gamma$. If $h(z)$ is analytic in $E, h(0)=1$ and satisfies:

$$
\begin{equation*}
\left\{h(z)+\frac{z h^{\prime}(z)}{\beta h(z)+\delta}\right\} \prec p_{k, \gamma}(z) \tag{13}
\end{equation*}
$$

and $q_{k, \gamma}(z)$ is an analytic solution of:

$$
\begin{equation*}
\left\{q_{k, \gamma}(z)+\frac{z q^{\prime}(z)}{\beta q_{k, \gamma}(z)+\delta}\right\}=p_{k, \gamma}(z) \tag{14}
\end{equation*}
$$

then $q_{k, \gamma}(z)$ is univalent, $h(z) \prec q_{k, \gamma}(z) \prec p_{k, \gamma}(z)$, and $q_{k, \gamma}(z)$ is the best dominant of (13).

Lemma 2.2: Miller (1975). Let $u=u_{1}+i u_{2}$ and $v=v_{1}+i v_{2}$ and let $\psi(u, v)$ be complex-valued function satisfying the following conditions:
(i) $\quad \psi(u, v)$ is continuous in a domain $D \subset \square^{2}$,
(ii) $\quad(1,0) \in D$ and $\psi(1,0)>0$,
(iii) $\operatorname{Re} \psi\left(i u_{2}, v_{1}\right) \leq 0$ whenever $\left(i u_{2}, v_{1}\right) \in D$ and $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$.

If $h(z)=1+\sum_{n=2}^{\infty} c_{n} z^{n}$ is a function analytic in E such that $\left(h(z), z h^{\prime}(z)\right) \in D, \quad$ and $\operatorname{Re}\left[\psi\left(h(z), z h^{\prime}(z)\right)\right]>0$ for $z \in E$, then $\operatorname{Re}(h(z))>0$ for $z \in E$.

Lemma 2.3: Let $h(z)$ be analytic in E with $h(0)=1$ and let:

$$
\begin{equation*}
\left\{h(z)+\frac{z h^{\prime}(z)}{h(z)+\beta}\right\} \in P(\gamma), \quad z \in E . \tag{15}
\end{equation*}
$$

Then $h \in P\left(\gamma_{1}\right)$, where $z \in E$ and γ_{1} is given as:

$$
\begin{equation*}
\gamma_{1}=\left\{\frac{2(2 \beta \gamma+1)}{(2 \beta-2 \gamma+1)+\sqrt{(2 \beta-2 \gamma+1)^{2}+8(2 \beta \gamma+1)}}\right\} . \tag{16}
\end{equation*}
$$

Proof: We shall use Lemma 2.2 to prove this result. Let
$h(z)=\left(1-\gamma_{1}\right) H(z)+\gamma_{1}$.
Then $h(z)$ is analytic in E with $h(0)=1$. From (17), we have:
$h(z)+\frac{z h^{\prime}(z)}{h(z)+\beta}=\left(1-\gamma_{1}\right) H(z)+\gamma_{1}+\frac{\left(1-\gamma_{1}\right) z H^{\prime}(z)}{\left(1-\gamma_{1}\right) H(z)+\left(\beta+\gamma_{1}\right)}$,
and from (15) it follows that:
$\operatorname{Re}\left\{\left(1-\gamma_{1}\right) H(z)+\left(\gamma_{1}-\gamma\right)+\frac{\left(1-\gamma_{1}\right) z H^{\prime}(z)}{\left(1-\gamma_{1}\right) H(z)+\left(\beta+\gamma_{1}\right)}\right\}>0$ in E.
We form the functional $\psi(u, v)$ by taking $u=H(z)$, $v=z H^{\prime}(z)$ as:
$\psi(u, v)=\left(1-\gamma_{1}\right) u+\left(\gamma_{1}-\gamma\right)+\frac{\left(1-\gamma_{1}\right) v}{\left(1-\gamma_{1}\right) u+\left(\beta+\gamma_{1}\right)}$.
The first two conditions of Lemma 2.2 are easily satisfied. We verify condition (iii) as follows:

$$
\begin{aligned}
\operatorname{Re} \psi\left(i u_{2}, v_{1}\right) & =\left(\gamma_{1}-\gamma\right)+\operatorname{Re} \frac{\left(1-\gamma_{1}\right) v_{1}}{\left(1-\gamma_{1}\right) i u_{2}+\left(\beta+\gamma_{1}\right)}, \\
& =\left(\gamma_{1}-\gamma\right)+\frac{\left(\beta+\gamma_{1}\right)\left(1-\gamma_{1}\right) v_{1}}{\left(1-\gamma_{1}\right)^{2} u_{2}^{2}+\left(\beta+\gamma_{1}\right)^{2}}, \\
& \leq\left(\gamma_{1}-\gamma\right)-\frac{\left(\beta+\gamma_{1}\right)\left(1-\gamma_{1}\right)\left(1+u_{2}^{2}\right)}{2\left[\left(1-\gamma_{1}\right)^{2} u_{2}^{2}+\left(\beta+\gamma_{1}\right)^{2}\right]}, \text { for } v_{1} \leq \frac{-\left(1+u_{2}^{2}\right)}{2}, \\
& =\frac{A+B u_{2}^{2}}{2 C},
\end{aligned}
$$

where
$A=2\left(\gamma_{1}-\gamma\right)\left(\beta+\gamma_{1}\right)^{2}-\left(\beta+\gamma_{1}\right)\left(1-\gamma_{1}\right)$,
$B=2\left(\gamma_{1}-\gamma\right)\left(1-\gamma_{1}\right)^{2}-\left(\beta+\gamma_{1}\right)\left(1-\gamma_{1}\right), \quad$ and $C=\left[\left(1-\gamma_{1}\right)^{2} u_{2}^{2}+\left(\beta+\gamma_{1}\right)^{2}\right]>0$. It can easily be observed that $\operatorname{Re} \psi\left(i u_{2}, v_{1}\right) \leq 0$ if and only if $A \leq 0$ and $B \leq 0$. From $A \leq 0$, we obtain γ_{1} as given by (16) and $B \leq 0$ gives us $0 \leq \gamma_{1}<1$. We now apply Lemma 2.2 to obtain $\operatorname{Re} H(z)>0$ and this implies $h \in P\left(\gamma_{1}\right)$ for $z \in E$. This completes the proof.

Lemma 2.4: Kanas (2003). Let $1<k<\infty$ and let $p(z)$ be analytic in $E, p(0)=1$ and $p(z)$ satisfies (2.1). Then:

$$
\begin{equation*}
p(z) \prec \frac{z}{\left[(z-k) \log \left(1-\frac{z}{k}\right)\right]}, \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re} p(z)>\frac{1}{(k+1) \log \left(1+\frac{1}{k}\right)} \tag{19}
\end{equation*}
$$

For the following two results, we refer to Noor (1992).
Lemma 2.5: An analytic function $f \in V_{m}(\rho)$ if and only if there exists $f_{1} \in V_{m}$ such that:

$$
f^{\prime}(z)=\left(f_{1}^{\prime}(z)\right)^{1-\rho} .
$$

Lemma 2.6: Let $f \in V_{m}(\rho)$ and let $h(z)=\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}$ with $h(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$. Then, for $z=r e^{i \theta}, z \in E$
(i) $\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|h\left(r e^{i \theta}\right)\right|^{2} d \theta \leq \frac{1-\left\{m^{2}(1-\rho)^{2}-1\right\} r^{2}}{1-r^{2}}$,
(ii) $\quad \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|h^{\prime}\left(r e^{i \theta}\right)\right| d \theta \leq \frac{m(1-\rho)}{1-r^{2}}$.

Lemma 2.7: Goluzin (1946). Let $f(z)$ be univalent and $0 \leq r<1$. Then there exists a number z_{1} with $\left|z_{1}\right|=r$ such that for all $z,|z|=r$, we have:
$\left|z-z_{1}\right||f(z)| \leq \frac{2 r^{2}}{1-r^{2}}$.

MAIN RESULTS

Theorem 3.1: Let $\sigma \geq 0, \quad \gamma \in[0,1), a>\gamma+\frac{1}{k+1}$ and $k \in[0, \infty)$. Then:

$$
k-\cup R_{m}(\gamma, \sigma, a) \subset k-\cup R_{m}(\gamma, \sigma+1, a)
$$

Proof: Let $f \in k-\cup R_{m}(\gamma, \sigma, a)$. Set

$$
\begin{equation*}
\frac{z\left(Q_{a}^{\sigma+1} f(z)\right)^{\prime}}{Q_{a}^{\sigma+1} f(z)}=h(z)=\left(\frac{m}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{m}{4}-\frac{1}{2}\right) h_{2}(z) \tag{20}
\end{equation*}
$$

Using (1.4), we obtain:

$$
\begin{equation*}
\frac{z\left(Q_{a}^{\sigma} f(z)\right)^{\prime}}{Q_{a}^{\sigma} f(z)}=\left\{h(z)+\frac{z h^{\prime}(z)}{h(z)+a-1}\right\} \in P_{m}\left(p_{k, \gamma}\right) \text { in } E . \tag{21}
\end{equation*}
$$

Define $\phi(z)=\sum_{n=1}^{\infty} \frac{a-1+n}{a} z^{n}$. Then using convolution technique, we obtain from (20):

$$
\left(h(z) * \frac{\phi(z)}{z}\right)=\left(\frac{m}{4}+\frac{1}{2}\right)\left(h_{1}(z) * \frac{\phi(z)}{z}\right)-\left(\frac{m}{4}-\frac{1}{2}\right)\left(h_{2}(z) * \frac{\phi(z)}{z}\right),
$$

where symbol * denotes convolution. This gives us:

$$
\begin{aligned}
h(z)+\frac{z h^{\prime}(z)}{h(z)+a-1}=(& \left(\frac{m}{4}+\frac{1}{2}\right)\left(h_{1}(z)+\frac{z h_{1}^{\prime}(z)}{h_{1}(z)+a-1}\right) \\
& -\left(\frac{m}{4}-\frac{1}{2}\right)\left(h_{2}(z)+\frac{z h_{2}^{\prime}(z)}{h_{2}(z)+a-1}\right) .
\end{aligned}
$$

Using (21), we have:
$\left\{h_{i}(z)+\frac{z h_{i}^{\prime}(z)}{h_{i}(z)+a-1}\right\} \prec p_{k, \gamma}, \quad i=1,2$.
We now apply Lemma 2.1 with $\beta=1, \delta=a-1$, $a>\gamma+\frac{1}{k+1}$ and obtain:
$h_{i}(z) \prec q_{k, \gamma}(z) \prec p_{k, \gamma}(z), \quad i=1,2$,
where $q_{k, \gamma}(z)$ is the best dominant of (22) and is given as:
$q_{k, \gamma}(z)=\frac{1}{g_{k, \gamma}(z)}-(a-1)$,
$g_{k, \gamma}(z)=\left\{\int_{0}^{1}\left(\exp \int_{t}^{t z} \frac{p_{k, \gamma}(u)-1}{u} d u\right) d t\right\}^{-1}$.
This implies $\quad h_{i} \in P\left(p_{k, \gamma}\right), i=1,2 \quad$ and $\quad z \in E$. Consequently $h \in P_{m}\left(p_{k, \gamma}\right)$ in E, and the proof is complete.
We have the following special cases:
Corollary 3.1: For $k=0, a>0$, we derive the result for $R_{m}(\gamma)$ by using Lemma 2.3 with $\beta=a-1$. It follows that, if $f \in 0-\cup R_{m}(\gamma, \sigma, a)$, then $f \in 0-\cup R_{m}\left(\gamma_{*}, \sigma+1, a\right)$, for $z \in E$ and

$$
\gamma_{*}=\left[\frac{2(2 \gamma(a-1)+1)}{(2 a-2 \gamma-1)+\sqrt{(2 a-2 \gamma-1)^{2}+8(2 \gamma(a-1)+1)}}\right] .
$$

When $a=1, \quad Q_{1}^{\sigma} f \in R_{m}(\gamma)$ and from Theorem 3.1 it follows that $Q_{1}^{\sigma+1} f \in R_{m}\left(\gamma_{1}\right)$ in E with

$$
\gamma_{1}=\left[\frac{2}{(1-2 \gamma)+\sqrt{(1-2 \gamma)^{2}+8}}\right],
$$

and $a=1, \sigma=1, \gamma=0$ gives us an interesting result that $f \in V_{m}$ implies $f \in R_{m}\left(\gamma_{0}\right), \gamma_{0}=\frac{2}{1+\sqrt{9}}=\frac{1}{2}$. This leads to a well known result, for $m=2$, that a convex function is starlike of order $\frac{1}{2}$.

Corollary 3.2: For $k=1, a=1$ and $\gamma=0$, we note that

$$
\left\{h_{i}(z)+\frac{z h_{i}^{\prime}(z)}{h_{i}(z)}\right\} \in \Omega_{1}, \quad i=1,2 .
$$

Then, using Lemma 2.1, it follows that

$$
h_{i}(z) \prec p_{1,0}(z)=1+\frac{2}{\pi^{2}} \log ^{2} \frac{1+\sqrt{z}}{1-\sqrt{z}},
$$

The branch of \sqrt{z} is chosen such that $\operatorname{Im} \sqrt{z} \geq 0$ and $p_{1,0}(-1)=\frac{1}{2}$. That is, $h \in P_{m}\left(p_{1,0}\right)$.
Therefore, $\quad Q_{1}^{\sigma} f \in 1-\cup R_{m}(0) \quad$ implies
$Q_{1}^{\sigma+1} f \in 1-\cup R_{m}\left(\gamma_{0}\right)$. In other words,
$f \in 1-\cup R_{m}(0, \sigma, 1) \Rightarrow f \in 1-\cup R_{m}\left(\gamma_{0}, \sigma+1,1\right)$, where $\gamma_{0}=\frac{1}{2}$.

Corollary 3.3: We take $\gamma=0, k>1, \quad a=1$. Let $f \in k-\cup R_{m}(0, \sigma, 1)$. Then, $i=1,2$,
$\left\{h_{i}(z)+\frac{z h_{i}^{\prime}(z)}{h_{i}(z)}\right\} \prec p_{k, 0}(z)$,
which, on using Lemma 2.4, gives us $\quad h_{i}(z) \prec q_{k, 0}(z)$ in E, or
$h_{i}(z) \prec \frac{z}{(z-k) \log \left(1-\frac{z}{k}\right)}$.
This implies:
$\operatorname{Re} h_{i}(z)>\frac{1}{(k+1) \log \left(1+\frac{1}{k}\right)}=\delta_{k}, i=1,2$.
Thus $h \in P_{m}\left(\delta_{k}\right)$ and this gives us:
$f \in k-\cup R_{m}\left(\delta_{k}, \sigma+1,1\right)$.
Corollary 3.4: Let $f \in 2-\cup R_{m}(0, \sigma, 1)$. This gives us for $i=1,2$
$\left\{h_{i}(z)+\frac{z h_{i}^{\prime}(z)}{h_{i}(z)}\right\} \prec p_{2,0}(z)=\frac{1}{1-\frac{z}{2}}$.
From this it follows that:
$\operatorname{Re}\left[h_{i}(z)+\frac{z h_{i}^{\prime}(z)}{h_{i}(z)}\right]>\frac{2}{3} \Longrightarrow \operatorname{Re} h_{i}(z)>\frac{1}{3 \log \frac{3}{2}} \approx 0.813 \ldots=\delta_{3}$.

Consequently $f \in 2-\cup R_{m}\left(\delta_{3}, \sigma+1,1\right)$ in E.
Theorem 3.2: Let $\sigma \geq 0, \quad \gamma \in[0,1), \quad a>\gamma+\frac{1}{k+1}$ and $k \in[0, \infty)$. Then:
$k-\cup V_{m}(\gamma, \sigma, a) \subset k-\cup V_{m}(\gamma, \sigma+1, a)$ for $z \in E$.
Proof: The proof of this result follows immediately when use relation (11) together with Theorem 3.1.

Theorem 3.3: For $k \in(0, \infty), m \geq 2, \alpha>0, \sigma \geq 0$,

$$
k-\cup M_{m}^{\alpha}(0, \sigma, a) \subset k-\cup R_{m}(0, \sigma, a)
$$

Proof: The case $\alpha=0$ is obvious. We suppose $\alpha>0$. Let

$$
\begin{equation*}
\frac{z\left(Q_{a}^{\sigma} f(z)\right)^{\prime}}{Q_{a}^{\sigma} f(z)}=h(z)=\left(\frac{m}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{m}{4}-\frac{1}{2}\right) h_{2}(z) . \tag{23}
\end{equation*}
$$

We note that $h(z)$ is analytic in E with $h(0)=1$. Then, from (23), we have:

$$
\begin{equation*}
\left\{(1-\alpha) \frac{z\left(Q_{a}^{\sigma} f(z)\right)^{\prime}}{Q_{a}^{\sigma} f(z)}+\alpha \frac{\left(z\left(Q_{a}^{G} f(z)\right)\right)^{\prime}}{\left(Q_{a}^{\sigma} f(z)\right)^{\prime}}\right\}=\left\{h(z)+\alpha \frac{z h(z)}{h(z)}\right\} \in P_{m}\left(p_{k, 0}\right) . \tag{24}
\end{equation*}
$$

From (23), (24) and convolution technique, it follows that

$$
\left\{h_{i}(z)+\frac{z h_{i}^{\prime}(z)}{\frac{1}{\alpha} h_{i}(z)}\right\} \prec p_{k, 0}(z), \quad i=1,2, \quad z \in E .
$$

With $\beta=\frac{1}{\alpha}, \delta=0$, we apply Lemma 2.1 to have $h_{i}(z) \prec q_{k, 0} \prec p_{k, 0}(z)$, where $q_{k, 0}(z)$ is the best dominant,

$$
q_{k, 0}(z)=\left[\frac{1}{\alpha} \int_{0}^{1}\left(t^{\frac{1}{\alpha}-1} \exp \int_{t}^{t z} \frac{p_{k, 0}(u)-1}{u} d u\right)^{\frac{1}{\alpha}} d t\right]^{-1}
$$

and consequently $h \in P_{m}\left(p_{k, 0}\right)$ for $z \in E$. This proves the result.

We have the following special cases:

Corollary 3.5: We take $\alpha=1, \quad k=1$, $p_{1,0}(z)=1+\frac{2}{\pi^{2}} \log ^{2} \frac{1+\sqrt{z}}{1-\sqrt{z}}$, and the best dominant is given by:
$q_{1,0}(z)=\left[\int_{0}^{1}\left(\exp \int_{t}^{t 2} \frac{p_{1,0}(u)-1}{u} d u\right) d t\right]^{-1}$,
with
$q_{1,0}(-1)=\frac{1}{2}$.
Therefore, from Theorem 3.3, we have:

$$
1-\cup V_{m}(0, \sigma, a) \subset 1-\cup R_{m}\left(\frac{1}{2}, \sigma, a\right) .
$$

Corollary 3.6: Let, for $\gamma=0, \quad \alpha=1, \quad k \in(1, \infty)$, $f \in k-\cup M_{m}^{1}(0, \sigma, a)$. That is,
$f \in k-\cup V_{m}(0, \sigma, a) \Rightarrow f \in k-\cup R_{m}\left(\gamma_{k}, \sigma, a\right)$,
where $\delta_{k}=q_{k, 0}(-1)=\frac{1}{(k+1) \log \left(1+\frac{1}{k}\right)}, \quad k \in(1, \infty)$.
Corollary 3.7: With $\gamma=0, \alpha=1, k=2$, it follows from Theorem 3.3 that:
$2-\cup V_{m}(0, \sigma, a) \subset 2-\cup R_{m}\left(\delta_{3}, \sigma, a\right), \quad \delta_{3}=\frac{1}{3 \log \frac{3}{2}} \approx 0.813 \ldots$
Theorem 3.4: For $0 \leq \alpha_{2}<\alpha_{1}$, $k-\cup M_{m}^{\alpha_{1}}(\gamma, \sigma, a) \subset k-\cup M_{m}^{\alpha_{2}}(\gamma, \sigma, a)$.

Proof: For $\alpha_{2}=0$, the proof is immediate from Theorem 3.3. Therefore, we suppose $\alpha_{2}>0$, and $f \in k-\cup M_{m}^{\alpha_{1}}(\gamma, \sigma, a)$. There exist two analytic functions $H_{1}(z), H_{2}(z)$ in $P_{m}\left(p_{k, r}\right)$ such that:

$$
\begin{aligned}
& H_{1}(z)=\left\{\left(1-\alpha_{1}\right) \frac{z\left(Q_{a}^{\sigma} f(z)\right)^{\prime}}{Q_{a}^{\sigma} f(z)}+\alpha_{1} \frac{\left(z\left(Q_{a}^{\sigma} f(z)\right)^{\prime}\right)^{\prime}}{\left(Q_{a}^{\sigma} f(z)\right)^{\prime}}\right\}, \\
& H_{2}(z)=\frac{z\left(Q_{a}^{\sigma} f(z)\right)^{\prime}}{Q_{a}^{\sigma} f(z)} \in P_{m}\left(p_{k, r}\right)
\end{aligned}
$$

By Theorem 3.3. We use the fact that $P_{m}\left(p_{k, r}\right)$ is a convex set, see Noor (2011), and since:

$$
\left(1-\alpha_{2}\right) \frac{z\left(Q_{a}^{\sigma} f(z)\right)^{\prime}}{Q_{a}^{\sigma} f(z)}+\alpha_{2} \frac{\left(z\left(Q_{a}^{\sigma} f(z)\right)^{\prime}\right)^{\prime}}{\left(Q_{a}^{\sigma} f(z)\right)^{\prime}}=\left(1-\frac{\alpha_{2}}{\alpha_{1}}\right) H_{1}(z)+\frac{\alpha_{2}}{\alpha_{1}} H_{2}(z),
$$

we obtain the required result that: $f \in k-\cup M_{m}^{\alpha_{2}}(\gamma, \sigma, a)$ for $z \in E$.

Remark 3.1: Since $k-\cup V_{m}(\gamma) \subset V_{m}\left(\frac{k+\gamma}{1+k}\right)$, we can easily deduce that
$Q_{a}^{\sigma} f \in k-\cup V_{m}(\gamma)$ implies $f \in V_{m}\left(\frac{k+\gamma}{1+k}\right)$.

HANKEL DETERMINANT PROBLEM

Let $f \in A$ and be given by (1.1). Let
$Q_{a}^{\sigma} f(z)=z+\sum_{n=2}^{\infty} A_{n} z^{n}, \quad A_{n}=\left(\frac{a}{a+n-1}\right)^{\sigma} a_{n}$.
For $q \geq 1, n \geq 1$, we define Hankel determinant $H_{q}(n)$ for a function $f(z)$, given by (1), as:

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+q-1} \tag{26}\\
a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
\vdots & & & \vdots \\
a_{n+q-1} & a_{n+q} & \cdots & a_{n+2 q-2}
\end{array}\right| .
$$

The problem of determining the rate of growth of this determinant has been considered by several authors (Noonan et al., 1972; Noor, 1992; Pemmerenke, 1966, 1967). For z_{1} a nonzero complex number, we define:
$\Delta_{j}\left(n, z_{1}, f(z)\right)=\Delta_{j-1}\left(n, z_{1}, f(z)\right)-z_{1} \Delta_{j-1}\left(n+1, z_{1}, f(z)\right), j \geq 1$,
with $\Delta_{1}\left(n, z_{1}, f(z)\right)=a_{n}$.
To prove our main theorem here, we shall need the following two results, which are due to Noonan et al. (1972).

Lemma 4.1: Let $f \in A$ and be given by (1) and let the q th order of Hankel determinant of $f(z)$ be defined by (26). Then, writing $\Delta_{j}=\Delta_{j}\left(n, z_{1}, f(z)\right)$, we have:
$H_{q}(n)=\left|\begin{array}{cccc}\Delta_{2 q-2}(n) & \Delta_{2 q-3}(n+1) & \cdots & \Delta_{q-1}(n+q-1) \\ \Delta_{2 q-3}(n+1) & \Delta_{2 q-4}(n+2) & \cdots & \Delta_{q-2}(n+q) \\ \vdots & & & \vdots \\ \Delta_{q-1}(n+q-1) & \Delta_{q-2}(n+q) & \cdots & \Delta_{0}(n+2 q-2)\end{array}\right|$.
Lemma 4.2: With $z_{1}=\frac{n}{n+1} y$, and $v \geq 0$ any integer,
$\Delta_{j}\left(n+v, z_{1}, z^{\prime}(z)\right)=\sum_{l=0}^{j}\binom{j}{l} \frac{y^{\prime}(v-(l-1) n)}{(n+1)^{l}} \Delta_{j-1}(n+v+l, y, f(z))$.
We shall also need the following remark given in Noonan et al. (1972).

Remark 4.1: Consider any determinant of the form

$$
D=\left|\begin{array}{cccc}
y_{2 q-2} & y_{2 q-3} & \cdots & y_{q-1} \\
y_{2 q-3} & y_{2 q-4} & \cdots & y_{q-2} \\
\vdots & & & \vdots \\
y_{q-1} & y_{q-2} & \cdots & y_{0}
\end{array}\right|,
$$

with $1 \leq i, \quad j \leq q$ and $\alpha_{i, j}=y_{2 q-(i+j)}, \quad D=\operatorname{det}\left(\alpha_{i, j}\right)$. Then:
$D=\sum_{v_{1} \in S_{q}}\left(\operatorname{sgn} v_{1}\right) \prod_{j=1}^{q} y_{2 q-\left(v_{1}(j)+j\right)}$,
where S_{q} is the symmetric group on q elements, and $\operatorname{sgn} v_{1}$ is either +1 or -1 . Thus, in the expansion of D, each summand has q factors, and the sum of the subscripts of the factors of each summand is $q^{2}-q$.
Now let n be given and $H_{q}(n)$ be given as in Lemma 4.1, then each summand in the expansion of $H_{q}(n)$ is of the form:

$$
\prod_{i=1}^{q} \Delta_{v(i)}\left(n+2 q-2-v_{1}(i)\right)
$$

where $v_{1} \in S_{q}$ and $\sum_{i=1}^{q} v(i)=q^{2}-q, \quad 0 \leq v(i) \leq 2 q-2$.

We now prove:

Theorem 4.1: Let $f \in k-\cup V_{m}(\gamma, \sigma, a)$ and let the Hankel determinant of $f(z)$, for $q \geq 2, n \geq 1$ be defined by (26). Then, for ${ }_{m}>4\left\{\frac{1+k}{1-\gamma}(q-1)\right\}-2$, we have:
$H_{q}(n)=O(1) n^{c q-q^{2}}, \quad c=\left\{\left(\frac{m}{2}+1\right)\left(\frac{1-\gamma}{1+k}\right)-\sigma-1\right\}$,
and $O(1)$ depends only on m, γ, k and σ.

Proof: Since $f \in k-\cup V_{m}(\gamma, \sigma, a)$, it follows from Remark 3.1 that:

$$
Q_{a}^{\sigma} f \in k-\cup V_{m}(\gamma) \subset V_{m}\left(\frac{k+\gamma}{1+k}\right) \text { for } z \in E .
$$

Let $Q_{a}^{\sigma} f=F(z)$. then, using Lemma 2.5 and a result due to Brannan $(1968,1969)$, we can write:

$$
\begin{align*}
F^{\prime}(z) & =\left(F_{1}^{\prime}(z)\right)^{1-\frac{k+\gamma}{1+k}}, \quad F_{1} \in V_{m}, \\
& =\left[\left(\frac{s_{1}(z)}{z}\right)^{\frac{m^{4}+\frac{1}{2}}{4}} /\left(\frac{s_{2}(z)}{z}\right)^{\frac{m}{4}-\frac{1}{2}}\right]^{\left(\frac{1-\gamma}{1+k}\right)}, \quad s_{1}, s_{2} \in S^{*} . \tag{29}
\end{align*}
$$

We can write:

$$
\begin{aligned}
& \left(z F^{\prime}(z)\right)^{\prime}=F^{\prime}(z) h(z), h \in P_{m}\left(\frac{\gamma+k}{1+k}\right) \\
& T(z)=\left(z\left(z F^{\prime}(z)\right)^{\prime}\right)^{\prime}=F^{\prime}(z)\left[h(z)+z h^{\prime}(z)\right] .
\end{aligned}
$$

Now, for $z=r e^{i \theta}, j \geq 1, \quad z_{1}$ any nonzero complex number, we consider:

$$
\begin{align*}
& \left|\Delta_{j}\left(n, z_{j}, T(z)\right)\right|=\left\lvert\, \frac{1}{2 \pi r^{n+j}} \int_{0}^{2 \pi}\left(z-z_{1}\right)^{j} T(z) e^{-i(n+j) \theta} d \theta\right., \tag{30}
\end{align*}
$$

where we have used (29).
Using Lemma 2.6, Lemma 2.7 and well-known distortion result for starlike functions in (4.6), we obtain for:

$$
\begin{aligned}
& \left(\frac{m}{4}+\frac{1}{2}\right)\left(\frac{1-\gamma}{1+k}\right)>j, \quad j \geq 1 \\
& \left.\left|\Delta\left(n, z_{1}, T z\right)\right| \leq \frac{1}{\gamma^{\gamma+j+1}}\left[\left(\frac{()^{\left(\frac{m 1}{4}\right)}}{r}\right)^{\left(\frac{1-\gamma}{1+k}\right)}\left(\frac{2 r^{2}}{1-r^{2}}\right)^{i}\right]\left(\frac{r}{1-r}\right)^{\left(\frac{m}{2}+1\right)\left(\frac{(1-\gamma)}{1+k}\right)} \frac{B m \gamma, k)}{1-r}\right] \text {, }
\end{aligned}
$$

Where $B(m, \gamma, k)$ is a constant depending on m, γ, k
and j only. Now applying Lemma 4.2 and putting

$$
\begin{aligned}
& z_{1}=\frac{n}{n+1} e^{i \theta_{n}},(n \rightarrow \infty), \text { we have for: } \\
& m>\left(\frac{2(1+k)}{1+\gamma} j-2\right), j \geq 1, \Delta_{j}\left(n, e^{i \theta_{n}}, Q_{a}^{\sigma} f(z)\right)=O(1) n^{\left(\frac{m}{2}+1\right)\left(\frac{1-\gamma}{1+k}\right)-j-2},
\end{aligned}
$$

and on using relation (4.1), we obtain:
$\Delta_{j}\left(n, e^{i \theta_{n}}, f(z)\right)=O(1) n^{\left(\frac{m}{2}+1\right)\left(\frac{1-\gamma}{1+k}\right)-j-\sigma-2}$,
where $O(1)$ depends on m, γ, k, j, a and σ only.
For $q=1, \quad H_{1}(n)=a_{n}=\Delta_{0}(n)$ and from (30) we have:
$a_{n}=\Delta_{0}\left(n, e^{i \theta_{n}}, f(z)\right)=O(1) n^{\left(\frac{m}{2}+1\right)\left(\frac{1-\gamma}{1+k}\right)-j-2}$.
For $\sigma=0$, this result reduces to one proved in Noor (2011). For $q \geq 2$, we use Lemma 4.1, Lemma 4.2, (31) and Remark 4.1 with similar argument due to Noonan et al. (1972) to have:
$H_{q}(n)=O(1) n^{\left.q\left[\frac{m}{2}+1\right)\left(\frac{1-\gamma}{1+k}\right)-\sigma-2\right]-q^{2}}, \quad m>\left(\frac{4(1+k)}{1+\gamma}(q-1)-2\right)$,
where $O(1)$ depends only on m, q, γ, k, a and σ. This completes the proof.
For $\sigma=k=\gamma=0$, we obtain the rate of growth of Hankel determinant of functions of bounded boundary rotation. By choosing different permissible values of the parameters involved, we obtain several new and some known results as special cases of this result.

CONCLUSION

In this paper, we have used the principle of subordination and a family of integral operators to introduce some new subclasses of analytic functions in the unit disc. We have obtained several results such as inclusions results and radius problems for these classes of analytic functions. The rate of growth of Hankel determinant for the functions in these new classes is also studied. We have also discussed some special cases of our results. These results may stimulate further research in this field.

ACKNOWLEDGEMENT

The authors are grateful to Dr. S. M. Junaid Zaidi, Rector,

COMSATS Institute of Information Technology, Pakistan, for providing the excellent research facilities.

REFERENCES

Brannan DA (1968-69). On functions of bounded boundary rotations. Proc. Edin. Math. Soc., 2: 339-347.
Chun YK, Srivastava HM (2004). Inequalities involving certain families of integral and convolution operators. Math. Inequal. Appl., 7 (2): 227-234.
Flett TM (1972). The dual of an inequality of Hardy and Littlewood and some related inequalities. J. Math. Anal. Appl., 38: 746-765.
Goluzin GM (1946). On distortion theorem and coefficients of univalent functions. Mat. Sb., 19: 183-203.
Goodman AW (1983). Univalent Functions, Vol. I \& II. Polygonal Publishing House, Washington, N.J. USA.
Jung IB, Kim YC, Srivastava HM (1993). The Hardy space of analytic functions associated with certain one-parameter families of integral operators. J. Math. Anal. Appl., 176: 138-147.
Kanas S, Lecko A, Wisniowska A (1999). Differential subordination for domains bounded by hyperbolas. Zeszty Nauk. Politech. Rzeszowkiej Mat., 175: 61-70.

Kanas S, Wisniowska A, Lecko A (1998). Conic regions and k-uniform convexity II. Zeszty Nauk. Politech. Rzeszowkiej Mat., 170: 65-78.
Kanas S (2003). Techniques of the differential subordination for domains bounded by conic sections. Int. J. Math. Sci., 38: 389-2400.
Komatu Y (1990). On analytic prolongation of a family of integral operators. Math., 32(55): 141-145.
Miller SS (1975). Differential inequalities and Caratheodory functions. Bull. Am. Math. Soc., 81: 79-81.
Noonan JW, Thomas DK (1972). On the Hankel determinant of areally mean p-valent functions. Proc. Lond. Math. Soc., 25(3): 503-524.
Noor KI (1992). Higher order close-to-convex functions, Math. Japon. 37: 1-8.
Noor KI (2011). On a generalization of uniformly convex and related functions. Comput. Math. Appl., 61: 117-125.
Noor KI, Arif M, Ul-Haq W (2009). On k-uniformly close-to-convex functions of complex order. Appl. Math. Comput., 215: 629-635.
Pemmerenke C (1966). On the coefficients of Hankel determinant of univalent functions. J. London Math. Soc., 41: 111-222.
Pemmerenke C (1967). On Hankel determinant of univalent functions. Mathe., 14: 108-112.

[^0]: *Corresponding author. E-mail: khalidan@gmail.com.

