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In this paper, anti-synchronization problem of two identical chaotic neural networks with time-varying 
delays is proposed. By using time-delay feedback control technique, mean value theorem and the 
Leibniz-Newton formula, and by constructing appropriately Lyapunov-Krasovskii functional, sufficient 
condition is proposed to guarantee the asymptotically anti-synchronization of two identical chaotic 
neural networks. This condition, which is expressed in terms of linear matrix inequality, rely on the 
connection matrix in the  drive and response networks as well as the suitable designed feedback gains 
in the response network. Finally, the anti-synchronization of two chaotic cellular neural network and 
Hopfield neural network with time-varying delays are considered to illustrate the effectiveness of the 
proposed control scheme, in which, when compared with the nonlinear feedback control method, the 
proposed method shows superior performance. 
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INTRODUCTION 
 
Over the recent decades, existence of chaos has been 
discovered and reported in different aspects of science 
and technology, such as electrical circuits, chemical 
reactions, information processing, lasers, optics and 
neural networks (Chen and Dong, 1998; Wieczorek and 
Chow, 2009; Yang and Yuan, 2005; Gutzwiller, 1990). 
Since Pecora and Carroll (1990) established a chaos 
synchronization scheme for two identical chaotic systems 
with different initial conditions, chaos synchronization has 
attracted a great deal of attention (Sun and Cao, 2007; 
Sanjaya et al., 2010). Another interesting phenomenon 
discovered was the anti-synchronization (AS), which is 
noticeable in periodic oscillators. AS is a phenomenon 
that the state vectors of the synchronized systems have 
the same amplitude but opposite signs as those of the 
driving system. In this case, the sum of two signals is 
expected to converge to zero. So far, different techniques 
and methods have been proposed to achieve chaos anti-
synchronization, such as,  active  control  method  (Ho  et  
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al., 2002), adaptive control (Li et al., 2009), H
∞  

control 

(Ahn, 2009), nonlinear control (Al Sawalha and Noorani, 
2009), sliding mode control (Chiang et al., 2008), 
backstepping control (Hu et al., 2005), adaptive modified 
function projective method (Adeli et al., 2011), etc. 

Recently, the study of dynamical properties of neural 
networks appears more due to their extensive 
applications in differential fields, such as signal and 
image processing, pattern recognition, combinatorial 
optimization and other areas (Cohen and Grossberg, 
1983; Carpenter and Grossberg, 1987; Chua and Yang, 
1988). In the electronic implementation of the neural 
networks, time delay will occur in the interactions 
between the neurons inevitably, and will affect the 
dynamic behavior of the neural network models and may 
lead to instability and/or deteriorate the performance of 
the underlying neural networks. In some particular cases, 
it has been shown that these networks can exhibit some 
complicated dynamics and even chaotic behaviors if the 
network’s parameters are appropriately chosen (Yuan, 
2007; Lu, 2002). 

An efficient tool for solving many optimization problems 
is  linear  matrix  inequality  approach   which   has   been 
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effectively applied in controller design for nonlinear 
process (Chen et al., 2010). Linear matrix inequalities 
(LMIs) have been playing an increasingly important role 
in the field of optimization and control theory, because a 
wide variety of problems (linear and convex quadratic 
inequalities, matrix norm inequalities, convex constraints, 
etc.) can be written as LMIs (Boyd et al., 1994; Guo et al., 
2009; Hencey and Alleyne, 2009). 

In addition, LMIs have found many applications in 
exploring properties of recurrent neural networks, since 
their stability conditions are often expressed with the aid 
of LMIs (Liu et al., 2005; Lu and Chen, 2006; Lou and 
Cui, 2006; Li et al., 2008). The objective of this paper is 
to prepare a control law based on the LMI approach for 
anti-synchronization of two identical chaotic neural 
networks with time varying delays, where the stability of 
the proposed method is guaranteed using Lyapunov 
stability theory. It will be shown that the performance of 
the proposed scheme is improved when compared with a 
recently published paper.  
 
 
PROBLEM FORMULATION AND SOME 
PRELIMINARIES 
 
The chaotic neural network with time-varying delay under 
consideration is described by: 
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where 
1

( ) [ ( ), ..., ( )]
n

x t x t x t= is the state vector of the 

neural network with n  neurons, 
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is a 

diagonal matrix with 0, 1,...,iic i n> =
 
and the matrices 

D  and E  are, respectively, the connection weight matrix 
and the delayed connection weight matrix. 
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denotes the neuron 

activation function, ( )tϕ  is the initial condition of state 

vector and ( )tτ is time-varying delay and satisfying: 
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where
1

0λ >
 
and 

2
λ

 
are known parameters. Suppose that 

the system (Equation 1) be the drive system. The 
response system is represented by: 
 

( ) ( ) ( ( )) ( ( ( ))) ( )

( ) 0 [ , 0 ]

u
y t C y t D f y t E f y t t B u t

y t t

τ

κ

= − + + − +

= ∈ −

&  (3)  

 

where ( )
n

y t R∈
 

is the state vector of the response 

system,  ( )u t
  
is  the  control  input  to  be  designed  and

 

 
 
 
 

u

n n
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is the input matrix. Let the anti-synchronous 

error be defined as e x y= + . The objective of the anti-

synchronization is to control the behavior of the response 
system to follow the inverse behavior of the drive system 

such that 
2

lim ( ) ( ) 0
t

x t y t
→∞

+ → , where 
2

⋅ is the Euclidean 

norm. Then, the error dynamics, can be expressed by: 
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where 
1
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and 

2
( ( )) ( ( ( ))) ( ( ( )) ( ( )))e t f y t t f e t t y t tψ τ τ τ= − + − − − .  

Since the information on the size of ( )tτ
 
is available, 

the controller of the following form is considered: 
 

1 2
( ) ( ) ( ( ))u t K e t K e t tτ= + −                  (5)  

 

where 
1

K
 

and 
2

K
 

are suitable feedback gains. 

Substituting Equation 5 into Equation 4, we have: 
 

1 2 1 2
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Remark 1 
 
From the mean value theorem (Leu, 2010) and the 
Leibniz-Newton formula, that is, 

( )
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t t
e t e t t e s ds

τ
τ

−
− − = ∫ & , it is easy to see that: 
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where σ  is a point on the straight line between ( )e t  and 

( ( ))e t tτ− . 

Therefore, the error dynamic (Equation 6) can be 
represented as follows: 
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Assumption 1 
 

The neuron activation function ( )f ⋅
 
is continuous and 

satisfy  (0) 0f =
  

and   the   Lipschitz  condition,  that  is, 
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are known 

matrices. Thus, we have: 
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Lemma 1 
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MAIN RESULTS 
 
The following inequality lemma is necessary to develop 
the main theorem in this paper. 
 
 
Theorem 1  
 

For any given scalars
1
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2
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system (Equation 8) is asymptotically stable, if there exist 
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where  
 

11 2 2 1 1 1 1 1 1 1
( ( ) ( ) ) ( )

T T T T T

u u
P A AP U U P B K B K P T T H Q U UλΣ = + + + − + − + + + + , 

 

12 2 1 2
( )

T T

u
U P B K T TΣ = − + − + , 

Farid et al.          275 
 
 
 

13 3

T T
P D TΣ = + , 

 

14 4

T T
P E TΣ = + , 

15 5

T
TΣ = , 

22 2 1 2 2 2 2
(1 ) ( )

T T
Q U U T TλΣ = − − + − + , 

55 1 2 3
( )Q QλΣ = + . 

 
 
Proof 
 
Construct a Lyapunov-Krasovskii functional of the form: 
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Taking the time-derivative of 
1
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along the trajectories 

of error dynamic (Equation 8) yields: 
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Using Lemma 1 and Equation 7, it is clear that: 
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Therefore, using Equations 17 to 20, the following result 
can be obtained: 
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According to Leibniz–Newton formula, for any column 

matrixT , the following equations hold: 
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Thus, if the inequality, 
 

1
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holds, it follows ( ) 0V t <& . Therefore, we conclude that 

under sufficient condition (Equation 24), the error 
dynamic (Equation 5) is asymptotically stable.  
 
 
Illustrative examples 
 
The sufficient condition for asymptotically anti-
synchronization of a class of delayed neural networks 
presented in this paper is demonstrated by a couple of 
examples and numerical simulations. 

 
Example 1 
 
A two-dimensional cellular neural network (CNN) with 
time varying delays is given in (Gilli, 1993) and described 
by the following equation: 
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0.845 to 1 has been reported (Gilli, 1993). Figure 1 
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for delay 0.85. 
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u

B diag= and by solving the LMI 

(Equation 11) via Matlab LMI toolbox, possible solutions 
for the feedback gains of controller (Equation 5) are as: 
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In the following numerical simulation, we take the initial 
conditions as: 
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Figure 1. Chaotic behavior of drive system (Equation 25) in phase 
space. 

 
 
 

Time (s) Time (s)  
 
Figure 2. Simulation results of Example 1a and b state trajectories (solid line = master system, dashed line = 

slave system); (c) and (d) anti-synchronization errors. 

 
 
Simulation results are as shown in Figure 2. The state 
responses  of  the  drive  and  response  systems  are  as  

 
 
shown in Figure 2a and b, respectively. Figure 2c and d, 
respectively, shows  that  the  anti-synchronization  errors
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Figure 3. Chaotic behavior of drive system (Equation 27) in phase space. 

 
 
 

1
( )e t and 

2
( )e t

 
between drive and response systems are 

stabilized to zero, respectively after a short while. 
 
 
Example 2 
 
Consider the following two-order Hopfield neural network 
(HNN) with time-varying delay: 
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plot of the uncontrolled HNN 
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With {1,1}
u

B diag=  and by solving LMI (Equation 11) in 

Theorem 1, we get: 
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The initial conditions drive and response systems are as: 
 

1 2 1 2
,[ (0), (0)] [0.2, 0.5] [ (0), (0)] [ 1.3, 2.1]

T T T T
x x y y= = −  

 
The simulation results are as shown in Figure 4. From 
Figure 4c and d, one can see that the anti-synchroni-
zation error between the two drive and response systems 
state vectors asymptotically converges to zero. 

To present a quantitative comparison between the 
proposed method and nonlinear feedback control method 
(Cui and Lou, 2009), the two following criteria are used:  

 
1. Synchronization error settling time (SEST). It is the 

time at which 0.005e < . 

2. Integral of SQUARED synchronization error (ISSE) up 
to SEST. 

As we know, the less the SEST, the sooner the 
convergence. The less the ISSE the better the synchroni-
zation achieved. Table 1 presents the results. Referring to
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Time (s) Time (s)  
 
Figure 4. Simulation results of Example 2 a and b state trajectories (solid line = master system, dashed line = slave 
system). (c) and (d) anti-synchronization errors. 

 
 
 

Table 1. Comparison between two different methods of anti-synchronization. 
 

Criteria ISSE SEST (Sec.) 

Nonlinear feedback control method  

(Cui and Lou, 2009) 

Example 1 (CNN) ISSE(e1)= 139.52, ISSE(e2)= 128.94 
SEST(e1) ≈ 12.78 

SEST(e2) ≈ 10.42 

Example 2 (HNN) ISSE(e1)= 1046.08, ISSE(e2)= 1253.4 
SEST(e1) ≈ 14.56 

SEST(e2) ≈ 15.13 
 

Proposed method 

Example 1 (CNN) ISSE(e1)= 10.6581, ISSE(e2)= 0.2044 
SEST(e1) ≈ 1.036 

SEST(e2) ≈ 0.3176 

Example 2 (HNN) ISSE(e1)=239.1924, ISSE(e2)=136.8759 
SEST(e1) ≈ 1.27 

SEST(e2) ≈ 0.7131 
 
 
 

the Table 1, we can conclude that the speed of 
synchronization with the proposed method is better than 
that with nonlinear feedback control methodology. 
 
 
Conclusion 
 
By designing time-delay  feedback  controller,  this  paper  

deals with the anti-synchronization problem of a class of 
chaotic neural networks with time-varying delays. An 
effective sufficient condition for global asymptotic anti-
synchronization between the state vectors of the drive-
response chaotic neural networks has been derived. 
These conditions, which are expressed in terms of linear 
matrix inequalities, are used to design suitable feedback 
gains in the response networks. Also, it illustrates that the  
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speed of synchronization of the states is very fast and 
better than what was obtained by the nonlinear feedback 
control methodology. Two numerical examples with 
graphical illustrations are given to illuminate the 
presented synchronization scheme. 
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