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Crystal lattice structure searching by Particle Swarm Optimization (PSO) and first-principles structural 
optimization have been used to explore polymorphs of BC2N, possessing sp3 hybridization, under a 
varying applied hydrostatic pressure. Two low Gibbs free energy structures were identified: one with a 
primitive orthorhombic structure and Space Group, Pmm2, and the other with a primitive tetragonal 
structure and Space Group, P m2. Dynamical and mechanical stabilities of the Pmm2, orthorhombic 
BC2N (o-BC2N) structure were established using its phonon dispersions and elastic constants. The 
bulk modulus of this predicted BC2N phase was 377.15 GPa, which indicates a super-hard compound. 
The material is brittle with a B/G ratio of 0.911 and a low degree of elastic anisotropy with a Universal 
Elastic Anisotropy Index of only 0.774%. Calculations of the electronic band structure demonstrated 
that the material is a direct band gap semiconductor with a band gap of 1.731 eV at zero applied 
pressure. The band gap increases monotonically with increased applied pressure and saturates to a 
value of about 1.756 eV above 1500 kbars; the hydrostatic pressure coefficients associated with this 
process were determined.   
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INTRODUCTION 
 
The strength of super- or ultra-hard materials makes 
them important for a variety of applications such as, 
drilling, cutting, wear-resistant coating and abrasives. 
Diamond is not suitable for machining alloys of iron like 
steel because, although it is extremely hard, it reacts with 
iron in the presence of oxygen when the temperature 
exceeds 80 K (John et al., 2002). An ultra-hard material 
which is more suitable than diamond for machining 
ferrous materials is cubic boron nitride (c-BN), because  it 

is more chemically inert to redox reactions with iron at 
high temperatures. However, the hardness of c-BN is in 
the range of only half that of diamond (Singh, 1986).  
Ternary compounds of the boron-carbon-nitride (B-C-N) 
system like BC2N have attracted extensive researcher 
interest in the search for materials that are harder than c-
BN and chemically more stable than diamond at elevated 
temperatures. 

The  synthesis   of   novel   super-hard  materials  is  an 
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important area of frontier research in high-temperature 
and high-pressure (HTHP) technology. Single crystal 
super-hard materials have been experimentally 
synthesized under high temperature and pressure 
conditions using laser heated diamond-anvil cells (DAC) 
(Stavrou et al., 2016). There are contradictory results 
reported by different authors (Nakano, 1996; Kagi et al., 
1996) on the attempted experimental synthesis of B–C–N 
compounds. There is no clarity on whether the resulting 
materials were solid solutions of carbon with cubic boron 
nitride or mixtures of dispersed diamond with cubic boron 
nitride. Nano-crystalline BC2N has been synthesized by 
HTHP (Solozhenko et al., 2001; Zhao et al., 2002) and 
the measured hardness reached 76 GPa (Solozhenko et 
al., 2001) and 62 GPa (Zhao et al., 2002), which are 
higher than that for c-BN. It remains a major challenge to 
determine the crystal structure of BC2N using 
experimental methods like x-ray diffraction (XRD) 
because of the very close and low values of atomic 
masses for boron, carbon and nitrogen atoms, which are 
10.81, 12.01 and 14.01 respectively; these three 
elements are ‗neighbors‘ on the periodic table and their 
diffraction peaks tend to overlap. Therefore, first 
principles methods are important in determining the 
crystal structure of BC2N polymorphs. This knowledge 
could assist in developing cheaper methods of 
synthesizing the material. First principles methods may 
also assist in exploring other technologically useful 
properties of BC2N.  

Previous theoretical studies on this material were 
based on the assumption that BC2N is a derivative of 
carbon and boron nitride (BN) structures. These studies 
therefore proposed phases that are probable derivative 
combinations of carbon (diamond or graphite) and boron 
nitride structures like, cubic-BC2N (Luo et al., 2007

b
), zinc 

blende-BC2N (Sun et al., 2001) and wurtzite-BC2N (Luo 
et al., 2007

a
). Some theoretical work on diamond-like 

boron carbon nitrides (d-BCxN) (He et al., 2019; Gao et 
al., 2017, 2018) has also been carried out. In the present 
study, we have taken an approach using an algorithm 
called Particle Swarm Optimization or PSO (Gao et al., 
2010; Wang et al., 2012) which does not make any initial 
assumption regarding any starting or derivative 
structures. 

PSO is one of several popular Swarm Intelligence (SI) 
algorithms. Swarm Intelligence is a part of Artificial 
Intelligence (AI). In this case, the word ―swarm‖ can be 
understood in the context of the choreography of a flock 
of birds, which are a collection of individual elements that 
perform random iterations. Although these individual 
elements of a swarm are not centrally controlled, they 
have memory and can monitor their best past positions, 
Pbest (e.g. at energy minima) and their interactive 
―wellness‖, in relation to other members of their 
population and the environment, at these best positions. 
Each element can therefore use its memory of past 
experiences to adjust its direction of motion and speed. 
After a  while  the  whole  swarm  converges  to  a  stable 
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formation. Swarm Intelligence involves the collective study 
of the individuals‘ behavior in population interaction. By 
considering chemical elements as the individuals of a 
swarm, we use PSO and swarm convergence in order to 
predict the formation of compounds of these elements in 
various atomic bonding environments (e.g., metallic, ionic 
and covalent bonding). 

Atomic binding in ultra-hard materials is predominantly 
covalent in nature. Plastic and elastic deformations are 
strongly resisted by covalently bonded materials (Zhao et 
al., 2016). Ultra-hard materials are often formed by light 
elements like C, B, O and N (Habanyama et al., 2018) 
which are suitable for the formation of short directional 
and shear resistant covalent networks (Hu et al., 2016, 
2017).  

The electronic properties of B-C-N compounds are also 
of interest. B, C, and N have 3, 4, and 5 valence 
electrons, that is, with 2s

2
2p

1
, 2s

2
2p

2
 and 2s

2
2p

3
 as 

valence electronic configurations respectively. Compound 
phases of the type, BxCyNz (where, x = z) are 
isoelectronic, that is, they have similar atomic connectivity 
with the same number of valence electrons. Compounds 
with this stoichiometry, like BC2N and BC4N are expected 
to be insulators or semiconductors (Zhao et al., 2002; He 
et al., 2004). In crystals that are mostly covalently 
bonded, the length and density of the bonds determine 
the hardness. Partial metallic and a degree of ionic 
bonding, that is, metallicity (Guo et al., 2008) and 
iconicity (Gao et al., 2003) respectively, may also have 
an effect on the hardness. These bonding parameters 
can be calculated using first principles. Vickers hardness, 
HV in GPa can be expressed using a microscopic model 
of hardness (Guo et al., 2007, 2008) as: 
 

 55.05.23

2

2.32191.1exp1051)( mieV ffdNGPaH        (1) 

 
where, Ne is the density of valence electrons associated 
with the bonds expressed in Å

-3
 units, d is the length of 

the bonds expressed in angstroms, fi is the iconicity (Gao 
et al., 2003; He et al., 2005) in the bonding mechanism 
and fm is a factor which expresses the level of metallicity 
(Guo et al., 2007) in the bonding. The term, 

 55.02.32191.1exp mi ff   in Equation (1) is therefore 

a correctional factor to account for partial ionic and 
metallic bonding. 

Super-hard materials have a Vickers hardness which is 
greater than 40 GPa (Solozhenko and Gregoryanz, 
2005). The degree of hardness of a material can be 
estimated or scaled using its shear and bulk moduli 
(Clerc, 1999). In particular, materials with a bulk modulus 
greater than 250 GPa are expected to be super-hard 
(Lowther, 2000). The elastic moduli of essentially all 
known single crystals depend, to some extent, on the 
crystals‘ orientation. This means that the crystals are 
anisotropic as opposed to isotropic in their elastic 
response.  An  understanding  of   the   susceptibility of  a  
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material to lattice distortions and micro-cracks is very 
important for its application and this is related to the 
degree of elastic anisotropy of the material. The effects of 
anisotropy in several crystal phenomena like phase 
transformation and dislocation dynamics have been 
reported (Ledbetter and Migliori, 2006). The present 
study investigates the compound phases of BC2N in 
terms of their stability under a varying hydrostatic 
pressure, as well as the anisotropic and electronic 
properties. 
 
 
COMPUTATIONAL METHODS 
 
The Particle Swarm Optimization (PSO) algorithm (Gao et al., 2010; 
Wang et al., 2012), which was described earlier was used in a 
study conducted to determine the structural phases of BC2N, with 
the lowest values of the Gibbs free energy, at a temperature of 0K. 
We made use of the Crystal structure AnaLYsis by Particle Swarm 
Optimization (CALYPSO) software (Wang et al., 2010) 
implementation of the PSO algorithm (Gao et al., 2010; Wang et al., 
2012). The PSO algorithm tends to achieve swarm convergence 
prematurely because the best past positions, Pbest, described in our 
Introduction, are not controlled by any parameter. In order to avoid 
this, CALYPSO incorporates additional methods like structural 
generation symmetry constraints (Wang et al., 2012). The main 
input to a CALYPSO calculation is the chemical formula 
(stoichiometry) of the compound to be studied. Several structural 
phases are generated by the CALYPSO software and displayed 
according to the magnitude of their enthalpies. Information 
regarding the space groups of the structures is also generated and 
displayed. In this study, we investigate two of these structures. 
Some recent research works (Habanyama and Samukonga, 2021; 
Gao et al., 2019; Wang at al., 2019; Su et al., 2017) has 
successfully made use of the CALYPSO software package. 

In the present work, Particle Swarm Optimization simulations 
were performed where a unit cell had up to 16 atoms. Quantum 
Espresso (Giannozzi et al., 2009), which is a widely used 
implementation of the Density Functional Theory (DFT), was used 
to perform the PSO associated structural optimization procedures. 
Some structural and electronic properties were also determined 
using Quantum Espresso simulations. The interaction between 
electrons and ion cores were modeled using the Andrea Dal Corso-
type ultra-soft pseudo-potentials (USPP) for N, B and C with the 
respective valence electronic configurations, 2s

2
2p

3
, 2s

2
2p

2
 and 

2s
2
2p

1
. The exchange interaction and correlation between electrons 

was calculated using the Generalized Gradient Approximation 
(GGA-PBE) model (Perdew et al., 1996). The plane-wave functions‘ 
cut-off kinetic energy used was 70 Ry and the k-point mesh was 

sampled as 161616 Monkhorst Pack (Monkhorst and Pack, 
1976) in the Brillouin zone. The threshold of the self-consistent field 
(SCF) was convergent within 10

-3
 eV/atom. The Xcrysden software 

package (Kokalj, 2003) was used to visualize the predicted crystal 
structures. The structures were then tested for energetic 
(thermodynamical), vibrational (dynamical) and elastic (mechanical) 
stabilities. 

Thermodynamical or energetic stability depends on Gibbs free 
energy, G of the system 

 

TSPVEG                     (2) 

 
A structural phase with the lowest value of G is the most 
thermodynamically stable phase, where S is the entropy of the 
system, T is the temperature, P is the pressure, volume is V and the 
internal energy is E. If the pressure on a stable  structural  phase  is  

 
 
 
 
increased, its Gibbs free energy can become equal to that of 
another phase. If a further increase in pressure causes the phase 
with the previously lower Gibbs free energy to have a higher energy 
than the other phase, then a pressure induced phase 
transformation occurs. It is assumed in our calculations that the 
structures of the compounds being studied are in their ground 
states at absolute zero of temperature. We calculate the enthalpy, 
H as a function of pressure in order to predict any possible 
structural phase transitions, 
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The pressure at absolute zero of temperature is given by 
 

V

E
P




                  (4) 

 
The transition pressure can therefore be determined by computing 
the variation of the internal energy at different volumes of the unit-
cell. 

In order to establish the vibrational or dynamical stability of a 
material, the entire spectrum of its lattice vibrational modes needs 
to be analyzed. For a material to be dynamically stable, all lattice 
frequency calculations at reciprocal lattice vectors in the Brillouin 
zone should be positive, since negative values would imply 
imaginary or non-existent phonons. We used two different methods 
to calculate phonon dispersion frequencies and spectra. In the first 
method, we only performed phonon calculations at the Brillouin 
zone center (the Г point). In this case, we used the density 
functional perturbation or ―linear response‖ theory (Baroni et al., 
1987; Giannozzi et al., 1991) as implemented by the Quantum 
Espresso package. The second method used was the finite 
displacement and supercell method, as implemented by the 
Phonopy (Togo and Tanaka, 2015) software package. We 
performed calculations along k -point paths such that the resulting 
phonon dispersion curves covered the Brillouin zone. In these 
calculations, controlled forces are induced on the atoms by 
systematically displacing them from their equilibrium positions and 
storing this displacement information in supercells. Our BC2N 
calculations used 2×2×2 supercells with 64 atoms. The induced 
atomic forces were calculated from each supercell using Quantum 
Espresso. The Phonopy package was then used to extract the 
atomic displacement information together with the corresponding 
induced atomic forces in order to generate force constants and 
build dynamic matrices. The dynamic matrices were used to 
calculate phonon frequencies along the required k-point paths. In 
both the density functional perturbation theory application and the 
finite displacement and supercell method, the units of the 
frequencies presented in the results were, THz (4 meV ~1 THz).   

Second order elastic constants need to be considered in order to 
establish the elastic or mechanical stability of a material. The bulk 
and shear moduli were determined using three different methods. 
The first method assumes a uniform strain, also known as the Voigt 
calculation (Voigt, 1928). The second method assumes uniform 
stress, this is the Reuss (Reuss and Angew, 1929) calculation and 
thirdly the averaging of the Voigt and Reuss calculations gives the 
Hill (Hill,1963) values. 

To obtain the Voigt bulk and shear moduli, represented as BV and 
GV respectively, Equations (5) and (6) were used: 
 
   (  ⁄ )[(           )   (           )]             (5) 
 
and 
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   )],                                                                                         (6) 



 
 
 
 
Cij being the stiffness constants. 

To calculate the Reuss bulk and shear moduli, represented as BR 

and GR respectively, we used Equations (7) and (8): 
 

     [(           )   (           )]               (7) 
  
and 
 
      [ (           )  (           )   (        

   )]                                                                                          (8) 
 
Sij being the compliances. 

Equations (9) and (10) were used to obtain the averages or Hill 
values of the shear and bulk moduli respectively: 
 

   
 

 
(     )                               (9) 

 
and 
 

   
 

 
(     ).                             (10) 

 
Equations (11) and (12) were used to obtain Hill averages of the 

Young modulus, EH and Poisson‘s ratio, H: 
 

   
     

      
                 (11) 

 
and 
 

   
       

 (      )
,               (12) 

 
respectively. Unless indicated otherwise, all results of the elastic 
moduli presented in this work are Hill values. 

Cubic crystals exhibit elastic isotropy in terms of their bulk 
modulus alone and BV = BR. Any anisotropy in a cubic lattice is 

purely shear related where, GV  GR. In lattice structures that are 
not cubic, both shear and bulk moduli anisotropies are present. The 
Universal Elastic Anisotropy Index, AU (Ranganathan and Ostoja-
Starzewski, 2008), 
 

    
  

  
 
  

  
                 (13) 

 
gives a way of quantifying the combined degree of anisotropy due 
to both shear and bulk moduli. We see from Equation (13) that 
when a crystal is totally isotropic then, GV = GR and BV = BR; 
therefore, AU = 0. It is the degree of departure from zero of the 
Universal Elastic Anisotropy Index that quantifies the level of elastic 
anisotropy in a crystalline material. 
 
 
RESULTS 
 
Two low Gibbs free energy crystal structures were 
identified in our search to determine the polymorphs of 
BC2N. The first structure had the Hermann Mauguin 
Space Group, Pmm2 [space group number index, 25]. 
This is an orthorhombic Bravais lattice with the Point 
Group, mm2. It has a primitive lattice type as signified by 
the ‗P‘ in the space group. The second structure had the 

Hermann Mauguin Space Group, P 4 m2 [space group 
number index, 115]. This is a primitive tetragonal Bravais 

lattice with the Point Group, 4 2m.  Figures  1(a)  and  (b)  
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show diagrams of these two structures as visualized by 
the Xcrysden software package (Kokalj, 2003).  

There are no boron-to-boron (B-B) bonds seen in 
Figures 1(a) and (b). According to previous studies (Sun 
et al., 2001; Nozaki and Itoh, 1996), B-B bonds are not 
expected to exist in covalently bonded structures of the 
B-C-N system because they would make the structures 
less stable by effectively increasing the total energy of 
the system. 

Total-energy calculations were used to analyze the 
response of the two BC2N structural phases in Figures 
1(a) and (b) under hydrostatic compression. We started 
these calculations with an equilibrium lattice parameter at 
absolute zero of temperature; thereafter the pressure was 
increased incrementally. At each fixed value of the 
pressure, the unit-cell volume, the internal energy and the 
enthalpy, H were calculated. Figure 2 is a graphic 
presentation of the changes in enthalpies for the two 
structures with increased hydrostatic pressure in the 
range from 0 to 1400 kbar. 

The orthorhombic, Pmm2 structure is seen to be more 

thermodynamically stable than the tetragonal, P 4 m2 
structure in the entire pressure range. The fact that the 
two graphs do not cross each other means that a 
pressure-induced phase transition is not possible 
between these two structures within the pressure range 
investigated.  

Figure 3(a) shows a plot of the internal energy against 
the volume of the BC2N unit cell. Figure 3(b) shows a 
similar plot for germanium, which demonstrates the so-
called, ―common tangent‖ construction. The transition 
pressure between the two Ge phases in Figure 3(b) is the 
negative of the common tangent‘s gradient. The study of 
Ge is not part of the current work but Figure 3(b) was 
included for the sole purpose of comparing it to Figure 
3(a), hence demonstrating that there is no possible 
common tangent between the energy-against-volume 
plots of the BC2N phases and therefore no possible 
phase change. 

Table 1 presents our BC2N phonon calculation results 
under zero pressure at the Brillouin zone center (the Г 
point). The tetragonal structure exhibits some negative 
frequencies as seen in the table, indicating that it is not 
dynamically stable. On the other hand, the orthorhombic 
phase could possibly be stable as no negative phonon 
frequencies are seen for the Г point. The orthorhombic 
structure was therefore subjected to further tests while no 
further work was carried out on the tetragonal structure. 

Some high symmetry points and lines are shown in the 
first Brillouin zone of the primitive lattice of the 
orthorhombic structure in Figure 4. 

The finite displacement and supercell method, as 
implemented by the Phonopy software package (Togo 
and Tanaka, 2015) was used to perform phonon 
calculations for the orthorhombic BC2N along the k-point 
path: Г → R → Z → T → Y → S → Г → X. Figure 5 
shows the resulting phonon dispersion curves.    
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Figure 1. (a) An Orthorhombic BC2N lattice cell having Hermann Mauguin Space Group, Pmm2 [SG 
index, 25] and Point, Group, mm2. (b) A Tetragonal BC2N lattice cell having Hermann Mauguin Space 

Group, P 4 m2 [SG index, 115] and Point Group, 4 2m. 

 
 
 

 
 

Figure 2. Enthalpies per four atom formula unit of tetragonal BC2N (solid 
circles) and orthorhombic BC2N (open circles) plotted against the hydrostatic 
pressure. 

 
 
 
Table 1 shows that the lowest and highest phonon 
frequencies are 3.3164 and 37.7817 THz respectively. 
Figure 5 shows the natural vibrational frequencies of 
orthorhombic BC2N to be in a band from about  0.0  to  38 

THz. Our finite displacement and supercell method 
results are therefore in general agreement with our 
density functional perturbation theory results. The 
absence  of  negative phonon frequencies throughout the  

  
(a)                                                           (b) 
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Figure 3. (a) Plots of the total energy against the volume per four atom formula unit of tetragonal BC2N (solid circles) and 
orthorhombic BC2N (open circles). (b) Plots of the total energy against the volume per atom of beta-tin (tetragonal) Ge (solid 
circles) and zinc-blende (cubic-diamond) Ge (open circles). 

 
 
 

Table 1. A table giving phonon results calculated at the Brillouin zone centers ( points). 
 

Crystal structure and space group 
Orthorhombic Space Group, Pmm2 

[SG index, 25] 
Tetragonal Space Group, P 4 m2 

[SG index, 115] 

Frequency THz cm
-1

 THz cm
-1

 

1 3.3164 110.6 -4.3096 -143.8 

2 4.1544 138.6 -3.1906 -106.4 

3 4.1544 138.6 1.5641 52.2 

4 20.7874 693.4 20.8932 696.9 

5 20.7874 693.4 21.0983 703.8 

6 23.0547 769.0 22.4309 748.2 

7 23.0547 769.0 27.2039 907.4 

8 31.6981 1057.3 30.5513 1019.1 

9 32.1565 1072.6 33.9803 1133.5 

10 35.5218 1184.9 36.1939 1207.3 

11 37.7817 1260.3 37.1413 1238.9 

12 37.7817 1260.3 37.8533 1262.7 

 
 
 
Brillouin zone of the orthorhombic BC2N lattice structure 
indicates that it is dynamically stable. 

Since the orthorhombic structure was identified as 
being dynamically stable, it was further tested for 
mechanical stability. Table 2 shows the Elastic package 
(Golesorkhtabar et al., 2013) calculation results of the 
elastic stiffness and compliance constants. This structure 
had the lattice parameters, a = 4.791 Bohr, b/a = 1.011 
and  c/a   = 1.436.  No  hydrostatic  pressure was  applied 

during the determination of the elastic stiffness and 
compliance constants in Table 2. 

Table 3 presents the eigenvalues of the stiffness matrix 
obtained by diagonalization using the Eigen (Guennebaud 
and Jacob, 2010) C++ template library for linear algebra. 
The Reuss and Voigt shear and bulk moduli are 
presented in Table 4. The value of the Universal Elastic 
Anisotropy Index, which was calculated using Equation 
(13), is also presented. 
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Figure 4. High symmetry points and lines of the simple orthorhombic Brillouin zone. 

 
 
 

 
 

Figure 5. Dispersion curves for orthorhombic BC2N, with phonon frequencies calculated 
using the  Phonopy software package. 

 

 
 
Table 5 presents the Elastic package (Golesorkhtabar et 
al., 2013) calculated Hill values of the bulk, shear and 
Young moduli, for orthorhombic BC2N (o- BC2N). The 
values of the Poisson‘s and B/G ratios are also shown. 

In order to study some electronic properties of o- BC2N, 
its electronic energy band structure was calculated  along  

the k-point path, XSYTZR  .  

The high symmetry points and lines in the first Brillouin 
zone are as shown in Figure 4. The resulting energy 
band diagram, under zero hydrostatic applied pressure is 
shown in Figure 6. It should be made clear that the actual 
computed energy of the Fermi level, EF was  13.9497 eV.   
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Table 2. The only non-zero independent second order elastic constants for orthorhombic BC2N 
 

Stiffness matrix elements, Cij (GPa) and  compliances, Sij (10
-5

 GPa
-1

) 

C11 

S11 

C12 

S12 

C13 

S13 

C22 

S22 

C23 

S23 

C33 

S33 

C44 

S44 

C55 

S55 

C66 

S66 

1031.7 

99 

20 

0.4 

141.1 

-16 

908.2 

113 

131.8 

-17 

873.5 

120 

401.4 

249 

475.5 

210 

367.5 

272 

 
 
 

Table 3. Resultant eigenvalues from the diagonalization of the 
stiffness matrix for orthorhombic BC2N. 
 

S/N Stiffness matrix, Cij (GPa) eigenvalues 

1 1147.9 

2 939.9 

3 725.6 

4 401.4 

5 475.5 

6 367.5 
 
 
 

Table 4. Computed Shear and bulk moduli for orthorhombic BC2N using the Reuss and Voigt methods along with presentation of the 
Universal Elastic Anisotropy Index. 
 

BV (GPa) BR (GPa) GV (GPa) GR (GPa) Universal Elastic Anisotropy Index, AU Percentage Anisotropy 

377.70 376.61 416.92 410.79 0.0774 0.774% 
 
 
 

Table 5. Orthorhombic BC2N averaged Hill values of the shear, bulk and Young moduli presented together with the  B/G and 
Poisson‘s ratios. 
 

Bulk Modulus B (GPa) Shear Modulus G (GPa) Young Modulus E (GPa) B/G Poisson’s Ratio, 

377.15 413.86 909.06 0.911 0.10 

 
 
 

The energy axis in Figure 6 was shifted upwards by 
13.9497 eV so as to place the Fermi level at the origin (E 
= 0).    

It was determined from the calculations that the 
material has an energy band gap of 1.731 eV when there 
is no applied hydrostatic pressure. This is a direct band 
gap as seen in Figure 6. The width of the band gap 
suggests that this is a semiconductor because 
semiconductors generally have a band gap energy, Eg 

 3.0 eV. 
In Figure 7(a), the energy of the ‗bottom‘ edge of the 

conduction band, which is the lowest unoccupied energy 
level at temperature, T = 0, is plotted together with the 
energy of the ‗top‘ edge of the valence band, which is the 
maximum occupied energy level at, T = 0, as a function 
of the applied pressure. 
As pointed out earlier, the origin of the energy axis in 
Figure 6 is placed at the Fermi level, EF however, in 
Figure 7(a) the origin is placed such that the Fermi level 
at  zero   pressure   is   at  its  actual  computed  value  of 

13.9497 eV. The lowest energy level of the conduction 
band at zero pressure, P = 0 kbars, is 14.8152 eV and 
the highest level in the valance band at zero pressure is, 
13.0842 eV, giving an energy band gap of 1.731 eV, at P 
= 0 kbars. The energy difference between the two curves 
in Figure 7(a) gives the value of the band gap at each 
value of the applied pressure. Figure 7(b) shows the 
width of the energy band gap as a function of the applied 
pressure. Figure 7(b) shows that an increasing applied 
pressure results in a monotonic increase in the band gap. 
It is likely that as the applied pressure is increased, a 
saturation value for the band gap would eventually be 
arrived at, which is evident from the curvature of the 
graph. 
 
 
DISCUSSION 
 
It is seen in Table 3 that the eigenvalues of the stiffness 
matrix,  Cij  for  orthorhombic  BC2N  are  all positive. This  
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Figure 6. The orthorhombic BC2N electronic energy band structure, with no applied hydrostatic pressure. The 
energy axis is shifted upwards by 13.9497 eV so as to place the Fermi level at the origin (E = 0). 

 
 
 

 
 

Figure 7. (a) Electronic energy at the bottom of the conduction band at temperature, T = 0, plotted together with that at the top of the 
valence band, against the applied pressure. (b) Graph of the energy band gap of o-BC2N as function of the hydrostatic pressure. 
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Figure 8. (a) The 1s and 2s electrons are paired with opposite 
spins but the 2p electrons are unpaired. (b) A 2s electron shifts 
to the p level forming four hybrid sp

3
 orbitals with unpaired 

electrons.  

 
 
 
fulfils the generic condition for mechanical stability. 
However, a specific and sufficient Born criterion (Born 
and Huang, 1954) for testing the mechanical stability of 
an orthorhombic structure was modified by Mouhat and 
Coudert (2014), as the inequality: 
 

                           
        

        
        

                                                                                (14) 
 
The results in Table 2 satisfy the Inequality (14), 
indicating that orthorhombic BC2N is mechanically stable. 

The Universal Elastic Anisotropy Index of o-BC2N is, AU 
= 0.774%, as seen in Table 4. This value, which is less 
than 1%, indicates that the degree of anisotropy of the 
material is such that its susceptibility to micro-cracks is 
low. This material is essentially isotropic in response to 
hydrostatic compression without shearing because its 
Voigt and Reuss bulk moduli are almost equal, that is, BV 

 BR. The ratio B/G reflects the brittleness of a material. 
According to Pugh (1954), the ratio, B/G is greater or 
equal to the value 1.75 for ductile materials and it is less 
than 1.75 for brittle materials. Orthorhombic BC2N is 
therefore a brittle material with a B/G ratio of 0.911 as 
seen in Table 5. 

Table 5 shows that the value of the Young modulus for 
o-BC2N is large. This elastic modulus relates a stress to 
the resulting strain in the same direction. Poisson‘s ratio 
gives an indication of the plasticity of a material. Table 5 

presents a low value of the Poisson‘s ratio,  = 0.10, 
which indicates a relatively low level of plasticity. Table 5 
also shows that the  values  of  both  the  bulk  and  shear  
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moduli of o-BC2N are large. Ultra-hard materials are 
known to have values of the bulk modulus exceeding 250 
GPa (Lowther, 2000); hence o-BC2N is therefore a 
potentially super-hard material with a bulk modulus of 
about 377 GPa. 

The carbon atoms in B-C-N materials possess sp
3 

hybrid orbitals which facilitate the mechanism behind the 
ultra-hardness of these materials (Luo et al., 2007a, b). 
Figure 8(a) shows how electrons occupy the orbitals of 
the carbon atom. The diagram shows that the 1s and 2s 
electrons are paired with opposite spins but the 2p 
electrons are unpaired. Figure 8(b) shows the excited 
carbon atom electronic configuration during the synthesis 
of super-hard materials, where a 2s electron shifts to the 
p level forming four energetically similar mixed (hybrid) 
sp

3
 orbitals with electrons that are not paired. 

The sp
3
 hybrid orbitals bond covalently with B, N and 

other C atoms in o-BC2N. These bonds are short, dense 
and directional, resulting in highly shear resistant 3-
dimentional networks. This is the fundamental origin of 
the super-hardness of o-BC2N. 

The pure hydrostatic strain which is created in high 
pressure experiments, such as those that use diamond 
anvil cells (DACs), causes a reduction in the distance 
between atoms which results in enhanced overlapping 
between the wave functions of neighboring atoms in a 
material. The valence electron states in BC2N are highly 
hybridized as explained earlier and the overlapping of 
electron orbitals due to the volume reduction can cause a 
charge transfer between s, p or d states in both the 
conduction and valence bands. This interaction between 
states in the conduction and valence bands causes the 
energies of the conduction or valence bands to be 
lowered or increased by unequal shifts at different 
symmetry points of the Brillouin zone. This results in a 
net decrease or increase of the band gap width at various 
values of hydrostatic pressure. Figure 7(b) shows that, in 
the case of o-BC2N, we observe a net increase in the 
width of the band gap as the pressure increases. The 
variation of the band gap with volume can be expressed 
in terms of the hydrostatic volume deformation potential, 
ag defined as (Dridi et al., 2002; Bouhafs et al., 2000) 
 

Vd

dE
a

g

g
ln

 ,                (15) 

 
where, Eg is the band gap energy width and V the 
volume. This commonly used definition given in Equation 
(15) is actually a relative deformation potential between 
the bands involved as opposed to an absolute 
deformation potential 
 

Vd

dE
a i

i
ln

 ,             (16) 

 

of  an  energy  state  Ei.  The values  for  ag are difficult to  
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obtain experimentally; only the pressure dependence of 
the energy gap is usually measured. It is therefore 
convenient to work with the pressure coefficient, dEg/dP, 
which is related to the deformation potential through the 
bulk modulus, B as (Dridi et al., 2002; Bouhafs et al., 
2000) 
 

dP

dE
Ba

g

g  .             (17) 

 
This definition of the pressure coefficient is useful when 
the band gap, Eg varies linearly with the applied pressure. 
However, in nonlinear cases like that of our graph in 
Figure 7(b), we can extend the definition of pressure 
coefficients by fitting the data to an empirical quadratic 
function (Dridi et al., 2002; Bouhafs et al., 2000) 
 

2)0()( PPEPE gg   ,           (18) 

 
where, Eg(0) is the band gap with no applied hydrostatic 

pressure, the linear term,  = dEg/dP, is the first-order 

pressure derivative, while the quadratic term,  = d
2
 

Eg/dP
2
, is the second-order pressure derivative. The 

derivatives  and   are both hydrostatic pressure 
coefficients. After fitting the data displayed in Figure 7(b) 
to the quadratic function in Equation (18), we get Eg(0) = 

1.731 eV,  = 3.688×10
-5

 eV/kbar = 0.3688 meV/GPa 

and  = -1.436×10
-8

 eV/kbar
2 
= -1.436×10

-5
 meV/GPa

2
. 

 
 
Conclusion 
 
We studied two polymorphs of BC2N with low Gibbs free 
energies. One with a primitive orthorhombic structure and 
Space Group, Pmm2, and the other with a primitive 

tetragonal structure and Space Group, P 4 m2. The only 
polymorph found to be both mechanically and 
dynamically stable was the orthorhombic BC2N (o-BC2N). 
As seen in Table 5, the bulk modulus of this material is 
much greater than 250 GPa. It is therefore expected to 
be super-hard (Lowther, 2000). Having a B/G value of 
0.911, o-BC2N is a brittle material. It is seen in Table 4 
that o-BC2N has a Universal Elastic Anisotropy Index of 
only 0.774%, meaning that it has a low degree of 
anisotropy indicating a low susceptibility to micro-cracks. 
The material has been shown to possess a direct band 
gap of 1.731 eV at zero applied pressure and is likely to 
be a semiconductor. The band gap increases 
monotonically with increased applied pressure and 
saturates to a value of around 1.756 eV at pressures 
greater than 1500 kbars. Two hydrostatic pressure 
coefficients were determined; the first-order pressure 

derivative  was found to have a value of 0.3688 

meV/GPa, while the second-order derivative,  was found 
to   be   -1.436×10

-5
   meV/GPa

2
.  Orthorhombic  BC2N  is  

 
 
 
 
expected to be a more suitable semiconductor for high 
pressure applications than silicon and germanium 
because unlike Si and Ge it is not likely to undergo any 
pressure induced phase transitions, as demonstrated by 
Figures 2 and 3.  
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