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Hypersurfaces with constant scalar curvature and two different principal curvatures isometrically 

immersed in an ( 1)n + -dimensional space form M’
+1

 (C)
 
of constant curvature c and especially in  

1( )nS c+
 have been extensively investigated within the last four decades. In the present work, we study 

complete spacelike hypersurfaces with constant scalar curvature and have sectional curvatures 

( ) 1K π ≥  in de Sitter space 
6

1 (1)S  and find a result on the type number of such a hypersurface.  
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INTRODUCTION 
 

Let ( )n p

pM c
+

 be a ( )n p+ -dimensional connected semi-

Riemannian manifold of constant curvature c whose 
index is p. It is called an indefinite space form of index p 

or simply a Lorentzian space form when 1p = . If 0c > , 

we call it as a de sitter space of index p and denote it 

by ( )n p

pS c
+

. Now, let 
2nL +

 be the ( 2)n + -dimensional 

Lorentz-Minkowski space, that is, the real vector space 
2n+

�  endowed with the Lorentzian metric tensor and let 
1 2

1

n n
S L

+ +⊂  be the ( 1)n + -dimensional unitary de Sitter 

space. For 2n ≥  the de Sitter space 
1

1

n
S

+
 is the 

standard simply connected Lorentzian space form of 
positive constant sectional curvature 1. A smooth 

immersion 
1

1 : 
n n

M Sϕ +→  of an n-dimensional 

connected manifold 
nM is said to be a spacelike 

hypersurface if the induced metric via ϕ   is a 

Riemannian metric on
nM . A hypersurface in 

1nE +
  is 

said to be of type number p if the rank of its second 
fundamental form is p. In 1979 B.Y. Chen  introduced  the 
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isometric immersions in Euclidean spaces of finite type 
(Chen, 1979). Essentially these are submanifolds whose 

immersion into 
1nE +
 is constructed by making use of a 

finite number of 
1nE +
-valuated eigenfunctions of their 

Laplacian. In terms of finite type terminology, a well-
known result of Takahashi (Takahashi, 1966), affirms that 
a connected Euclidean submanifold is of 1-type, if and 

only if it is either minimal in 
1nE +
 or minimal in some 

hypersphere of
1nE +
. 

Minimal and isoparametric hypersurfaces with distinct 
principal curvatures have been studied by many authors, 
(Chen, 1979; Chern, 1970; Erdogan, 2010; Itoh and 
Nakagawa, 1973; Lawson, 1969; Otsuki, 1970; Otsuki, 
1978; Peng and Terng, 1983). T. Otsuki, T. Itoh and H. 
Nakagawa gave a lot of examples of complete 

hypersurfaces with type number 1 in
1( )nH c+

, (Itoh and 

Nakagawa, 1973; Otsuki, 1970; Otsuki, 1978). On the 
other hand, there exist many hypersurfaces with type 

number 2≤  in 
1n

E
+

 by the fundamental theorem for 
hypersurfaces (Sasaki, 1972). 

In an early work, we studied hypersurfaces with 
constant scalar curvature and having sectional curvatures 

1≤  in six-dimensional sphere
6 (1)S , (Erdogan, 2010).  

In   the  present  paper,  we  study  complete  spacelike 
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hypersurfaces with constant scalar curvature and having 

sectional curvatures 1≥  in 
6

1 (1)S  and obtain a new 

result on the type number of the hypersurfaces. Let M be 
a complete spacelike hypersurface with second 

fundamental form h  in
6

1 (1)S . The eigenvalues 

,1 5,
i

iλ ≤ ≤ of the second fundamental form h are the 

principal curvature functions over M. Our main result is 
the following:  
 
 
Theorem 
 
If a complete spacelike hypersurface M with constant 

scalar curvature in 
6

1 (1)S   has the sectional 

curvatures 1≥ , then the type number of M is not greater 
than 1. 
 
 
Preliminaries 
 

Let M  be a complete spacelike hypersurface and 

isometrically immersed in 
6

1 (1)S .We denote by ∇  (resp. 

'∇ ) the covariant differentiation on M (resp.
6

1 (1)S ). We 

choose a local field of Lorentzian orthonormal frames 

1 2 6, ,...,e e e  in 
6

1 (1)S  such that at each point of M, 

1 5,...,e e  span the tangent space of M (and, consequently 

6e  is normal to M). We use the following convention on 

the range of indices: 
                      

1 , , ,... 6 ;  1 , , ,... 5 ; 6A B C i j k α β γ≤ ≤ ≤ ≤ = = =                                                                                                                              

 

Let B be the set of all such frames in
6

1 (1)S . With respect 

to the frame field of 
6 (1)S  chosen above, let 

1 2 6, ,...,ω ω ω  be the field of dual frames so that the 

Lorentzian metric of 
6

1 (1)S  is given 

by
2 2 2 2

6i A Ai A
ds ω ω ε ω= − =∑ ∑% , where 1

i
ε =  

and 6 1ε = − . Then the structural equations of  
6

1 (1)S  are 

given by 
                        

6

1

6

1

, 0,

                (2.1)

A B AB B AB BA

B

AB C AC CB A B

C

d

d

ω ε ω ω ω ω

ω ε ω ω ω ω

=

=


= ∧ + = 



= ∧ − ∧


∑

∑
                 (2.1) 

 
 
 
 

where
AB

ω ’s are the connection forms on
6

1 (1)S . The 

Ricci tensor and the scalar curvature of 
6

1 (1)S  are given 

respectively by 
    

6

1

' 6AB BA ACBC A B AB
C

Ric Ric R ε ε δ
=

= = =∑                     (2.2) 

     
6 6

1 , 1

' ' 30
= =

= = =∑ ∑AA ACAC

A A C

S Ric R                               (2.3) 

 

where 'R  is the Riemannian curvature tensor on 
6

1 (1)S and its entries are given by 

( )'ABCD A B AC BD AD BCR ε ε δ δ δ δ= − . The second fundamental 

form (the shape operator) h of the immersion is given by 
   

( , ) ' ,X Xh X Y Y Y= ∇ − ∇  for tangent vectors X and Y, and 

it satisfies ( , ) ( , )h X Y h Y X= . If we restrict these 

formulas to M, we have  
    

6 0ω = ,  
5

6 6

1

0 i i

i

dω ω ω
=

= = ∧∑ , 

 
and from Cartan’s lemma we write 

     
5

6

1

i ij j

j

hω ω
=

=∑                                                         (2.4) 

 

where
ij ji

h h= . The Riemann metric of M is written as 

2 2

ii
ds ω=∑ and we have the structure equations of M 

as follows: 
     

,i ij j ij ji

j

dω ω ω ω ω= ∧ = −∑                           (2.5) 

     

 
,

1
,

2
ij ik kj ijkl k l

k k l

d Rω ω ω ω ω= ∧ − ∧∑ ∑      (2.6) 

 

'

      δ δ δ δ

= + −

= − + −

ijkl ijkl ik jl il jk

ik jl il jk il jk ik jl

R R h h h h

h h h h               (2.7) 

 

Where R  is the Riemannian curvature tensor on the 
hypersurface M. 

Then, the second fundamental form h can be written as 



 
 
 
 

5

6

1

( , ) ( ) ( )
ij i j

j

h X Y h X Y eω ω
=

= ∑ . 

 

The covariant derivative '∇ h  of h, with components
ijk

h , 

is given by 
 

, ,

' ω ω ω∇ = ∑ ijk i j k
i j k

h h  

and 
 

ijk k ij rj ri ir rj

k r r

h dh h hω ω ω= + +∑ ∑ ∑ .                     (2.8) 

 

Then we have 
ijk ikj

h h=  for any i, j and k=1, 2,3,4,5, 

because 
6

1
(1)S  is of constant curvature 1. 

Indeed, by exterior differentiating (2.4), we get 
    

6i ij j im mj j

j jm

d dh hω ω ω ω= ∧ + ∧∑ ∑  

or 

6 6 6

1

2
i im m iml m l

m ml

d Rω ω ω ω ω= ∧ − ∧∑ ∑ . 

 
We also have from (2.4) and (2.6) 

    

6i mj mi j

jm

d hω ω ω= − ∧∑ . 

 
Therefore,  
 

.
ij j rj ri j ir rj j

j jr jr

dh h hω ω ω ω ω∧ =− ∧ − ∧∑ ∑ ∑       (2.9)

       
 

So, we get 
    

0
i j k k j

k j

h ω ω∧ =∑ , 

 

Therefore,
ijk

h ’s are symmetric in all indices. Exterior 

differentiating the equation (2.8) and defining 
ijkl

h  by 

    

ijkl l ijk rjk ri irk rj ijr rk

l r r r

h dh h h hω ω ω ω= + + +∑ ∑ ∑ ∑                 

                                                                            (2.10) 

Erdogan and Alo        295 
 
 
 
We have 
    

1 1
( ) 0

2 2
ijkl ir rjkl rj rikl k l

kl r r

h h R h R ω ω− − ∧ =∑ ∑ ∑          (2.11) 

 
and from this we obtain     
 

ijkl ijlk ir rjkl rj rikl

r r

h h h R h R− = +∑ ∑ .                      (2.12) 

 

Now, let us define the laplacian h∆  of the second 

fundamental form h by 
    

( )
ij ij ijkk

k

h h h∆ = ∆ =∑                                             (2.13) 

 
From (2.12) and (2.13) we obtain 

    

ijkk kijk

k k

h h=∑ ∑  

 
and so    
    

i j k ijk

k

h h∆ = ∑ . 

 
Then, from (2.11) we find 

    

( )
ij kikj ri rkjk kr rijk

k k r r

h h h R h R∆ = + +∑ ∑ ∑ ∑         (2.14) 

 
 
Proof of the theorem  
 
Let M be a complete spacelike hypersurface with 

constant scalar curvature in
6

1
(1)S . We suppose that the 

sectional curvature ( )K π  of M is not smaller than 1, that 

is  
 

( ) 1K π ≥ .                                                         (3.1) 

 

For a plane π  in the tangent space xT M at x M∈ to M, 

the sectional curvature ( )K π for π  is defined by 

 

( ) ( )( ) ( ) ( )( )' ,K(p)=1+g h X,Y ,h X,Y -g' h X,X ,h Y,Y    (3.2) 

                                                                             

Where g'  is the Riemannian metric of 
6

1
(1)S  and X, Y is 

a pair of orthonormal vectors in x
T M . 
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Let 1 2 5, ,...,λ λ λ  be the principal curvatures of M, 

then by (2.6) and (2.7) the sectional curvature ( )
ij

K π  for 

the plane spanned by 
i

e  and 
j

e  is expressed as follows: 

 

( ) 1
ij i j

K π λ λ= − , 

 
Which, together with (3.1) implies that the following 
 
 
Lemma 
 
The type number of M is not greater than 2 at each 
point of M 

 

Now let N  be the set of all points at which the type 

number of M is 2. If N is not empty, then N  is an open 

subset of M. Suppose that there exists a point of M at 
which the type number is greater than 1. Then by 

Lemma, N  is a non - empty open subset of M. Hence 

there is a neighborhood U  of a point x N∈  where we 

can choose a frame field  
1 5

{ ,..., }e e  such that 

 

16 1 26 2
, , 0 ,ω λω ω µω µ λ= = < <                      (3.3) 

 

6
0, 3,4,5.

k
kω = =                        (3.4) 

 

Where λ  and µ  are differentiable functions on U , 

because we have 
1212

1 1,R λµ= − ≥  i.e., 0λµ <  by 

(2.5)-(2.8) and (3.1)-(3.4). Using (2.5)-(2.7), from (3.3) 
and (3.4) we have  

 

1 1 12 2, 3,4,5,
k k k

h kλω λω ω= + =                                       (3.5) 

    

2 12 1 2 , 3, 4, 5,
k k k

h k= + =mw w m w     ….(3.6) 

    
5

12 2 1 1 2 12

3

1
( ),

k k

k

h
=

= + +
-

åw l w mw w
l m

         (3.7) 

    

0, , 3, 4,5, 1,...,5,
klj

h k l j= = =                      (3.8) 

 

where

5

1

i i

i

dλ λ ω
=

=∑ . Furthermore, making use of (2.10), 

(3.3)-(3.8), from (2.12) and (2.14) we obtain  
 

5 5 5

11 22

, 1 1 1

ij ij rr rr

i j r r

h h h hλ µ
= = =

∆ = +∑ ∑ ∑  

 
 
 
 

5 5
2 2

2112 1221 1 1 2 2

1 1

( )
r r r r

r r

R R R Rλµ λ µ
= =

+ + + +∑ ∑      

 
5 5

2 2 2 2

11 22

1 1

( )(4 ) 2( )rr rr

r r

h hλ µ λ µ λµ λ µ λµ
= =

= + + + + − +∑ ∑    

                                                                         (3.9) 
 
Using (3.5)-(3.8), from (2.10) we have  
                     

2
2 2 22

1111 11 3 4 5

2
2 2 21

1122 22 123 124 125

2
2 2 22

2211 11 123 124 125

2
2 2 21

2222 22 3 4 5

2 2
( ),

2 2
( ),

2 2
( ),

2 2
( ),

h

h h h h

h h h h

h

λ
λ λ λ λ

λ µ λ

µ
λ

λ µ λ

λ
µ

λ µ µ

µ
µ µ µ µ

λ µ µ


= − − + + 

− 


= − − + + 
− 


= + − + +
−



= + − + + − 

                           

                                                     (3.10)   
 

where 

5 5

1 1

i ij j j ij

j j

dλ λ ω λ ω
= =

= +∑ ∑  for any 1,...,5.i =  On 

the other hand, we can write 
        

2 2

11 12

2 2

22 12

2 2
,

2 2
, 3,4,5.

kk k k

kk k k

h h

h h k

λ
λ µ

µ
µ λ


= + 


= + =


                  (3.11)

          
It follows from (3.9)-(3.11) that we have 

 
5

11 11 22 22

1

2 2
2 1 4

,

( ) ( )

        ( ) ( )( ).

ij ij
i j

h h λ λ µ µ λ µ

λµ λµ λ µ λµ

=

∆ = + + +

− + + + +

∑
           (3.12)                                                               

 
Besides, we may write 

    

5 5 5

11 22

, 1 1 1

ij ij rr rr

i j r r

h h h hλ µ
= = =

∆ = +∑ ∑ ∑           (3.13) 

 
and     



 
 
 
               

 

2

11 12

2

22 12

2
,

2
, 3, 4,5.

kk kk k

kk kk k

h h

h h k

λ
λ µ

µ
λ µ


= − − 


= + =
− 

                (3.14)  

 
Now, it follows, from (3.10), (3.13) and (3.14), that 
 

5 5
2 2

1 1

5
2 2 2

1 2 12

1

2

2 6

,

( )

      ( ) .

ij ij i i
i j i

k
k

h h

h

λ λ µ µ λ µ

λ µ

= =

=

∆ = ∆ + ∆ − +

+ + −

∑ ∑

∑
      (3.15)                                                                                                                                            

                       
Using (3.12) and (3.15) we write that 

 

11 22

2 2

33 44 55 33 44 55

5 5
2 2 2 2 2

1 2 12

1 3

( )( ) 2 (1 )

    ( )(4 )

( ) ( )

  2 ( ) 2( ) 6 .i i k
i K

h

λ µ µ λ λµ λµ

λ µ λµ

λ λ λ λ µ µ µ µ

λ µ λ µ
= =

− − − +

+ + +

= + + + + +

− + + + −∑ ∑

        (3.16)                                                                                      

                                                                   
On the other hand, using (3.3) and (3.4), from (2.12) we 
have 

          
2

2 2 21
1212 22 123 124 125

2 2
( ),h h h h

µ
λ

λ µ λ
= − − + +

−
 

           

1212 2211 ( )(1 ),h h λ µ λµ= + − +  

           
2

2 2 22
2211 11 123 124 125

2 2
( ),h h h h

λ
µ

λ µ µ
= + − + +

−
 

 
Which implies that 

  
2 5

2 2 2 2

11 22 12 2 1

3

( )
( )( ) ( ) (1 ) 2( ).k

k

h
λ µ

λ µ µ λ λ µ λµ λ µ
λµ =

−
− − = − − + − +∑                                                                                                  

                                                                            (3.17) 
 

Thus, from (3.16) and (3.17) we get 
 

2
2 2 2

33 44 55 33 44 55 123 124 125

( )
( ) ( ) 6 ( )h h h

λ µ
λλ λ λ µµ µ µ

λµ

 −
+ + + + + = + + + 

 
5

2 2 2 2 2 2 2 2

2 1 2

1

3( ) 2 ( ) 2( ).
i i i

i

λ µ λ µ λ λ µ µ
=

+ + + + − + + +∑         

                                                                       (3.18) 
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Now, by using (2.10) and (2.12) we write that 

            

11 11 11 12 12

2
,

kl kl kl kl kl k l
h h h h hλδ λ

λ µ
= − = −

−
 

and 
            

11 12 12

2 2
, , 3,4,5.

kl k l k l
h h h k lλ λ

λ µ
= + =  

 
which implies that  
            

12 12

2 2
, , 3,4,5.

( )
kl k l k l kl

h h k l
λ

λ λ λ λδ
λ µ λ µ

= + + =
−

   (3.19)              

                                                                         
It follows from (3.18) and (3.19) that 
        

5
2 2 2 2

33 44 55 33 44 55

3

( ) ( ) 2 ( ) 3( )
k k

k

λ λ λ λ µ µ µ µ λ λ µ
=

+ + + + + = + + +∑  

 

2 2
2 2 2

123 124 125

2( )
( )h h h

λ µ λµ

λµ

 + +
+ + + 
 

.                (3.20) 

 
Making use (3.18) and (3.20) we get 

                                    
5

2 2

12

3

( ) 0,
k

k

hλ µ
=

− =∑   

 
which implies that 

    

12
0

k
h =  for any 3, 4,5.k =                                      (3.21) 

                                                               
Now from (3.5)-(3.7) and (3.21) , we obtain that 

              

1 1 2 2, , 3,4,5.
k k k k

kλω λω µω µω= = =               (3.22) 

 
and 

              

12 2 1 1 2( ) , 0 .λ µ ω λ ω µ ω µ λ− = + < <        (3.23) 

 
In this case, the scalar curvature S is given 

by 2( 10)S λµ= + which, together with the 

assumption .S const= , implies that  

             

0, 1,...,5
i i

iλ µ λµ+ = =                                   (3.24) 

 
and  



298          Int. J. Phys. Sci. 
 
 
             

2

2
, , 1,...,5.

i j

ij ij i j
µλλµ

µ λ
λ λ

+ = =                        (3.25) 

 
Hence, from (3.19), (3.21) and (3.25) we have that 

             
2 0, , 3,4,5k l kl klλλ λδ+ = =          

 

which implies 0λ = . This result contradicts the 

assumption 0λ ≠ , therefore, it must be N = ∅ .  

   This result shows that the type number of M is not 
greater than 1 at each point of M and so the theorem is 
proved. 
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