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In this paper, a new approach, namely the optimal variational iteration method (OVIM) was proposed to 
investigate oscillators with fractional-power nonlinearities. It was illustrated that this approach is very 
effective and convenient and does not require linearization or small parameter. Unlike other classical 
iteration methods, only one iteration leads to highly accurate results, due to a rigorous procedure for 
convergence control. Approximate analytical results obtained through the proposed method were 
compared with numerical results and an excellent agreement was found, which prove the validity of the 
proposed procedure. This method can be easily applied to other strongly nonlinear problems. 
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INTRODUCTION 
 
It is well-known that analytic approximations of nonlinear 
problems often break down as nonlinearity becomes 
strong. Classical perturbation approximations are valid 
only for weakly nonlinear problems (Nayfeh and Mook, 
1979; Hagedorn, 1988). The use of perturbation 
techniques in many important practical problems is 
invalid, or it simply breaks down for parameters beyond a 
certain specified range. Therefore, new analytical 
techniques should be developed to overcome these 
shortcomings. Such new techniques should work over a 
larger range of parameters and yield accurate analytical 
approximate solutions beyond the coverage and ability of 
the classical perturbation methods. 

There are known in the literature some attempts in 
developing new analytical techniques valid for strongly 
nonlinear problems. Some extensions of the Lindstedt-
Poincare   perturbation   method    to   strongly   nonlinear  
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systems have been proposed (Lim et al., 2009; Ramos, 
2008; Pakdemirli et al., 2009). Other recently proposed 
analytical approaches intended to solve strongly 
nonlinear oscillators, are the variational iteration method 
(Chen et al., 2010; He et al., 2010; Marinca and Herişanu, 
2008), the parameter-expanding method (Zengin et al., 
2009), the optimal homotopy asymptotic method 
(Herisanu et al., 2008), the optimal homotopy 
perturbation method (Marinca and Herişanu, 2010) and 
so on.  

Concerning the specific category of nonlinear 
oscillators with fractional-power nonlinearities, a mixture 
of methodologies was employed in an attempt to achieve 
accurate results. Some piecewise-linearized methods 
were used by Ramos (2007), the homotopy perturbation 
method was applied by Beléndez et al. (2007), an 
analytical approximate technique which incorporates 
salient features of both Newton’s method and harmonic 
balance method is applied by Lim and Wu (2005), a 
method based on the combination of the Krylov–
Bogoliubov method with Hamilton’s variational principle 
with the uncommutative rule for the variation of velocity is  
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used (Kovacic, 2009). Some of these approaches need 
higher-order approximations to achieve accurate results, 
others need piecewise-linearization. 

The purpose of this paper is to construct accurate 
approximations to periodic solutions and frequencies of 
non-linear oscillators with fractional-power restoring force 
by applying the optimal variational iteration method 
(OVIM). The most significant feature of this new 
approach is the optimal control of the convergence of 
approximations, which lead to accurate results after only 
one iteration and therefore higher-order approximations 
are not needed. Different from other methods, the validity 
of the OVIM is independent on whether or not there exist 
small parameters in the considered nonlinear equations. 
This application will demonstrate the general validity of 
the OVIM, its effectiveness, accuracy and its potential for 
solving nonlinear oscillators.  

In order to develop an application of the proposed 
method, we consider the nonlinear oscillator with 
fractional-power restoring force: 
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where ω0, α, f, Ω are constants and n>0 rational. Initial 
conditions are given by 
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The exact period of vibrations for the oscillator (1) with 

0f0   is calculated by Cveticanin (2009). There 

exists no small parameter in the equation and therefore 
the traditional perturbation methods cannot be applied 
directly. Attention here is restricted primarily to rational 
powers.  

For investigating the nonlinear oscillator described in 
Equation 1 we propose an approximate analytical 
solution using OVIM. In case of the classical VIM (He et 
al., 2009), initial approximations contain unknown 
parameters which can be identified by initial or boundary 
conditions after few iterations, while in case of OVIM, 
initial approximation contains a number of unknown 
parameters larger than the number of initial/boundary 
conditions. These parameters can be identified partially 
from the initial/boundary conditions and the rest of them 
can be optimally identified so that the residual functional 
be minimized. Following this procedure, often we need 
only one iteration for accurately solving the problem. 

In general, we consider the following nonlinear 
equation: 
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where h is assumed to be a nonlinear function, which 
may be expanded in a Fourier series. We construct the 
following iteration formula (He et al., 2010; Marinca and 
Herişanu, 2008): 
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where )t,( is the Lagrange multiplier which can be 

identified via variational theory and nx~  is a restricted 

variation 0x~n  . Calculating variation with respect to nx , 

the following stationary conditions are obtained: 
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Therefore, the Lagrange multipliers can be readily 
identified: 
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and as a result, we obtain the following iteration formula 
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Equation 7 is equivalent to 
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Initial conditions for Equation 3 are: 
 

a)0(x  ,    0)0(x                           (9) 

 

In our procedure, the initial iteration )t(x0  contains p>2 

unknown parameters. Two of them can be determined 
from Equation 9 and the rest of p-2 parameters can be 
optimally determined from the stationary conditions of the 
residual functional or by other methods such as Galerkin 
method, collocation method, least square method 
(Herişanu and Marinca, 2010).  
 
 

Analytic solutions for oscillators with fractional-
power nonlinearities 
 
It can be shown that  
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so that Equation 1 can be rewritten as 
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Equation 4 describes a system oscillating with the 
unknown frequency ω and the period T. We switch to a 

scalar time t
T

t2



  and therefore under the 

transformation 
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we can rewrite Equation 3 in the form 
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where a prime denotes differentiation with respect to τ 
and  
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As an initial approximation for )(x0  we choose: 
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where C1, C2, C3 and C4 are unknown constants which 
partially can be determined from Equation 9: 
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It is known that if g is an analytic function, then 
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where a prime denotes differentiation with respect to y for 
any real y and p. In our case: 
 

signxx)x(g
n


1n

xn)x('g


  ,  cosCy 1 ,

 7cosC5cosC3cosCp 432                       (18) 

 
From Equation 8 for n=0 it is obtained: 
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where  )u(x,uh 0  is obtained substituting Equation 15 

into Equation 14. On the other hand, using only the first 
two terms into Equation 17, we can approximate g in the 
form: 
 

  )ucosC('g)u7cosCu5cosCu3cosC()ucosC(g)u(xg 143210 

                                                                          (20) 

For )ucosC(g 1 , we obtain the following Fourier series 

expansions: 
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The last term in Equation 20 can be written in the form 
From Equations 23 we obtain 
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Substituting Equations 24 and 21 into Equation 20 and 
then substituting Equation 20 into Equation 1), we obtain 
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where     N.R.T.     stands      for      nonresonant     terms.
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Avoiding the presence of secular terms in the right-hand 
side of Equation 19, we obtain from Equation 25 the 
frequency ω as 
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With this requirement, Equation 25 becomes 
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Substituting Equations 27 and 12 into Equation 19 yields: 
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                                                                        (29) 
 
where ω is given by Equation 26 and 

 
 
 
 

  





















1ε)  ,  ε1ω( Ω   ,          t)
2

1
sin(t

2

1
sin

)2(

f2

    ,                    tcos1
)(

f

)t(G

2

22









                                                              (30) 
 
At this moment the first approximation given by Equation 
29 depends on the parameters C1, C2, C3 and C4. These 
constants can be identified via various methods such as 
the collocation method, the Galerkin method, the least 

square method etc. If )C,C,C,C,t(R 4321  is the residual 

obtained substituting the first approximation (29) into 
Equation 1: 
 

tcosfxxxx)C,C,C,C,t(R
1n

11
2

1014321 


  

                                                                         (31) 
 
and if the functional J is given by the integral 
 

dt)C,C,C,C,t(R)C,C,C,C(J 4321

2

0

2
4321 





           

                                                                                     (32) 
 
Then the constants C1, C2, C3 and C4 can be determined 
from Equations 16 and from the conditions that J to be 
minimized, or from the condition of conditioned minimum: 
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                                                                                    (33a) 
 
or, alternatively, the same constants can be achieved 
imposing the conditions 
 

4,3,2,1,0),,,,( 4321  iCCCCtR i        (33b) 

 
Therefore, it is to be note that OVIM provide us with a 
simple way to adjust and optimally control the 
convergence of solutions. 
 
 
NUMERICAL EXAMPLES 
 
We illustrate the accuracy of the OVIM by comparing the 
previously obtained approximate solutions (29) with the 
numerical integration results obtained by a fourth-order 
Runge-Kutta method. 
 

1. In the first case we consider 
3

1
n  and from Equation 

22 it is obtained 
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a) For a=5, α=1, ω0=0, f=0, from Equations 16 and 33 we 
obtain 
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The first-order approximate solution (29) becomes: 
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                                        (34) 

 
where 6269145.0 . 

 

b) For a=5, α=1, ω0=1, f=0, the following results are 
obtained: 
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where 1817241.1 . 

 
c) For a=5, α=1, ω0=1, f=0.1, Ω=1, it is obtained 
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                                                                         (36) 
 
where 17537309.1 . 
 

2. In the second case we consider n=2. From Equation 
22 it is obtained: 
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a) For a=5, α=1, ω0=0, f=0, we have 
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where 045312.2 . 

b) For a=5, α=1, ω0=1, f=0, we obtain 
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c) For a=5, α=1, ω0=1, f=0.1, Ω=1, we have 
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Figure 1. Comparison between the approximate solution 

(34) and numerical results in case 
3

1
n  , a=5, ω0=0, f=0, 

______ numerical solution _ _ _ _ approximate solution 
(34). 

 
 
 

 
 

Figure 2. Comparison between the approximate solution 

(35) and numerical results in case
3

1
n  , a=5, ω0=1, f=0 

______ numerical solution_ _ _ _ approximate solution 
(35). 

 
 
 

4.3. In the third case, we consider
3
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n  . From Equation 

22 it is obtained: 
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a) For a=2, α=1, ω0=0, f=0, we have: 
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where 1854322.1 . 

 
 
 
 

 
 

Figure 3. Comparison between the approximate solution 

(36) and numerical results in case 
3

1
n  , a=5, ω0=1, 

f=0.1 ______ numerical solution_ _ _ _ approximate 
solution (36). 

 
 
 
 

 
 

Figure 4. Comparison between the approximate solution (37) 
and numerical results in case n=2, a=5, ω0=0, f=0 ______ 
numerical solution_ _ _ _ approximate solution (37). 

 
 
 
b) For a=2, α=1, ω0=1, f=0, it is obtained 
 

00929309.0;0000205581.0;00505791.0;985630001.1 4321  CCCC
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where 553241.1 . 

 
Figures 1 to 8 show the comparison between the present 
solutions and the numerical integration results obtained 
by a fourth-order Runge-Kutta method in the 
aforementioned cases. 

As it can be observed, Figures 1 to 8 have been 
obtained for different working conditions of the 
considered   oscillator,  for  small  and also for large initial  



 

 
 
 
 

 
 

Figure 5. Comparison between the approximate 
solution (38) and numerical results in case n=2, a=5, 
ω0=1, f=0 ______ numerical solution_ _ _ _ 
approximate solution (38). 

 
 
 

 
 

Figure 6. Comparison between the approximate solution 
(39) and numerical results in case n=2, a=5, ω0=1, f=0.1 
______ numerical solution_ _ _ _ approximate solution 
(39). 

 
 
 

amplitudes. Since the motion is periodic, only the first 
period is plotted for each considered case. Two fractional 
powers were considered for the restoring force: n=1/3 
illustrated in Figures 1 to 3 and n=5/3 illustrated in 
Figures 7 to 8, respectively, for different parameters a, ω0, 
and f. Additionally, an integer power (n=2) is considered 
in a supplementary case illustrated in Figures 4 to 6. Two 
distinct situations were analysed: functioning with 
(Figures 3 and 6) and without (Figures 1, 2, 4, 5, 7 and 8) 
harmonic excitation. These figures show that the first-
order analytical approximations obtained by OVIM 
provide excellent solutions for non-linear oscillators with 
fractional-order restoring force. In all considered cases, 
the error between the analytical and numerical results is 
remarkably good since the solutions obtained by OVIM 
are nearly identical with the solutions given by the 
numerical method.  

An error analysis is presented in Table 1, where we 
computed the maximum absolute error between the 
numerical and analytical results in the considered cases: 
 

KRapp xxErr  1
.  
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Figure 7. Comparison between the approximate solution 

(40) and numerical results in case 
3

5
n  , a=2, ω0=0, f=0 

______ numerical solution, _ _ _ _ approximate solution 
(40). 

 
 
 

 
 

Figure 8. Comparison between the approximate solution (41) 

and numerical results in case 
3

5
n  , a=2, ω0=1, f=0 ______ 

numerical solution_ _ _ _ approximate solution (41). 

 
 
 

One can observe that in the cases corresponding to 
small initial amplitudes (4.3.a and 4.3.b with 
correspondent Figures 7 and 8, respectively), the 
obtained error is much better than the error obtained for 
large amplitudes, which is acceptable. The larger 
absolute error is obtained in the case 4.1.c (Figure 3) 
corresponding to the oscillator with non-zero perturbing 

force in the conditions
3

1
n  , a=5, ω0=1, f=0.1, α=1. 

Analysing the Figures 1 to 8 we can conclude that an 
increased value of the power n leads to decreasing the 
period of motion, as it can be observed comparing 
Figures 1 and 4 or Figures 2 and 5, respectively, which 
are couples of figures obtained for the same parameters 
a, ω0 and f. The same remark is applicable also in the 
presence  of  the perturbing force, when one can be seen  
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Table 1. Maximum absolute error between the numerical and analytical results in the considered cases. 
 

Case 4.1.a (Figure1) 4.1.b (Figure 2) 4.1.c (Figure 3) 4.2.a (Figure 4) 4.2.b (Figure 5) 4.2.c (Figure 6) 4.3.a (Figure 7) 4.3.b (Figure 8) 

Maximum error 0.1561 0.0567 0.3158 0.1387 0.0948 0.1321 0.0142 0.0142 
 
 
 

that increasing the value of the power n leads to a 
significant decreasing of the period of motion, as it 
is illustrated in Figures 3 and 6. For the same 
frequency of the harmonical excitation (Ω=1), the 
pulsation ω of the oscillating system increases 
once the value of the power n is increasing. 

Similarly, the presence of a non-zero parameter 
ω0 leads to decreasing the period of the motion, 
which is illustrated comparing Figures 1 and 2 or 
Figures 4 and 5 or Figures 7 and 8. It is 
interesting to observe that the period of motion is 
slowly decreasing for larger values of the powers 
n (n=2), as it can be seen comparing Figures 4 
and 5, while there is abrupt decrease for smaller 
values of n (n=1/3), as it can be seen comparing 
Figures 1 and 2. 

We note that the Lagrange multipliers 

),( t given by Equation 6 and the initial 

approximation )(0 x  together with the procedure 

intended to determine the optimal values of the 
convergence-control parameters Ci involved in the 
initial approximation guarantee a fast 
convergence of the solutions in every 
aforementioned case. This is the reason why the 
OVIM is valid for different types of highly nonlinear 
problems. We underline that OVIM provides a 
great freedom in choosing the initial 
approximations and implicitly offers a convenient 
way to control the convergence of the solutions. 

 
 
Conclusions 
 
In this work, a new analytical technique, called the  

optimal variational iteration method is employed to 
propose an analytic approximate solution for 
some nonlinear oscillations. The validity of the 
procedure is illustrated on the oscillators with 
fractional-power nonlinearities. The proposed 
procedure (OVIM) is valid even if the considered 
nonlinear equation does not contain any small or 
large parameter. The OVIM provides us with a 
simple way to optimally control and adjust the 
convergence of a solution and can give very good 
approximations in a few terms. Unlike other 
classical iteration methods, in this case, only one 
iteration leads to highly accurate results, due to 
the rigorous procedure for convergence control. 
This version of the method proves to be very rapid, 
effective and accurate. We proved this by 
comparing the solution obtained through the 
proposed method with the solution obtained via 
numerical integration using a fourth-order Runge-
Kutta method. This work shows one step in the 
attempt to develop a new nonlinear analytical 
technique in the absence of small or large 
parameters. 
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