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We studied the inventory-production system with two-parameter Weibull distributed deterioration items. 
The solution of optimal inventory production control problem with Weibull distribution deteriorating 
item was revisited based on Baten and Kamil (2009) and carried out using Pontryagin maximum 
principle. It was also illustrated with an example. The overall inventory and production control were 
tested for different demand patterns. The inventory production controlled systems of non-linear 
differential equations were solved numerically. 
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INTRODUCTION 
 
Inventory-production system consists of a manufacturing 
plant and a finished goods warehouse to store those 
products which are manufactured but not immediately 
sold. The control of dynamic inventory production 
systems that evolve over time called continuous time 
systems or discrete-time systems depending on whether 
time varies continuously or discretely which is a rich 
research area (Sethi and Thompson, 2000). In this paper 
we are interested to find optimal ways to control a 
dynamic system using optimal control theory. The optimal 
control theory has been applied to different inventory-
production control problems to analyze the effect of 
deterioration and the variations in the demand rate with 
time.  A number of studies have been done with the 
assumption that the deterioration rate follows the Weibull 
distribution (Chakrabarty et al., 1998; Chen and Lin, 
2003; Ghosh and Chaudhuri, 2004; Goel and Aggarwal, 
1980; Wu and Lee, 2003).  

The assumption of the constant deterioration rate was 
relaxed by Covert and Philip (1973) who used a two- 
parameter Weibull distribution to represent the distribu-
tion of time to deterioration. This model was further 
generalized by Philip (1974) by taking a three-parameter 
Weibull distribution. Mishra  (1975)  also  adopted  a  two- 
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parameter, Weibull distribution deterioration to develop 
an inventory model with a finite rate of replenishment. Al-
khedhairi and Tadj (2007) studied the optimal control 
model of a production inventory system with Weibull 
distributed deterioration. Shah and Acharya (2008) 
minimized the total cost per unit of an inventory system 
with two parameter Weibull distributed deterioration 
under assumption of exponentially decreasing demand. 
These types of problems have been studied to determine 
the optimum order quantity for different demand patterns 
(Happing and Wang, 1990; Bahari-Kashani, 1989; 
Andijani and AL-Dajani, 1998; AL-Majed, 2002; Bounkhel 
et al., 2005; Benhadid et al., 2008; Baten and Kamil, 
2009). 

We setup an optimal control model and utilize the 
optimal control theory to obtain optimal production policy 
for inventory production systems where the novelty we 
take into consideration is that the time of deterioration is 
a random variable followed by the two-parameter Weibull 
distribution. This distribution can be used to model either 
increasing or decreasing rate of deterioration, according 
to the choice of the parameters. The probability density 
function of a two-parameter Weibull distribution is given   by 
 

{ }1( ) exp , 0,f t t t tγ γηγ η−= − >  

 
where 0 1 η≤ ≤  is  the  scale  parameter,  1 γ ≥  is  the  



 
 
 
 
shape parameter, and 0t > is the time of deterioration 
(Mishra and Shah, 2008; Shah and Acharya, 2008). The 
probability distribution function is 
 

{ }( ) 1 exp , 0.F t t tγη= − − >  

 
The instantaneous rate of deterioration of the on-hand 
inventory is given by 
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In this study we revisited the article of Baten and Kamil 
(2009) and give a numerical solution of the inventory 
production controlled system with two parameter Weibull 
distributed deterioration. Pontryagin maximum principle is 
used to obtain an optimal control policy of the inventory 
production model. We focus on the analysis of a produc-
tion inventory system in which the nonlinear holding and 
production cost are treated as the function of the 
inventory level and production rate respectively. 

This paper is organized as follows. In section-2 we ex-
plain an inventory-production model and setup an optimal 
control problem. In section-3 we briefly present the 
optimal solution of such problem and give an example. 
Section-3 discusses the numerical solution of the inven-
tory production controlled system using different types of 
demand functions. Finally conclusions of the results are 
presented in the last section. 
 
 
OPTIMAL CONTROL OF INVENTORY PRODUCTION 
MODEL 
 
In this section, we are concerned with mathematical 
formulation and optimal control of inventory production 
model for Weibull deteriorating items. The problem is 
represented as an optimal control problem with state and 
control variables which are the inventory level and 
production rate respectively. We develop the analytical 
solution of the inventory production controlled system and 
then we give the numerical solution as well as display it 
graphically. The solution of the inventory production 
controlled systems include different cases of the demand 
which are: sinusoidal function of time t, twice-sinusoidal 
function of time t, co-sinusoidal function of time t, 
exponential decreasing function of time t and exponential 
increasing function of time t. 
 
 
The model assumptions 
 
This subsection is devoted to discuss the model assump-
tions.We consider that a firm can manufactures a certain 
product, selling some and stocking the rest in a 
warehouse. We assume that the demand rate varies  with  
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time. The production rates are itself the rates of 
continuous supply to inventory levels. We assume that 
the firm has no shortage, the instantaneous rate of 
deterioration of the on-hand inventory follows the two-
parameter Weibull distribution and the production is 
continuous. We also assume that the firm has set an 
inventory goal level x̂(t)  and a production goal rate û(t)  

and is looking for a pair ( )u(t); x(t) which converges to 

( )ˆ ˆu(t); x(t) and minimizes the cost function. 

Let us define the following variables and parameters: 
 

( )x t  is the inventory level in the warehouse at any 

instant of time [0, ],t T∈ . 

ˆ( )x t  is an inventory goal level,  

0h >  is the inventory holding cost coefficient incurred for 
the inventory level,  

( ) 0u t > is the firm manufactured units of the production 

rate at any instant of time [0, ],t T∈ . 

ˆ( )u t is the production goal rate. 

0C > is the production cost coefficient.  
( )y t is the demand rates.  

0T > represents the fixed length of the planning horizon. 
We will setup the optimal inventory production control 
problem using the above assumptions and we will give 
the analytical and a numerical solution of this problem 
with Weibull deteriorating items. The inventory production 
controlled system will be solved numerically for different 
types of the demand functions. 
 
 
Mathematical modeling and previous work 
 
Setup of optimal control problem 
 
This subsection studies to arrive at a mathematical 
description and to predict the response of the inventory 
production model with Weibull deterioration rate. Since 
our objective is to give a numerical solution of the 
inventory production controlled system with revisiting the 
article of Baten and Kamil (2009) which minimizes the 
setup and the inventory costs, the objective function can 
be expressed as the quadratic form: 
 
 

[ ] [ ]{ }
T

2 2

0

1 ˆ ˆminimize ( ) ( ) ( ) ( ) (2.1)
2

J h x t x t C u t u t dt= − + −�
 (2.1) 

 

The economic interpretation of this objective function 
(2.1) is that we want to keep the inventory ( )x t  as close 

as possible to its goal ˆ( )x t and also keep the  production 

rate u(t) as close to its goal level û(t) . The quadratic 

terms [ ]2ˆ( ) ( )h x t x t− and [ ]2ˆ( ) ( )C u t u t− impose ‘penal- 
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ties' for having either x(t) or u(t) not being close to its 
corresponding goal level (Sethi and Thomson, 2000). 

The dynamics of the state equation of this objective 
function (2.1) which says that the inventory at time t is 
increased by the production rate and decreased by the 
demand rate and the instantaneous rate of deterioration 

1tγηγ − of Weibull distribution can be written as according 
to: 

 
1( ) ( ) ( ) ( ) (0) , 0 (2.2).dxt ut y t t x t dt x x xγηγ −� �= − − = >� �               (2.2) 

 

Note that the goal pair ( )ˆ ˆ( ); ( )u t x t must satisfy the 

differential equation (2.2), to be feasible. The solution of 
(2.2) is given by 
 

{ } [ ]
0

( ) (0)exp ( ) ( ) , for all [ , ]. (2.3)
t

x t x t y t u t dt t oTγη= − − − ∈�
        (2.3) 

 

Assuming that (0)x x= is known and note that the 

production goal rate ˆ( )u t can be computed using the 
state equation (2.2) as: 
 

1ˆ ˆ( ) ( ) ( ) (2.4)u t y t t x tγηγ −= +                                      (2.4) 
 
The inventory dynamics represented by equation (2.2) 
can be written in terms of the new variables as: 
 

1( ) ( ) ( ) ( ) (2.5)dz t t z t k t t dtγηγ µ−� �= − + +� �                     (2.5)
 

 
Where; ˆ( ) ( ) ( )z t x t x t= − is the deviation of the inventory 

level ( ),x t from the desired inventory goal rate; 
ˆ( ) ( ) ( )k t u t u t= − is the deviation of the production rate 

from the desired production goal rate and a function of 
the actual demand expressed as  
 

1ˆ ˆ( ) ( ) ( ) ( ). (2.6)t u t y t t x tγµ ηγ −= − −                             (2.6) 

 
The optimal control model becomes 

 

{ }
T

2 2

0

1
minimize ( ) ( ) , (2.7)

2
J h z t C k t dt� � � �= +� � � ��

   (2.7)

 

 
together with (2.5) form a standard linear quadratic 
regulator (LQR) problem with known disturbance ( )tµ  
defined in (2.6). The general form of this LQR optimal 
control problem for a finite time horizon [0, ]T  is as 
follows; 

 
 
 
 

{ }
T

0

1
minimize ( ) ( ) ( ) ( ) ( ) ( ) , (2.8)

2
T TJ z t Q t z t k t R t k t dt= +�

   (2.8) 
 
subject to an ordinary differential equation:  
 

[ ]( ) ( ) ( ) ( ) ( ) ( ) , (2.9)dz t B t z t D t k t t dtµ= + +                          (2.9)
 

 

Where; ( )Q t and ( )R t are real symmetric positive semi-

definite matrices of appropriate dimension; and ( )B t and 

( )D t  are the system of dynamics matrices. 
 
 
SOLUTION TO THE OPTIMAL CONTROL PROBLEM 
 
The optimal control policy is given by Baten and Kamil 
(2009) 
 

* 1( ) ( ) ( ) ( ) ( ), (3.1)Tk t R t D t P t z t−= −                              (3.1) 

 
Where;  
 

1( ) ( ) ( ). (3.2)TP t B t Q t−= −                                         (3.2) 

 
By comparing equations (2.7) and (2.5) to (2.8) and (2.9), 

we have 1( ) , 1, and .B t t D Q h R Cγηγ −= − = = =  
Then from (3.2) we obtain: 
 

1 1( ) ( ) , (3 .3 )P t h t γη γ − −=                                   (3.3) 

 
and the optimal control policy (3.1) becomes: 
 

* 1 1 1( ) ( ) ( ). (3.4)k t hC t z tγηγ− − −=−                               (3.4) 

 
Example 3.1 If we choose 

1( 1, 1), 1, 1 1B by D Q h and R Cη γ=− = = = = = = =  
then the optimal control model (2.8) and (2.9) becomes 
over a finite time horizon [0, ]T  
 

2 2

0

1
minimize ( ( )) { ( ) ( )} , (3.5)

2

T

J k t z t k t dt= +�
          (3.5)

 

 
subject to the control system 
 

( ) [ ( ) ( ) ( )] (0) , 0.dz t z t k t t dt z z zµ= − + + = >  
 
Here the optimal (state) feedback control (3.4) becomes 
 

* ( ) ( ) ( ). (3.6)k t P t z t= −                                               (3.6) 



 
 
 
 
NUMERICAL SOLUTION AND SENSITIVITY 
ANALYSIS 
 
To illustrate, we consider a numerical solution of an 
inventory-production system where the planning horizon 
has length 1 2T = months; the inventory holding cost 
coefficient 1;h =  the production cost coefficient 1.C =  
Following the assumption that the demand function varies 
with time, we  can  consider the  different  demand  rates 
with changing the shape of the demand function by taking 

1 2 3 4 5( ) 1 sin( ); ( ) 2sin( ) 3; ( ) 1 cos( ); ( ) exp( ); ( ) exy t t y t t y t t y t t y t t= + = + = + = − =

4 5( ) exp( ); ( ) exp( )y t t y t t= − = and keeping all other 
parameters unchanged yielded the figures represented 
by the figures 3 to 12. The goal inventory level is 
considered as ˆ( ) 1 sin( ).x t t t= + +  The shape and scale 
parameters of the Weibull distribution rate are considered 
as 1, and 1η γ= = respectively. The production level 
with time t given ˆ ( )u t from the equation  

(2.3) and the inventory level ( )x t in-terms of the first-
order differential equation from (2.2) are solved 
numerically using the version 6.5 of the mathematical 
package MATLAB. Whenever the goal inventory level is 
considered as the sinusoidal function of time t  that is, 
ˆ( ) 1 sin( ),x t t t= + + then figure 1 does not show the 

convergence of the optimal level. Whenever if we take 
the inventory goal level is as ˆ( ) 10,x t = then figure 2 
shows the convergence of the optimal inventory towards 
inventory goal level. In addition, in order to solve the 
objective function (3.5), the optimal control policy (3.4) 
and the solution of the inventory level (2.3) are used. So, 
the value of the objective function in this case is 
7008.5264 cost units.  

However, in the subsections we present the model to 
measure the performance using different demand 
patterns. figures 3, 5, 7 and 9 show the slight variations 
of the optimal inventory level with time but figure 11 
shows the large variations of the optimal inventory level 
with time with changing the shape of the demand 
functions. On the other hand, the optimal production level 
with time represented by figures 4, 6, 8, 10 and 12 that  
show variations with changing the shape of the demand 
functions. It is observed that the optimal production rates 
are very sensitive to changes in the demand functions. 
The different shape of the demand functions in the 
inventory controlled system increase the production 
systems significantly.  
 
 
Sinusoidal demand function 
 
In this subsection, we present the model with sinusoidal 
demand function. Substituting 1( ) 1 sin( )y t t= +  in the 

controlled system (2.2) instead of ( )y t  we have; 
1

1 1 1( ) ( ) (1 sin( )) ( ) (0) , 0, displayed by figure-dx t u t t t x t dt x x xγηγ −� �= − + − = >� �  
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Figure 1. Optimal inventory level with time. 

 
 
 

 
 
Figure 2. Optimal inventory level with time. 
 
 
 
 

 
 
Figure 3. Inventory level with sinusoidal demand function. 
 
 
 
 
x>0, displayed by figure 3 from which the production goal 
rate ˆ( )u t can be computed (assuming (0)x x= ) as 
displayed in Figure 4. 
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�

Figure 4. Production level with time. 
 
 
 

�

 
Figure 5. Inventory level with twice-sinusodial demand function. 
 
 
 

�

 
Figure 6. Production level with time. 
 
 
 
Twice-sinusoidal demand function 
 
In this subsection, we present the model with twice- 
sinusoidal       demand         function.          Substituting  

2 ( ) 2sin( ) 3y t t= +  in the controlled system (2.2) instead of 

( )y t  we 
have

1
2 2 2( ) ( ) (2sin( ) 3) ( ) (0) , 0, displayed by figure-5dx t u t t t x t dt x x xγηγ −� �= − + − = >� �  

from  which  the  production goal  rate  ˆ( )u t  can   be 

 
 
 
 

�

 
Figure 7. Inventory level with co-sinusodial demand function��
 
 
 

�

 
Figure 8. Production level with time. 
 
 
 

�

 
Figure 9. Inventory level with exponential decreasing demand 
function. 

 
 
 

computed (assuming (0)x x= )
 

1
2ˆ ˆ( ) (2sin( ) 3) ( ), displayed by figure-6u t t t x tγηγ −= + +

 



 
 
 
 

 
 
Figure 10. Production level with time. 

 
 
 

�

 
Figure 11. Inventory level with exponential increasing 
demand   function. 

 
 
 

�

 
Figure 12. Production level with time. 

 
 
 
Co-sinusoidal demand function 
 
In this subsection, we present the model with twice-
sinusoidal demand function. Substituting 

3( ) 1 cos( )y t t= +  in the controlled system (2.2) instead 

of ( )y t  we have; 
1

3 3 3( ) ( ) (1 cos( )) ( ) (0) ,dx t u t t t x t dt x xγηγ −� �= − + − =� �
x>0, displayed by figure-7 from which the production goal 
rate ˆ( )u t can be computed (assuming (0)x x= ) 
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1
3ˆ ˆ( ) (1 cos( )) ( ), displayed by figure-8u t t t x tγηγ −= + +  

 
 
Exponential decreasing demand function 
 
In this subsection, we present the model with sinusoidal 
demand function. Substituting 4 ( ) exp( )y t t= − in the 

controlled system (2.2) instead of ( )y t  we have; 
 

1
4 4 4( ) ( ) exp( ) ( ) (0) ,dx t u t t t x t dt x xγηγ −� �= − − − =� �  

x>0, displayed by figure-9 from which the production goal 
rate ˆ( )u t can be computed; (assuming (0)x x= )�

1
4ˆ ˆ( ) exp( ) ( ), displayed by figure-10u t t t x tγηγ −= − + � 

 
 
Exponential increasing demand function 
 
In this subsection, we present the model with twice-
sinusoidal demand function. Substituting 5 ( ) exp( )y t t=  

in the controlled system (2.2) instead of ( )y t  we have; 
 

1
5 5 5( ) ( ) exp( ) ( ) (0) , 0,displayed by figure-11dx t u t t t x t dt x x xγηγ −� �= − − = >� �  

 
As displayed in figure 11, from which the production goal 
rate   ˆ( )u t   can be computed (assuming (0)x x= )

 
1

5ˆ ˆ( ) exp( ) ( ), displayed by figure-12u t t t x tγηγ −= − +  
 
 
CONCLUSION 
 
The optimal inventory production control problem with 
problem Weibull distributed deterioration is studied and 
the solution of this problem is described by Pontryagin 
maximum principle. The inventory level and the optimal 
production control policy are derived. However, we give 
numerical solution of optimal inventory production 
controlled system with Weibull distribution deteriorating 
items using different types of the demand functions. 
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