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In this paper, an active sliding mode controller is presented for a class of master-slave anti-
synchronization of uncertain Rikitake systems. Uncertainties are considered in linear and nonlinear 
parts of the Rikitake systems. Analysis of the stability for the proposed method is derived based on the 
Lyapunov stability theory. Numerical simulations are performed to evaluate effectiveness of the 
analytical results. 
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INTRODUCTION  
 
Chaos synchronization has received increasing attention, 
and has been extensively investigated theoretically, 
numerically and experimentally in many chaotic systems 
(Pecora and Carroll, 1990). So far, different types of 
chaos synchronization have been studied, such as anti-
synchronization (Li, 2005), generalized synchronization 
(Ghosh, 2009), phase synchronization (Ghosh, 2009), 
projective synchronization (Lee and Park, 2010a) and lag 
synchronization (Lee et al., 2010). Among them, anti-
synchronization is another interesting synchronization 
phenomenon (Li, 2005). Various anti-synchronization 
methods have been proposed, such as backstepping 
control (Lin et al., 2009), feedback control (Lee and Park, 
2010b; Li and Liao, 2006), adaptive control (Al-sawalha 
and Noorani, 2009; Elabbasy and El-Dessoky, 2009), 
active control (Wang et al., 2007; Njah and Vincent, 
2009) and sliding mode control (Feki, 2009; Roopaei et 
al., 2009). Among the aforementioned methods, active 
control (Wang et al., 2007; Njah and Vincent, 2009) and 
sliding mode control (Feki, 2009; Roopaei et al., 2009) 
have been widely recognized as two powerful design 
methods to anti-synchronize chaotic systems. One of the 
new anti-synchronization methods is the active sliding 
mode control, which is a combination of active control 
and sliding mode control, and has been successfully 
applied to several chaotic systems (Zhao, 2009; Zhao 
and Wang, 2009; Liu and Song, 2008). The Rikitake 
system (Vincent, 2005) describes the chaotic behaviour 
exhibited by the reversal of the earth’s magnetic field. Wu 
et al. (2008) studied the chaos synchronization  problems 

of the Rikitake system via passive control. The aim of this 
article is to design an active sliding mode controller to 
anti-synchronize the uncertain Rikitake systems, which 
include linear and nonlinear uncertain parts. 

The rest of this paper is organized as follows: First, the 
Rikitake system and the anti-synchronization of uncertain 
Rikitake systems are introduced respectively, after which 
an active sliding mode controller is designed to anti-
synchronize the Rikitake systems with uncertainties. 
Next, numerical simulations are given for illustration and 
verification, before conclusions of the study are finally 
drawn. 
 
 
DESCRIPTION OF THE RIKITAKE SYSTEM 
 
The Rikitake system (Vincent, 2005; Wu et al., 2008) 
consists of two connected identical frictionless disk 
dynamos, which describes the reversal of the earth’s 
magnetic field. The equations describing the system are 
given by the nonlinear dynamical system: 
 

,                                                 (1) 
 

where ,  and  are the state variables, and  and 
a are the positive real constants. The Rikitake system  (1)
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Figure 1. Chaotic attractor ( 2b = and a = 5). 

 
 
 

exhibits a chaotic attractor for  and a = 5 as shown 
in Figure 1. 
 
 
ANTI-SYNCHRONIZATION OF RIKITAKE SYSTEMS 
WITH UNCERTAINTIES 
 
Consider an uncertain Rikitake system described by the 
following nonlinear differential equation as the master 
system: 
 

.                                       (2) 
 
while the response system should be considered as 
follows: 
 

,                            (3) 
 

where denotes state vectors of two systems.

and  represent the linear and 
nonlinear parts of the systems dynamics, respectively. 

 are unknown linear parts of systems (2) and 

(3) which satisfy , where .  
are the unknown nonlinear parts of systems (2) and (3). 

The controller  has been added to the response 

system in order to anti-synchronize its states  with 

the states of the master system .  

In defining the anti-synchronization error as , the 
study’s goal is to design an appropriate active sliding 

mode controller  such that: 

                                                  (4) 
 

where  is the Euclidean norm. 
 
 
ACTIVE SLIDING MODE CONTROLLER DESIGN  
 
From Equations (3) + (2), we get the error dynamical 
system as follows: 
 

.       (5)                            
 
In accordance with the active control design strategy (Ho 
and Hung, 2002; Agiza and Yassen, 2001), the control 
input vector-function is chosen as follows: 
 

,         (6)                    
 

where  is a positive constant and  is designed 
based on a sliding control law (Zhao, 2009). From 
Equations (5) and (6), the error system is derived as: 
 

                                        (7) 
 

where  represents the uncertain part of the 
dynamics and is given by:  
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We assume that the unknown nonlinear parts of ,

 is Lipschitz with coefficients  respectively, that 

is, , . Therefore, one can 

assume ,  where . 

With these assumptions, one can show that  is 
linearly bounded by the error signal e: 
 

.                                                       (9) 
 

The control input  is defined as:  
 

,                                                              (10) 
 

where  is a constant gain vector and 

 is the control input that satisfies: 
 

  ,                                            (11) 
 

in which  is a switching surface that prescribes 
the desired sliding dynamics. The error dynamics is then 
realized as: 
  

.                                           (12)      
 
The sliding surface can be chosen as follows: 
 

,                                                                    (13) 
 

where  is a constant vector. In sliding mode, 
the controlled system satisfies the following conditions: 
 

,                                                                     (14a) 
 
and 
 

.                                                                     (14b) 
 
To design the sliding mode controller, the constant 
together with the proportional rate reaching law are 
considered (Zhao, 2009), that is: 

 
 
 
 

,                                                        (15) 
 

where  denotes the sign function. The gains  

and  are determined such that the sliding conditions 
are satisfied and the sliding mode motion occurs. 

From Equations (12) and (13), it can be found that: 
 

.                                       (16) 
 
Therefore, according to Equations (15) and (16), we have 
  

.          (17) 
 

For simplicity, let . In the practical engineering 

applications,  is the uncertain part of the 
dynamics and the implemented control input is described 
by 
 

.                                               (18) 
 
From Equations (12) and (18), we can get the following 
error dynamics: 
 

.                        (19) 
 
 

Theorem 1 
 

The drive system (2) and the response system (3) with 
bounded uncertainties can approach anti-synchronization 

asymptotically with the controllers (6), if  satisfies 

. 
 
 

Proof 
 

Consider the following Lyapunov function: 
 

.                                                                      (20) 
 

The time derivative of V is  
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Figure 2. Anti-synchronization errors between systems (2) and (3). 

 
 
 

Since the expression  is always negative when 

, the inequality of  holds if the following 
condition is satisfied: 
 

.
                                                            (22) 

 

Thus, for any value of  that satisfies ,  will 

be negatively definite for all values of  which implies 
asymptotic stability of the switching surface. In other 
words, the error system described by Equation (19) is 
asymptotically stable. Therefore, the response system (3) 
can anti-synchronize the drive system (2) asymptotically, 
which completes the proof. 
 
 
NUMERICAL SIMULATION 

 
To verify and demonstrate the effectiveness of the 
proposed method, we discuss the anti-synchronization of 
Rikitake systems. In the numerical simulations, the 
fourth-order, which is the Runge–Kutta method, is used to 
solve the Rikitake systems with a time step size of 0.001. 

In the following, an investigation was done on the 
active sliding mode control approach used for the 
uncertain Rikitake system through the numerical 
experiments: 

 

,                                      (23)
 

 
where  

, , .    (24) 
 
Without loss of generality, the uncertainties of the 
Rikitake system (23) are assumed as follows: 
 

       , .                        (25) 
 

By simple calculation,  was obtained. In 

accordance with Theorem 1,  was selected and it 

satisfied the stability condition, that is, .  
According to the foregoing design method, the gain 

vector , the control parameter and 

the sliding surface  were chosen. 
As such, the sliding mode control input was: 
 

.                           (26) 
 

In this study, the initial conditions of , ,

and , ,  were 
utilized. Hence, the error system had the initial values of 

,  and . 
The simulation results are shown in Figure 2. From 

Figure 2, we can see that the error vector  converges to 
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zero as . This shows that the response system (3) 
can anti-synchronize the drive system (2) asymptotically. 
 
 
Conclusions 
 
This paper presents a method that is used to design an 
active sliding mode controller for the anti-synchronization 
of Rikitake systems with system uncertainties. Based on 
the Lyapunov stability theory and Lipschitz condition, the 
active sliding mode controller and the selection scope of 
the controller parameters for anti-synchronization are 
designed. According to the simulations, the proposed 
method can be successfully applied to anti-
synchronization problems of uncertain Rikitake systems. 
Moreover, the proposed control method can be easily 
extended to control and synchronize other chaos systems 
and is suited for systems with uncertainties and 
disturbances.  
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