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In this paper, timelike-spacelike Mannheim partner curve couple was defined in Lorentzian space 3

1
IR  

and the relations were given between the curvatures and torsions of these curves. Furthermore, for a 
given curve couple, the necassary and sufficient conditions were obtained to become timelike-

spacelike Mannheim partner curve couple in 3

1
IR .     
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INTRODUCTION 
 
As is well-known, a surface is said to be “ruled” if it is 
generated by moving a straight line continuously in 
Euclidean space (O’Neill, 1997). Ruled surfaces are one 
of the simplest objects in geometric modeling. One 
important fact about ruled surfaces is that they can be 
generated by straight lines. A practical application of 
these type of surfaces is that they are used in civil 
engineering and physics (Guan et al., 1997). 

Since building materials, such as wood are straight, 
they can be considered as straight lines. The result is that 
if engineers are planning to construct something with 
curvature, they can use a ruled surface since all the lines 
are straight (Orbay et al., 2009). In the differential 
geometry of a regular curve in the Euclidean 3-space 

3
IE , it is well-known that one of the important problem is 
the characterization of a regular curve. The curvature 

functions 
1

k  and 
2

k  of a reguler curve play an important 

role to determine the shape and size of the curve 
(Kuhnel, 1999; Do Carmo, 1976). For example, If 

1 2
0k k= = , the curve is geodesic. If ( )1

0k co n sta n t≠  
and 

2
0k = , then the curve is a circle with radius 

1
1 k . If 

( )1
0k constant≠ and 

2
0k ≠ ( )co n sta n t , then the 

curve is a helix in the space. 
 
 
 
*Corresponding author. E-mail: senyurtsuleyman@hotmail.com 
or ssenyurt@odu.edu.tr. 

Another way to the classification and characterization 
of curves is the relationship between the Frenet vectors 
of the curves. For example Saint Venant proposed the 
question whether upon the surfaces generated by the 
principal normal of a curve, a second curve can exist 
which has for its principal normal the principal normal of 
the given curve. This question was answered by Bertrand 
in 1850; he showed that a necessary and sufficient 
condition for the existence of such a second curve is that 
a linear relationship with constant coefficients exists 
between the first and second curvatures of the given 
original curve. The pairs of curves of this kind have been 
called conjugate Bertrand curves, or more commonly 
Bertrand curves. There are many works related with 
Bertrand curves in the Euclidean space and Minkowski 
space. Another kind of associated curves are called 
Mannheim curve and Mannheim partner curve. If there 
exists a corresponding relationship between the space 
curves α  and β  such that, at the corresponding points 
of the curves, principal normal lines of α  coincides with 
the binormal lines of β , then α  is called a Mannheim 

curve, and β  Mannheim partner curve of α .  
In recent studies, Liu and  Wang (2007, 2008) are 

curious about the Mannheim curves in both Euclidean 
and Minkowski 3-space and they obtained the necessary 
and sufficient conditions between the curvature and the 
torsion for a curve to be the Mannheim partner curves. 
Meanwhile, the detailed discussion concerned with the 
Mannheim curves can be found  in  literature  (Wang  and  



 
 
 
 
Liu, 2007; Liu and Wang, 2008; Orbay and Kasap, 2009; 
Özkaldi et al., 2009; Azak, 2009) and references therein.  

In this paper, we study the timelike-spacelike  

Mannheim partner curves in  Lorentzian space 3

1
IR . 

 
 
PRELIMINARY 
 

The Minkowski 3-space 3

1
IR  is the real vector space 3IR  

provided with the standart flat metric given by: 
 

2 2 2

1 2 3, dx dx dx= − + +  

 

where ( )1 2 3, ,x x x  is a standard rectangular coordinate 

system of 3

1
IR . An arbitrary vector ( )1 2 3

, ,v v v v=
r

 in 3

1
IR  

can have one of three Lorentzian causal characters; it 

can be spacelike if , 0v v >
r r

 or 0v =
r

, timelike if  

, 0v v <
r r

 and null (lightlike) if  , 0v v =
r r

 and 0v ≠
r

. 

Similarly, an arbitrary curve ( )sα α=  can locally be 

spacelike, timelike or null (lightlike), if all of its velocity 

vectors ( )sα′  are spacelike, timelike or null (lightlike), 

respectively. We say that a timelike vector is future 
pointing or past pointing if the first compound of the 
vector is positive or negative, respectively. The norm of 

the vector ( )1 2 3
, ,v v v v=

r
3

1
IR∈  is given by: 

 

v v=
r r

 
 

For any vectors ( )1 2 3
, ,x x x x=

r
 and ( )1 2 3

, ,y y y y=
ur

 in 

3

1
IR  in the meaning of Lorentz vector product of x

r
 and 

y
ur

 is defined by: 
 

1 2 3

2 3 1 3 1 2

1 2 3

2 3 1 3 1 2

1 2 3

, ,

e e e
x x x x x x

x y x x x
y y y y y y

y y y

− −
 

∧ = = −  
 

r ur  

The Lorentzian sphere and hyperbolic sphere of radius r 

and center 0  in 3

1
IR  are given by: 

 

( ){ }2 3 2

1 1 2 3 1
, , : ,S x x x x IR x x r= = ∈ =

r r r
 

 
and 
 

( ){ }2 3 2

0 1 2 3 1
, , : ,H x x x x IR x x r= = ∈ = −

r r r
, respectively 
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Definition 1 
 
Hyperbolic angle 
 

Let a
r

 and b
r

 be timelike vectors in 3

1
IR . Then, the angle 

between a
r

 and b
r

 is defined by  

, cosha b a b θ= −
r r r r

. The number θ  is called  the 

hyberbolic angle. 
 
 
Central angle 
 

Let a
r

 and b
r

 be spacelike vectors in 3

1
IR  that span a 

timelike vector subspace. Then, the angle between a
r

 

and b
r

 is defined by  , cosha b a b θ=
r r r r

. The  

number θ  is called  the central angle. 
 
 
Spacelike angle 
 

Let a
r

 and b
r

 be spacelike vectors in 3

1
IR  that span a  

spacelike vector subspace. Then, the angle between a
r

 

and b
r

 is defined by  , cosa b a b θ=
r r r r

. The number 

θ  is called  the spacelike angle. 
 
 
Lorentzian timelike angle 
 

Let a
r

 be a spacelike vector and b
r

 be a timelike vector in 
3

1
IR . Then, the angle between a

r
 and b

r
 is defined by  

, sinha b a b θ=
r r r r

. The number θ  is called  the 

Lorentzian timelike angle. 

Let ( ) ( ) ( ){ }, ,t s n s b s be the moving Frenet frame 

along the curve ( )sα . Then ( )t s , ( )n s  and ( )b s  are 

tangent, the principal normal and the binormal vector of  

the curve  ( )sα , respectively. Depending on the casual 

character of the curve α , we have the following dual 
Frenet-Serret formulas. If α  is a timelike curve;  
 

1

1 2

2

0 0

0

0 0

t k t

n k k n

b k b

′     
     ′ =     
     ′ −     

                         (1) 

 
where  
 

 , 1, , , 1, , , , 0.t t n n b b t n n b t b= − = = = = =
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We denote by ( ) ( ) ( ){ }1 2 3

, ,v s v s v s  the moving Frenet 

frame along the curve ( )sβ . Then, ( ) ( )1 2
,v s v s  and 

( )3
v s  are  tangent, the principal normal and the binormal 

vector of the curve  ( )sβ , respectively. Depending on 

the casual character of the curve β , we have the 

following Frenet-Serret formulas. If β  is a spacelike 

curve with a  timelike binormal 
3

v ;  

 

1
1

2 2

3
3

0 0

0

0 0

v p v

v p q v

q vv

 ′
    
    ′ = −        

′     
 

                         (2) 

 
where  
 

3 3 1 1 2 2 1 2 2 3 1 3
, 1, , , 1, , , , 0.v v v v v v v v v v v v= − = = = = =  

If the curves are unit speed curve, then curvature and 
torsion are calculated by: 
 

1

2

1

2 3

,

, ,

,

, .

k t

k n b

p v

q v v


′=


′=





′=

 ′=


 ,                                      (3)  

   
If the curves are not unit speed curve, then curvature and 
torsion are calculated by: 
 

( )

( )

1 3

2 2

3

2

,

d e t , ,
,

,

d e t , ,
.

k

k

p

q

α α

α

α α α

α α

β β

β

β β β

β β

 ′ ′′∧


=
′


′ ′′ ′′′

=
′ ′′ ∧





′ ′′∧
=

 ′

 ′ ′′ ′′′
 =
 ′ ′′∧

                        (4) 

 
 
TIMELIKE-SPACELIKE MANNHEIM PARTNER CURVE 

IN 
3

1
IR  

 
Here, we define timelike-spacelike Mannheim partner 

curves  in  3

1
IR   and   we  give  some  characterization for  

 
 
 
 
timelike-spacelike  Mannheim partner curves in the same 
space. Using these relationships, we will comment on 
Shell’s and Mannheim’s theorems again. 
 
 
Definition 2 
 

Let 3

1
: I IRα →   be a timelike curve and 3

1
: I IRβ →  

be  spacelike with timelike binormal. If there exists a 
corresponding relationship between the timelike curve α  
and the spacelike curve with dual timelike binormal β  
such that, at the corresponding points of the curves, the 
binormal lines of α  coincides with the principal normal 
lines of β , then α  is called a timelike Mannheim curve, 

and β  is called a Mannheim partner curve of α . The 

pair { },α β  is said to be timelike-spacelike Mannheim 

pair. Let { }, ,t n b  be the Frenet frame field along 

( )sα α=  and let { }1 2 3
, ,v v v  be the Frenet frame field 

along ( )sβ β= . On the other way θ  is angle between 

t  and 
1

v  , there is a following equation between the 

Frenet vectors and their derivative; 
 

1

2

3

sinh cosh 0

0 0 1 .

cosh sinh 0

v t

v n

v b

θ θ

θ θ

     
     

=     
     
     

                        (5) 

 
 
Theorem 1 
 
The distance between corresponding points of the 

timelike-spacelike  Mannheim partner curves in 3

1
IR  is 

constant.  
 
 
Proof 
 
From the definition of spacelike Mannheim curve, we can 
write: 
 

( ) ( )*
( ) ( .) s B ss sαβ λ= +% %                                      (6) 

 
By taking the derivate of this equation with respect to s  
and applying the Frenet formulas, we get: 
 

*

1 2

ds
v t k n b

ds
λ λ′= − +                                     (7) 

 

where the superscript ( )'  denotes the derivate with 

respect to the arc  length  parameters  of  the  dual  curve 



 
 
 
 

( )sα . Since the vectors b  and 
2

v  are linear, we get : 

 
*

1 2
, , , , ,

ds
v b t b k n b b b

ds
λ λ′= − +

   

0.λ′ =  

 
Then, we get cλ = . On the other hand, from the 
definition of distance function between ( )sα  and ( )sβ  
we can write: 
 

( ) ( ) ( )( ) ( ), .s sd s B sα λ λβ = =  

 
This completes the proof. 
 
 
Theorem 2 
 

For a timelike-spacelike curve α  in  3

1
IR , there is a 

spacelike curve β  so that { },α β  is a spacelike 

Mannheim pair. 
 
 
Proof  
 

Since the vectors 
2

v  and b  are linearly dependent, the 

Equation 6 can be written as: 
  

2
.vα β λ= −                                       (8) 

 
Since λ  is a nonzero constant, there is a  timelike curve 

β  for all values of λ . 

Now, we can give the following theorem related to 
curvature and torsion of the timelike-spacelike Mannheim 
partner curves. 
 
 
Theorem 3  
 

Let { },α β  be a timelike-spacelike Mannheim pair in 

3

1
IR . If 2

k  is dual torsion of  α  and p  is dual curvature 

and q  is dual torsion of  β  , then: 
 

2
.

p
k

qλ
= −                                                (9) 

 
 
Proof  
 
By taking the derivate of Equation 7  with respect to s  
and applying the Frenet formulas, we obtain: 
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*

1 2
.

ds
v t k n

ds
λ= −                       (10) 

 
Let θ  be dual angle between  the dual tangent vectors t  

and 
1

v , we can write: 

 

1

3

sinh cosh

cosh sinh .

v t n

v t n

θ θ

θ θ

= +


= +
                                      (11) 

 
From Equations 10 and 11 , we get: 
 

* *

2

1
, cosh .

sinh

ds ds
k

ds ds
λ θ

θ
= − =                       (12) 

 
By taking the derivate of Equation 8  with respect to s  
and applying the Frenet formulas, we obtain: 
 

( )
* *

2 1 3
1 .

ds ds
k p v qv

ds ds
λ λ= + −                       (13) 

 
From Equation 11, we can write: 
 

1 3

1 3

sinh cosh

cosh sinh ,

t v v

n v v

θ θ

θ θ

= − +


= −
                       (14) 

 

where θ  is the angle between t  and 
1

v  at the 

corresponding points of the curves of α   and β . By 
taking into consideration Equations 13 and 14, we get: 
 

( )
* *

sinh 1 , cosh .
ds ds

p q
ds ds

θ λ θ λ= − + = −           (15) 

 

Substituting 
*ds

ds
  into Equation 15 , we get: 

 

 ( )2 2 2

2
sinh 1 , cosh .p k qθ λ θ λ= − + =

         (16) 
 
From the Equation 16, we can write: 
 

 

2
.

p
k

qλ
= −

  
 
Corollary 1 
 

Let { },α β  be a timelike-spacelike Mannheim pair in 

3

1
IR . Then,  the  product  of  torsions  2

k   and  q   at  the 
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corresponding points of the spacelike Mannheim partner 
curves are not constant. 

Namely, Schell’s theorem is invalid for the timelike-
spacelike Mannheim curves. By considering Theorem 3, 
we can give the following results. 
 
 
Corollary 2  
 

Let { },α β  be a timelike-spacelike Mannheim pair in 

3

1
IR . Then, torsions 2

k  and q  has a negative sign. 

 
 
Theorem 4 
 

Let { },α β  be a timelike-spacelike Mannheim pair in 

3

1
IR . Between the curvature and the torsion of the 

spacelike curve β  , there is the relationship: 
 

1q pµ λ− =                                                  (17) 
 
where µ  and λ  are nonzero dual numbers. 
 
 
Proof  
 
From Equation 15 , we obtain: 
 
sinh cosh

1 p q

θ θ

λ λ
=

+
                                  (18) 

 
Arranging this equation, we get: 
 

1
tanh

p

q

λ
θ

λ

+
=  

 
and if we choose tanhµ λ θ=  for brevity, we will see 

that: 1q pµ λ− = .  
 
 
Theorem 5  
 

Let { },α β  be a timelike-spacelike Mannheim pair in 

3

1
IR . The following equations are for the curvatures and 

the torsions of the curves α  and β   

 

1.
 

1
)

d
i k

ds

θ
= −

, 

 
 
 
 

2.
 

* *

2
) cosh sinh ,

ds ds
ii k p q

ds ds
θ θ= −

  

3.
 

2 *
) cosh ,

ds
iii p k

ds
θ=

  

4.
 

2 *
) sinh .

ds
iv q k

ds
θ=

 
 
 
Proof 
 
1. By considering Equation 11, we can easily show that 

1
, sinht v θ= . Differentiating this equality with respect 

to s by considering Equation 1 , we have: 
  

1 1
, , sinh

d
t v t v

ds

θ
θ′′ + = − , 

 
From Equations 1 and 2, we can write: 
 

*

1 1 2
, , sinh

ds d
k n v t pv

ds ds

θ
θ+ = −  

 
From Equation 14, we get: 
 

1
.

d
k

ds

θ
= −  

 
2. By considering Equation 11, we can easily show that 

2
, 0n v = . Differentiating this equality with respect to s 

and by considering Equation 1, we have: 
  
 *

2 2
, , 0

ds
n v n v

ds
′′ + =

, 
 
From Equations  1 and 2, we can write: 
 
 

( )
*

1 2 2 1 3 1 3
, cosh sinh , 0

ds
k t k b v v v pv qv

ds
θ θ+ + − − + =

, 
 
From Equations 14, we get: 
 

* *

2
cosh sinh .

ds ds
k p q

ds ds
θ θ= −  

3. By considering Equation 14, we can easily show that 

1
, 0b v = . Differentiating this equality with respect to s 

and by considering Equation 1 , we have: 



  
 
 
 

*

1 1
, , 0

ds
b v b v

ds
′′ + = , 

 
From Equations  1, 2 and 14, we can write: 
 
 

( )
*

2 1 3 1 2
cosh sinh , , 0

ds
k v v v b pv

ds
θ θ− − + =

, 
 
 

2 *
cosh .

ds
p k

ds
θ=

  
4. By considering Equation 11, we can easily show that 

3
, 0b v = . Differentiating this equality with respect to s 

and by considering Equation 1, we have: 
  
 *

3 3
, , 0.

ds
b v b v

ds
′′ + =

 
 
From Equations  1, 2 and 14, we can write: 
 
 

( )
*

2 1 3 3 2
cosh sinh , , 0

ds
k v v v b qv

ds
θ θ− − + =

, 
 
 

2 *
sinh .

ds
q k

ds
θ=

  
By considering statements 3 and 4 of Theorem 5, we can 
give the following results. 
 
 
Corollary 3  
 

Let { },α β  be a timelike-spacelike Mannheim pair in 

3

1
IR . Then, there exist the following relation between 

curvature and torsion of β  and torsion of α ;  

 

 2

2 2 2

2 *
.

ds
p q k

ds

 
− =  

                          (19) 
 
 
Theorem 6  
 

A timelike space curve in 3

1
IR  is a timelike-spacelike 

Mannheim curve, if and only if its curvature p  and 
torsion q  satisfy the formula: 

 

( )2 2q p pλ − =                              (20) 
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where λ  is never a pure dual constant. 
 
 
Proof 
 

By taking the derivate of the statement 
2

Vα β λ= −  with 

respect to s  and applying the Frenet formulas we obtain: 
 
 

( )1 1 3*

ds
t v pv qv

ds
λ= + −

,  
      
 

( )( )
2 2

2 2

1 2 1 3 2* *2
.

ds d s
k n t pv p v q v p q v

ds ds
λ

 
′ ′+ = + − + − 

       
 
Taking the inner product, which is the last equation with 
b , we get: 
 
 ( )2 2q p pλ − =

. 
 
 
Theorem 7 
 

Let { },α β  be a timelike-spacelike Mannheim partner 

curves in 3

1
IR . Moreover, the points ( )sα  and ( )sβ  be 

two corresponding points of { },α β and M  and *
M  be 

the curvature centers at these points, respectively. Then, 
the ratio: 
 
� ( )
� ( )

� ( )
� ( )

*

*
:

s M s M

s M s M

β β

α α

( ) ( )1
1 1 constant.k p pλ= + + ≠

                                                                        (21) 
 
 
Proof 
 
A circle that lies in the osculating plane of the point 

( )sα on the timelike curve α  and that has the centre 

( )
1

1
M s n

k
α= +  lying on the principal normal n  of the 

point ( )sα  and the radius 
1

1

k
 far from ( )sα , is called 

osculating circle of the curve α  in the point ( )sα . 

Similar definition can be given for curve β  too. 
Then, we can write: 

 

( )
1 1

1 1
,s M n

k k
α = =  
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( ) *

2

1 1
,s M b v

p p
α λ λ= + = +

 
 

( ) *

2

1 1
,s M v

p p
β = =                

  

( ) 3

1 1

1 1
s M v n

k k
β λ λ= + = +  

 
Therefore, we obtain: 
 

( )

( )

( )

( )

*

*
:

s Ms M

s M s M

ββ

α α
=

( ) 2 2

1
1 1 constant.p kλ λ+ − ≠

 
 
Thus, we can give the following. 
 
 
Corollary 4  
 
Mannheim’s theorem is invalid for the timelike-spacelike 

Mannheim partner curve  { },α β in 3

1
IR . 
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