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In this paper, we propose a new passivity-based synchronization method for two different chaotic 
systems. Based on Lyapunov stability theory and linear matrix inequality (LMI) approach, the 
passivity-based controller is presented to make the synchronization error system between two different 
chaotic systems not only passive but also asymptotically stable. It is shown that the proposed controller 
can be obtained by solving the LMI, which can be easily facilitated by using some standard numerical 
packages. As an application of the proposed method, the synchronization problem between Rossler 
system and Genesio-Tesi system is investigated.   
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INTRODUCTION 
 
During the last two decades, synchronization in chaotic 
dynamic systems has received a great deal of interest 
among scientists from various research fields since 
Pecora and Carroll (Pecora and Carroll, 1990) introduced 
a method to synchronize two identical chaotic systems 
with different initial conditions. It has been widely explored 
in a variety of fields including physical, chemical and 
ecological systems (Chen and Dong, 1998). In the 
literature, various synchronization schemes, such as 
variable structure control (Wang and Su, 2004), OGY 
method (Ott et al., 1990), parameters adaptive control 
(Park, 2005 ; Wang et al., 2003), observer-based control 
(Yang and Chen, 2002), fuzzy logic approach (Ahn, 
2010a, 2010c), backstepping design technique (Hu et al., 
2005),  approach (Ahn, 2009, 2010b) and so on, have 
been successfully applied to the chaos synchronization.  

The concept of passivity for nonlinear systems attracted 
new interest in nonlinear system control. The passivity 
theory plays an important role in designing asymptotically 
stabilizing controller for nonlinear systems. Wen (1999) 
applied the passivity technique to design the controller, 
whose structure is of linear feedback form, to control the 
Lorenz system. Passivitybased controls for chaotic L¨u 
system and chaotic oscillations in power system were pro-  
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proposed in (Kemih et al., 2006) and (Wei and Luo, 2007), 
respectively. Wang and Liu (2007) also applied this 
technique to design a controller to control a unified chaotic 
system to zero and any desired equilibrium. Recently, 
passivity-based controls for hyperchaotic Lorenz system, 
hyperchaotic Chen system and nuclear spin generator 
chaotic system were proposed in (Wang and Liu, 2006; 
Jiao and An, 2008; Kemih, 2009), respectively. 
Most synchronization methods are focused on 
synchronizing two identical chaotic systems. However, 
experimental and even more real systems are often not 
fully identical. In many practical systems such as laser 
array, biological systems and cognitive processes, it is 
hardly the case that every component can be assumed to 
be identical. It is thus important and also interesting to 
investigate synchronization behavior between two 
different chaotic systems. In this regard, some control 
methods, such as active control (Yassen, 2005b), 
backstepping control (Li et al., 2006), dynamic feedback 
control (Park, 2009), converse Lyapunov approach (Chen 
et al., 2009) and adaptive control (Li et al., 2007; Salarieh 
and Shahrokhi, 2008), were proposed for synchronizing 
two different chaotic systems. To the best of our 
knowledge, however, for the passivity-based synchro- 
nization between two different chaotic systems, there is 
no result in the literature so far, which still remains 
challenging. 

In this paper, a new controller for the  passivity-based 
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synchronization of two different chaotic systems is 
proposed. Theoretical proof revealed that the use of the 
proposed controller could make the synchronization error 
system passive and also asymptotically stable. In contrast 
to other existing results (Yassen, 2005b; Li et al., 2006; 
Park, 2009; Chen et al., 2009; Yassen, 2005a; Zhang et 
al., 2006; Li et al., 2007; Salarieh and Shahrokhi, 2008), 
an advantage of the proposed method is the design 
flexibility it offers. Any smooth function satisfying some 
condition can stabilize the synchronization error system. 
Based on Lyapunov method and linear matrix inequality 
(LMI) approach, an existence criterion for the proposed 
controller is represented in terms of an LMI. The LMI 
problem can be solved efficiently by using recently 
developed convex optimization algorithms (Boyd et al., 
1994). 

This paper is organized as follows. In Section 2, the 
basic concept of passivity is introduced. In Section 3, we 
formulate the problem. In Section 4, an LMI problem for 
the passivity-based synchronization of two different 
chaotic systems is proposed. In Section 5, a numerical 
example is given and finally, conclusions are presented in 
Section 6. 
 
 

BASIC CONCEPT OF PASSIVITY 
 

Consider the following differential equation:  
 

),())(())((= tUtXGtXF +              (1) 
 

)),((=)( tXHtY                            (2) 

 

where 
ntX ℜ∈)(  is the state variable, 

mtU ℜ∈)(  is 

the external input, 
mtY ℜ∈)(  is the output, F  and G  

are smooth vector fields and H  is a smooth mapping. 
Without loss of generality, we suppose that the vector field 

F  has at least one equilibrium point. The notion of 
passivity can be described as follows:  
 
 

Definition 1 (Byrnes et al., 1991) 
 

If there exist a nonnegative constant β  and a positive 

semi-definite function ))(( tXS  such that  

 

0,,))(()()(
00

≥∀≥+ ∫∫ tdXSdYU
t

T
t

ττβτττ   (3)                                               

    
the system (1) - (2) is said to be passive from the external 

input )(tU  to the output )(tY .  

The physical meaning of passive system is that the 
energy of the nonlinear system (1) - (2) can be increased 
only through the supply from the external source. In other 
words, a passive system cannot store more energy than it 

 
 
 
 
is supplied. Passive system is naturally a stable system. 
Passive system exploits the input-output relationship 
based on energy-related considerations to analyze 
stability properties. 

The following statement describes a basic stabilizability 
property of passive systems.  
 

Lemma 1 (Byrnes et al., 1991) 
 

Suppose the system (1) - (2) is passive. Let )(⋅φ  be any 

smooth function such that 0=(0)φ  and 

0>))(()( tYtY T φ  for each nonzero )(tY . The control 

law ))((=)( tYtU φ−  asymptotically stabilizes the 

equilibrium point of the system (1).  
 
 

PROBLEM FORMULATION 
 

Consider a class of chaotic systems described by the 
following nonlinear differential equation:  
 

))(()(= txBftAx +                  (4) 
  

where nRtx ∈)(  is the state vector, 
nRtxf ∈))((  is the 

nonlinear function vector, 
nnRA ×∈  and 

nnRB ×∈  are 
known constant matrices. The system (4) is considered as 
a drive system and the response system with control input 
is introduced as follows:  
 

 )())(()(= tutzDgtCz ++                 (5) 
 

where 
nRtz ∈)(  and 

nRtu ∈)(  are the state vector 

and the control input of the controlled response system, 

respectively. 
n

Rtzg ∈))((  is the nonlinear function 

vector of the controlled response system, nnRC ×∈  and 
nnRD ×∈  are known constant matrices. The purpose of 

this paper is to design the feedback control input u(t) 
guaranteeing the passivity based synchronization. In 
order to design the feedback control input u(t), we need 
information on states of drive and response systems. 
Thus, the control input u(t) in (5) depends on states of 
drive and response systems. Define the synchronization 

error )()(=)( txtzte − . Then we obtain the 

synchronization error system.  
 

     (6)                 
 
In this paper, we will use the passivity technique to 
synchronize two different chaotic systems. The controller 
proposed in this paper is based on an LMI. Using the 
passive method, it is very easy to prove the stability of the 
closed-loop system. 



 
 
 
 

The following fact will be used for deriving the main 
result. 
 
Fact 1 (Schur complement)  
 

Given constant symmetric matrices 1∑ , 2∑ , 3∑ , 

where 
T
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MAIN RESULTS 
 

The LMI problem for achieving the passivity-based 
synchronization between two different chaotic systems is 
presented in the following theorem.  
 
 

Theorem 1   
 

For a given 0>=
TQQ , if there exist 0>=

T
XX  

and Y  such that  
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 then the error system (6), under the control input  
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1
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where )(tv  is an external input signal, is passive from 

the external input signal )(tv  to the output )(ty  which 

is defined as  
 

).(2)( tPety ≅                              (9) 

 
Proof: The closed-loop error system with the control input  
 

 
 

where nnK ×ℜ∈  is the gain matrix of the control input 

)(tu , can be written as  

 

).()(])[(= tvteKAC +++  
            (10) 

 
Consider a Lyapunov function  
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where 0>=
T

PP . Its time derivative along the 

trajectory of (10) is  
 

= e )()( PtetPe
T+

 
 

)()(2)(])())[((= tPvtetePKPKACPPACte TTTT ++++++  
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If the following matrix inequality is satisfied  
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we have  
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           (13) 
 

Integrating both sides of (13) from 0  to t  gives  
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Let (0))(= eVβ . Since 0))(( ≥teV ,  
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The relation (15) satisfies the passivity definition (3). 
Therefore, the error system (6) is rendered to be passive 

from the external input signal )(tv  to the output )(ty  

under the feedback control input 

. 
From Fact 1, the matrix inequality (12) is equivalent to  
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Pre- and post-multiplying (16) by ),(
1 IPdiag −  and 

introducing change of variables such as 1
=

−
PX  and 

1
=

−
KPY , (16) is equivalently changed into the LMI (7). 

Then the gain matrix of the control input )(tu  is given 

by 
1

=
−YXK . This completes the proof.              

 
 

Corollary 1  (zero-input error response)  
 

If the external input signal )(tv  is zero, the closed-loop  
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error system is asymptotically stable.  
 

Proof: When 0=)(tv , we obtain  

 

)()(< tQete
T− 0�

                           (17) 
 
 from (13). This guarantees  
 

0=)(lim te
t ∞→

                                 (18) 

 
from Lyapunov stability theory. This completes the proof.             
 
According to Lemma 1, once the error system (6) has 
been rendered passive, the external input signal 

))((=)( tytv φ−  satisfying 0=(0)φ  and 

0>))(()( tytyT φ  for each nonzero )( ty  

asymptotically stabilizes the error system (6). For 

example, a pure gain output feedback )(=)( tytv µ−  

0)>(µ  can stabilize the error system (6). 

 

Corollary 2  (nonzero-input error response) 
 

If the external input signal )(tv  is selected as  

 

0,>),(2=)(=)( µµµ tPetytv −−           (19) 

 

the closed-loop error system is asymptotically stable.  
  

Proof: For )(=)( tytv µ− , the time derivative of 

))(( teV  satisfies  

0)()()()(< ≤−− tytytQete
TT µ

         (20) 
 

From (13). This guarantees the asymptotical stability from 
Lyapunov stability theory. This completes the proof.             
 
Remark 1  
 
Various efficient convex optimization algorithms can be 
used to check whether the LMI (7) is feasible. In this 
paper, in order to solve the LMI, we utilize MATLAB LMI 
Control Toolbox (Gahinet, Nemirovski, Laub,  and Chilali, 
1995), which implements state-of the art interior-point 
algorithms.  
 
 

NUMERICAL EXAMPLE 
 

In this section, to verify and demonstrate the 

 
 
effectiveness of the proposed method, we  discuss  the 

 
 
 
 
simulation result for synchronizing Rossler system 
(Rössler, 1976) and Genesio-Tesi system (Genesio and 
Tesi, 1992). Consider the following Rossler chaotic 
system:  
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where )(txi  1,2,3)=(i  is the state variable of the 

Rossler system. The Rossler system exhibits chaotic 
behavior when the system parameters are chosen as 

0.2=a , 0.2=b  and 5.7=c . 

Now consider the following Genesio-Tesi system as the 
controlled response system:  
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where )(tzi  1,2,3)=(i  and )(tui  1,2,3)=(i  are the 

state variable and the control input of the controlled 
Genesio-Tesi system, respectively. This system is chaotic 

for the system parameters 1.2=1a , 2.92=1b  and 

6=1c . The Genesio-Tesi system, proposed by Genesio 

and Tesi, is one of paradigms of chaos since it captures 
many features of chaotic systems. Applying Theorem 1 

with IQ ×5= , where 
33×∈ RI  is an identity matrix, 

yields  
 

  (23)  
 

Figure 1 shows state trajectories for drive and response 
systems when the initial conditions are given by  
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From Figure 1, it can be seen that drive and response 
systems are indeed achieving chaos synchronization. The 
simulation result in Figure 2 shows synchronization error 
trajectories for different values of the parameter µ  in the 

external input signal )(tv  (19). It is found from Figure 2 

that the parameter µ  only influences the transient 

response and the bigger µ  gives the better response.  

 
 

Conclusion 
 

In this paper,  we  propose  a  new   passivity-based  
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Figure 1. State trajectories. 

 
 

 
 
Figure 2. Synchronization error trajectories. 

 
 
 

synchronization method for two different chaotic systems. 
Based on Lyapunov stability theory and LMI approach, 
the proposed scheme guarantees to make the 
closed-loop error system passive and also asymptotically 
stable. Furthermore, the synchronization between the 
Rossler system and the Genesio-Tesi system is given  to  

illustrate the effectiveness of the proposed scheme. 
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