
International Journal of the Physical Sciences Vol. 6(22), pp. 5121-5127, 2 October, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.263
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

An innovative combination of particle swarm
optimization, learning automaton and great deluge

algorithms for dynamic environments

Hamid Parvin1*, Behrouz Minaei2, Hamid Alinejad-Rokny3 and Sajjad Ghatei4

1
Islamic Azad University, Nourabad Mamasani Branch, Nourabad, Iran

2
School of Computer Engineering, Iran University of Science and Technology (IUST), Tehran, Iran

3
Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

4
Islamic Azad University, Nourabad Mamasani Branch, Nourabad, Iran

Accepted 3 August, 2011

Dynamic optimization in which global optima and local optima change over time is always a hot
research topic. It has been shown that particle swarm optimization works well when facing dynamic
environments. On the other hand, a learning automaton can be considered as an intelligent tool (agent)
which can learn what action is the best interacting with its environment. The great deluge algorithm is
also a search algorithm applied to optimization problems. All these algorithms have their drawbacks
and advantages. This paper explores how one can combine these algorithms to reach better
performance in dynamic spaces. Indeed a learning automaton is employed per particle in the swarm to
decide whether its particle updates its velocity (and consequently its position) considering the best
global particle position, local particle position or a combined position extracted out of global and local
particle position. Water level in the deluge algorithm is used in the progress of the algorithm.
Experimental results on different dynamic environments modeled by moving peaks benchmark show
that the combination of these algorithms outperforms PSO algorithm, fast multi-swarm method (FMSO),
a similar particle swarm algorithm for dynamic environments, for all tested environments.

Key words: Particle swarm optimization, great deluge, learning automaton, moving peaks, dynamic
environments.

INTRODUCTION

The standard particle swarm optimization (PSO)
algorithms have performed well for static environment.
Also, it is shown that the original PSO is not able to
handle dynamic environments. So researchers turn to
new variations of PSO to overcome its inefficiency.

Hu and Eberhart (2002) proposed a re-randomization
PSO for optimization in dynamic environments in which
some particles are randomly relocated after a change is
detected or when the diversity is lost, to prevent losing
the diversity. Li and Dam (2003) showed that a grid-like
neighborhood structure used in fine grain particle swarm
optimization (FGPSO) (Kennedy and Mendes, 2002) can
perform better than re-randomization particle swarm
optimization (RPSO) in high dimensional dynamic
environments by restricting the information sharing and

*Corresponding author. E-mail: parvin@iust.ac.ir.

preventing the convergence of particles to the global best
position, thereby enhancing population diversity. Janson
and Middendorf (2004) proposed hybrid particle swarm
optimization (HPSO), a tree-like structure hierarchical
PSO, and reported improvements over standard PSO for
dynamic environments. They also suggested partitioned
hierarchical PSO in which a hierarchy of particles is
partitioned into several sub-swarms for a limited number
of generations after a change in the environment is
detected (2006). Lung and Dumitresc (2007) used two
collaborating populations with same size. In their work,
one swarm is responsible for preserving the diversity of
the particles by using a crowding differential evolutionary
algorithm (Thomsen, 2004) while the other keeps track of
global optimum with a PSO algorithm.

Li and Yang (2008) proposed a fast multi-swarm
method (FMSO) which maintains the diversity through the
run. To meet this goal, two types of swarm are used: a
parent swarm which maintains the diversity and detects

5122 Int. J. Phys. Sci.

the promising search area in the whole search space
using a fast evolutionary programming algorithm and a
group of child swarms which explore the local area for the
local optima found by the parent using a fast PSO
algorithm. This mechanism makes the child swarms
spread out over the highest multiple peaks, as much as
possible, and guarantees to converge to a local optimum
in a short time. Moreover, Li and Yang (2009) introduced
a clustering particle swarm optimizer in which a clustering
algorithm partitions the swarm into several sub-swarms
each searching for a local optimum.

Liu et al. (2008) introduced compound particle swarm
optimization (CPSO) utilizing a new type of particle which
helps explore the search space more comprehensively
after a change occurred in the environment. In another
work, they used composite particles which help to quickly
find the promising optima in the search space while
maintaining the diversity by a scattering operator (Liu et
al., 2010).

Hashemi and Meybodi (2009) introduced cellular PSO,
a hybrid model of cellular automata and PSO. In cellular
PSO, a cellular automaton partitions the search space
into cells. At any time, in some cells of the cellular
automaton, a group of particles search for a local
optimum using their best personal experiences and the
best solution found in their neighborhood cells. To
prevent losing the diversity, a limit on the number of
particles in each cell is imposed. Furthermore, to track
the changes in the environment (Hashemi and Meybodi,
2009), particles in cellular PSO change their role to
quantum particles and perform a random search around
the previously found optima for a few iterations after a
change is detected in the environment.

Kamosi et al. (2010) proposed some variations of PSO
that can perform well for dynamic environments. In their
work, they proposed a multi-swarm algorithm for dynamic
environments which address the diversity loss problem
by introducing two types of swarm: a parent swarm,
which explores the search space to find promising area
containing local optima and several non-overlapping child
swarms, each of which is responsible for exploiting a
promising area found by the parent swarm.

This paper explores how to combine the PSO, learning
automaton (LA) and great deluge algorithms to eliminate
their weaknesses in order to reach better performance in
dynamic spaces. A learning automaton is employed per
particle in PSO to decide whether its particle updates its
velocity (and consequently its position) considering the
best global particle position, local particle position or a
combined position extracted out of global particle position
and local particle position. Water level in the deluge
algorithm is used in the progress of the algorithm to
prevent it from premature convergence of the algorithm.

RELATED WORKS

A learning automaton (LA) is an adaptive decision-making unit
situated in a random environment that learns the optimal action

through repeated interactions with its environment. The actions are
chosen according to a specific probability distribution which is
updated based on the response the automaton obtains from the
environment by performing a particular action.

Given a finite number of actions that can be performed in a
random environment, when a specific action is takes place, the
environment provides a random response which is either favorable
or unfavorable. The objective in the design of the automaton is to
determine how the choice of the action at any stage should be
guided by past actions and responses.

The particle swarm optimization algorithm (PSO) was introduced
by Kennedy and Eberhart (1995) in their work. In PSO, a potential
solution for a problem is considered as a bird, which is called a
particle, flies through a D-dimensional space and adjusts its
position according to its own experience and other particles’. In
PSO, a particle is represented by its position vector x and its
velocity vector v.

The great deluge algorithm (GD) was introduced by Dueck
(1993), but unfortunately was not widely useful in succeeding years.
This local search meta-heuristic is different to its predecessors (for
example, consider hill-climbing or simulated annealing) in the
acceptance of a candidate solution from a neighborhood. The GD
algorithm accepts all solutions, for which absolute values of the cost
function are less than or equal to the current boundary value, called
“level”. The local search starts with the initial value of “level” equal
to an initial cost function and during the search its value is
monotonically reduced. A decrement of the reduction (defined by
the user) appears as a single algorithmic parameter.

PROPOSED COMBINATION FRAMEWORK OF PSO, LA AND
GD ALGORITHMS

To get rid of premature convergence of PSO algorithm, there is
need for the use a mechanism that produces perturbation in the
population. A very promising method is to turn to multi-swarm
mechanisms. In the multi-swarm mechanism, there must be a
parent swarm which is responsible for finding promising area in the
search space and also some child swarms which are created to
exploit the new found promising area (Blackwell and Branke, 2006,
2004; Kennedy et al., 1995; Blackwell et al., 2008).

This paper differently deals with the premature problem. It uses a
PSO in which each particle uses a learning automaton based on
which particle decides how to update its velocity. Indeed, each
automaton learns how to behave in predefined situations. These
situations contain variance of the best fitness of local optima and
the distance of the particle to its local and global optima. The
learning of automaton is based on feedbacks received from the
environment. A feedback per each particle is set according to its
fitness and the previous position's fitness. It means that if the
previous position's fitness is higher than the current position's, the
action taken on the previous position to reach current position
punishes, else it is rewarded.

Figure 1 depicts the proposed method flowchart for a particle Pi

(i∈1..N) in the swarm. In Figure 1, Ai stands for automaton related
to ith particle whose position is denoted by xi. Xg stands for global
best position so far and X

i
l stands for best position found by Pi so

far. As it is obvious from Figure 1, the automaton Ai makes a
decision for particle i on how to update its velocity. Based on the
position of ith particle, position of other particles, position of global
best solution Xg and position of local best solution Xl, the automaton
decides the action a. Based on the action a, the next velocity of the
current particle denoted by V'i is calculated.

After calculating the next position of particle Pi denoted by x'i, if
the fitness reduces (in minimization problems) rather than previous
position xi, the state-action is rewarded, else it is punished. Then,
according to the punish-reward signal, the automaton is updated.

After the great deluge we accept the relocation of ith particle if

Parvin et al. 5123

Pi∈∈∈∈Pop

a=Extract(Ai,Pop,Pi,Xil,Xg)

V'i=Update(Vi,xi,Xg,Xil)

V'i=Update(Vi,xi,Xil) V'i=Rand_Walk

x'i=xi+V'i

Fitness(x'i)>fitness(xi)

B=punish B=reward

Ai=LA(Ai,B,Pop,a)

Fitness(x'i)<Level

xi=x'i, Vi= V'
i

Level = level-step

Update(Xi
l,Xg)

Yes
No

Yes No

Figure 1. The proposed method flowchart for a particle in the PSO algorithm.

the fitness of its new position is better than an acceptance level.
This flowchart is accomplished per particle. One generation is

completed after repeating the flowchart for each particle. The whole
process is repeated for a predefined generation number.

In the proposed method, the states of learning automaton Aj is a
triple denoted by (var, dis

j
1 and dis

j
2), where var, dis

j
1 and dis

j
2 are

linguistic variables belonging to {0,1,2}. For calculating var first

maximum distance between two arbitrary selected X
i
l (i∈1..N) is

defined as max_disqp.

NpqXXdisqp
p

l

q

l ..1,)max(max_ ∈−= (1)

Then, the normalized variance of X

i
l (i∈1..N) denoted by nvar is

defined as follows:

5124 Int. J. Phys. Sci.

NqdisqpXVarn
q

l ..1max_/)(var ∈= (2)

Now var is calculated according the following equations.









≤

<≤

<

=

var2

var1

var0

var

2

21

1

nv

vnv

vn (3)

where v1 and v2 are two user-specified thresholds. For calculating
dis

j
1, max_disp first is defined as following equation.

NpXXdisp p

lg ..1)max(max_ ∈−= (4)

Then the normalized distance between X

j
l and Xg denoted by ndis

j
1

is defined as follows:

dispXXndis
j

lg

j
max_/)(1 −= (5)

Now dis

j
1 is calculated according the following equations.









≤

<≤

<

=

j

j

j

j

ndisd

dndisd

dndis

dis

12,1

2,111,1

1,11

1

2

1

0
 (6)

where d11 and d12 are two user-specified thresholds. And finally, for
calculating dis

j
2, max_disq first is defined as follow:

NpXXdisq
p

lp ..1)max(max_ ∈−= (7)

Then the normalized distance between X
j
l and xj denoted by ndis

j
2

is defined as follows:

disqXXndis
p

lp

j
max_/)(2 −= (8)

Now dis
j
2 is calculated according the following equation.









≤

<≤

<

=

j

j

j

j

ndisd

dndisd

dndis

dis

22,2

2,221,2

1,22

2

2

1

0

 (9)

where d21 and d22 are two user-specified thresholds. Pseudo code
of the proposed algorithm is presented in the Algorithm 1. In this
code, r1 and r2 are both 0.5. Also all w1, w2 and w3 are 0.33.

RESULTS AND DISCUSSION

We have implemented all algorithms by Matlab 2008a
and have run all algorithms on a PC with a core 2 duo
processor 2 GHz and a 3 G Bytes RAM memory.

Branke (1999) introduced a dynamic benchmark
problem, called moving peaks benchmark (MPB)
problem. In this problem, there are some peaks in a

counter=0
max_fitness=maximum of possible fitness in an arbitrary problem setting

level= max_fitness
Repeat

 counter=counter+1
 step = exp(-1*counter)*max_fitness

 each particle i
 Update particle position xi According to one of the three below equations

 For each particle i

 compute situation according to equation 3, 6 and 9
 a=make_decide(Automatai, situation)

 if(a=0)

))()(())()(()()1(321 txtxwtxtxwtvwtv i
g

i
l
iii −+−+=+

 elseif(a=1)

))()(()()1(21 txtxrtvrtv i
l
iii −+=+

 elseif(a=2)

 randomtvi =+)1(

End if

End for

 xi'=xi+vi
 if(f(xi’)> f(xi))

 punish(Automatai,situation,a)
 else

 reward(Automatai,situation,a))

 End if
 if(f(xi’)<level)

 xi=x i’
 End if
 if(f(xi’)<f(xg))

 xg=xi’

 End if
 if(f(xi’)<f(xl

i)

 xl
i=xi

 End if

 level=level+step
Until termination criterion reached

Algorithm 1. Pseudo code of the proposed algorithm.

Table 1. Setting of parameters in moving peaks benchmark.

Parameter Value

Number of peaks m 10

F Every 5000 evaluations

Height severity 7.0

Width severity 1.0

Peak shape cone

Shift length s {0.0}

Number of dimensions D 5

A [0, 100]

H [30.0 , 70.0]

W [1, 12]

I 50.0

multi-dimensional space, where the height, width and
position of each peak change during the environment
change. This function is widely used as a benchmark for
dynamic environments in literature (Li et al., 2008; Moser,
2007).

The default parameter setting of MPB used in the
experiments is presented in Table 1. In MPB, shift length
(s) is the radius of peak movement after an environment
change, m is the number of peaks, f is the frequency of
environment change as the number of fitness

Parvin et al. 5125

Table 2. Offline error ± standard error for f = 500.

f = 1000
Proposed

algorithm

Multi swarm PSO

(Kamosi et al., 2010)
Cellular PSO FMSO mQSO 10

1 6.12 ± 0.22 2.90 ± 0.18* 6.77 ± 0.38 14.42 ± 0.4 18.6 ± 1.6

5 5.66 ± 0.20 3.35 ± 0.18* 5.30 ± 0.32 10.59 ± 0.2 6.56 ± 0.38

10 5.88 ± 0.16 3.94 ± 0.08* 5.15 ± 0.13 10.40 ± 0.1 5.71 ± 0.22

20 5.36 ± 0.16 4.33 ± 0.12* 5.23 ± 0.18 10.33 ± 0.1 5.85 ± 0.15

30 5.37 ± 0.16 4.41 ± 0.11* 5.33 ± 0.16 10.06 ± 0.1 5.81 ± 0.15

40 4.45 ± 0.11* 4.52 ± 0.09 5.61 ± 0.16 9.85 ± 0.11 5.70 ± 0.14

50 4.49 ± 0.15* 4.57 ± 0.08 5.55 ± 0.14 9.54 ± 0.11 5.87 ± 0.13

100 3.79 ± 0.09* 4.77 ± 0.08 5.57 ± 0.12 8.77 ± 0.09 5.83 ± 0.13

200 3.93 ± 0.10* 4.76 ± 0.07 5.50 ± 0.12 8.06 ± 0.07 5.54 ± 0.11

* Result of the best performing algorithm(s) with 95% confidence.

evaluations. H and W denote range of height and width of
peaks which will change after a change in environment
by height and width severity, respectively. I is the initial
heights for all peaks. Parameter A denotes minimum and
maximum value on all dimensions. For evaluating the
efficiency of the algorithms, we use the offline error
measure, the average deviation of the best individual
from the optimum in all iterations.

In the proposed method, the acceleration coefficients c1
and c2 are set to 2.8 and 1.3 and the inertial weight w is
set to mean of c1 and c2 (2.05). The number of particles
in the swarm is set to 20 particles. d11, d21, d12, d22, v1 and
v2 are set to 0.4, 0.4, 0.6, 0.6, 0.4 and 0.6, respectively.
The proposed algorithm is compared with multi-swarm
PSO (Kamosi et al., 2010), mQSO (Blackwell and
Branke, 2006), FMSO (Li and Yang, 2008) and cellular
PSO (Hashemi and Meybodi, 2009). In multi-swarm PSO,
the acceleration coefficients c1 and c2 are set to 1.496180
and the inertial weight w is set to 0.729844. The number
of particles in the parent swarm and the child swarms (π)
are set to 5 and 10 particles, respectively. The radius of
the child swarms (r), the minimum allowed distance
between two child swarm (rexcl) and the radius of
quantum particles (rs) are set to 30.0, 30.0 and 0.5,
respectively. For mQSO, we adapted a configuration 10
(5 + 5q) which creates 10 swarms with 5 neutral
(standard) particles and 5 quantum particles with rcloud =
0.5 and rexcl = rconv = 31.5, as suggested (Blackwell
and Branke, 2006). For FMSO, there are at most 10 child
swarms, each has a radius of 25.0. The size of the parent
and the child swarms are set to 100 and 10 particles,
respectively (Li and Yang, 2008). For cellular PSO, a 5-
Dimensional cellular automaton with 105 cells and Moore
neighborhood with radius of two cells embedded into the
search space. The maximum velocity of particles is set to
the neighborhood radius of the cellular automaton and
the radius for the random local search (r) is set to 0.5 for

all experiments. The cell capacity θ is set to 10 particles
for every cell (Hashemi and Meybodi, 2009).

As depicted in Tables 2 to 5, the proposed algorithm
outperforms other tested PSO algorithms when the
number of peaks increases.

For all algorithms, we reported the average offline error
and 95% confidence interval for 100 runs. Offline error of
the proposed algorithm, mQSO 10 (5 + 5q) (Blackwell
and Branke, 2006), FMSO (Li and Yang, 2008), cellular
PSO (Hashemi and Meybodi, 2009) and multi-swarm
PSO (Kamosi et al., 2010) for different dynamic
environment is presented in Tables 2 and 3.

Also to show the effect of the dimension of the problem
over the efficacy of the algorithm, the results of offline
error of the proposed algorithm is given in Table 6.

The convergence of the proposed method compares
with the best method proposed so far to deal with
dynamic moving peak problem is shown in Figure 2.

Conclusion

In this paper, new PSO algorithm is proposed for
dynamic environment. In the proposed PSO, there is one
learning automaton per particle in which it learns for each
particle, how to act during the evolution. To prevent
redundant search in the same area, the LA belonging to
particle Pi, which is denoted by Li, learns the relationship
between the variance of the solutions, normalized
distance between the position xi and position of its local
optima and normalized distance between the position of
its local optima and global optima, and the behavior of
the particles. Indeed the proposed PSO is a kind of
indirect niching method. In addition, the deluge water
level is employed during the evolution.

Results of the experiments show that for many tested
dynamic environments, the proposed algorithm out-
performs all competent tested PSO algorithms.

5126 Int. J. Phys. Sci.

Table 3. Offline error ± standard error for f = 1000.

f = 5000 Proposed algorithm Multi swarm PSO (Kamosi et al., 2010) Cellular PSO FMSO mQSO 10

1 2.54 ± 0.19 0.56 ± 0.04* 2.55 ± 0.12 3.44 ± 0.11 3.82 ± 0.35

5 1.49 ± 0.11 1.06 ± 0.06* 1.68 ± 0.11 2.94 ± 0.07 1.90 ± 0.08

10 1.44 ± 0.10* 1.51 ± 0.04 1.78 ± 0.05 3.11 ± 0.06 1.91 ± 0.08

20 1.85 ± 0.11* 1.89 ± 0.04 2.61 ± 0.07 3.36 ± 0.06 2.56 ± 0.10

30 2.00 ± 0.09* 2.03 ± 0.06 2.93 ± 0.08 3.28 ± 0.05 2.68 ± 0.10

40 2.02 ± 0.08* 2.04 ± 0.06 3.14 ± 0.08 3.26 ± 0.04 2.65 ± 0.08

50 2.03 ± 0.08* 2.08 ± 0.02 3.26 ± 0.08 3.22 ± 0.05 2.63 ± 0.08

100 2.23 ± 0.04 2.14 ± 0.02* 3.41 ± 0.07 3.06 ± 0.04 2.52 ± 0.06

1 2.54 ± 0.19 0.56 ± 0.04* 2.55 ± 0.12 3.44 ± 0.11 3.82 ± 0.35

* Result of the best performing algorithm(s) with 95% confidence.

Table 4. Offline error ± standard error for f = 5000.

f = 10000 Proposed algorithm Multi swarm PSO (Kamosi et al., 2010) Cellular PSO FMSO mQSO 10

1 1.52 ± 0.17 0.27 ± 0.02* 1.53 ± 0.12 1.90 ± 0.06 1.90 ± 0.18

5 0.88 ± 0.11 0.70 ± 0.10* 0.92 ± 0.10 1.75 ± 0.06 1.03 ± 0.06

10 0.91 ± 0.06* 0.97 ± 0.04 1.19 ± 0.07 1.91 ± 0.04 1.10 ± 0.07

20 1.32 ± 0.07* 1.34 ± 0.08 2.20 ± 0.10 2.16 ± 0.04 1.84 ± 0.08

30 1.35 ± 0.05* 1.43 ± 0.05 2.60 ± 0.13 2.18 ± 0.04 2.00 ± 0.09

40 1.27 ± 0.04* 1.47 ± 0.06 2.73 ± 0.11 2.21 ± 0.03 1.99 ± 0.07

50 1.30 ± 0.03* 1.47 ± 0.04 2.84 ± 0.12 2.60 ± 0.08 1.99 ± 0.07

100 1.32 ± 0.03* 1.50 ± 0.03 2.93 ± 0.09 2.20 ± 0.03 1.85 ± 0.05

200 1.51 ± 0.02 1.48 ± 0.02* 2.88 ± 0.07 2.00 ± 0.02 1.71 ± 0.04

* Result of the best performing algorithm(s) with 95% confidence.

Table 5. Offline error ± standard error for f = 10000.

Peaks versus dimension 1 2 3 4 5

1 0.38 ± 0.01 0.62 ± 0.04 1.00 ± 0.03 1.19 ± 0.02 1.52 ± 0.17

5 0.13 ± 0.02 0.56 ± 0.03 0.93 ± 0.03 0.76 ± 0.02 0.88 ± 0.11

10 0.26 ± 0.05 0.33 ± 0.01 0.84 ± 0.05 1.01 ± 0.01 0.91 ± 0.06

20 0.13 ± 0.02 0.55 ± 0.04 0.88 ± 0.04 1.20 ± 0.03 1.32 ± 0.07

30 0.16 ± 0.03 0.54 ± 0.18 0.60 ± 0.03 1.23 ± 0.18 1.35 ± 0.05

40 0.15 ± 0.02 0.52 ± 0.11 0.81 ± 0.05 1.15 ± 0.04 1.27 ± 0.04

50 0.16 ± 0.05 0.69 ± 0.35 0.76 ± 0.06 0.93 ± 0.04 1.30 ± 0.03

100 0.08 ± 0.02 0.57 ± 0.14 0.73 ± 0.04 1.01 ± 0.03 1.32 ± 0.03

200 0.04 ± 0.01 0.66 ± 0.11 0.81 ± 0.15 1.14 ± 0.05 1.51 ± 0.02

Table 6. Offline error ± standard error of the proposed algorithm for f = 10000 through different dimension.

Peaks versus dimension 1 2 3 4 5

1 0.38 ± 0.01 0.62 ± 0.04 1.00 ± 0.03 1.19 ± 0.02 1.52 ± 0.17

5 0.13 ± 0.02 0.56 ± 0.03 0.93 ± 0.03 0.76 ± 0.02 0.88 ± 0.11

10 0.26 ± 0.05 0.33 ± 0.01 0.84 ± 0.05 1.01 ± 0.01 0.91 ± 0.06

20 0.13 ± 0.02 0.55 ± 0.04 0.88 ± 0.04 1.20 ± 0.03 1.32 ± 0.07

30 0.16 ± 0.03 0.54 ± 0.18 0.60 ± 0.03 1.23 ± 0.18 1.35 ± 0.05

40 0.15 ± 0.02 0.52 ± 0.11 0.81 ± 0.05 1.15 ± 0.04 1.27 ± 0.04

50 0.16 ± 0.05 0.69 ± 0.35 0.76 ± 0.06 0.93 ± 0.04 1.30 ± 0.03

100 0.08 ± 0.02 0.57 ± 0.14 0.73 ± 0.04 1.01 ± 0.03 1.32 ± 0.03

200 0.04 ± 0.01 0.66 ± 0.11 0.81 ± 0.15 1.14 ± 0.05 1.51 ± 0.02

Parvin et al. 5127

Figure 2. Convergence of the proposed method when compared with the best
proposed method with frequency 500 and peak number equal.

For further study, researchers are advised to turn to
employ more actions which can be learned by learning
automata during exploration phase of particle swarm
optimization algorithm.

REFERENCES

Blackwell T, Branke J (2004). Multi-Swarm Optimization in Dynamic

Environments. Appl. Evolut. Comput., pp. 489–500.
Blackwell T, Branke J (2006). Multiswarms, Exclusion, and Anti-

Convergence in Dynamic Environments. IEEE Trans. Evolut.
Computat., 10: 459–472.

Blackwell T, Branke J, Li X (2008). Particle Swarms for Dynamic
Optimization Problems. Swarm Intell., pp.193–217.

Branke J (1999). Memory Enhanced Evolutionary Algorithms for
Changing Optimization Problems. Congress on Evolutionary
Computation, 3: 1875–1882.

Dueck G (1993). New Optimization Heuristics. The Great Deluge
Algorithm and the Record-to-Record Travel. J. Comput. Phys., 104:
86-92.

Hashemi AB, Meybodi MR (2009). Cellular PSO: A PSO for Dynamic
Environments. Advances in Computation and Intelligence, pp.422–
433.

Hu X, Eberhart RC (2002). Adaptive particle swarm optimization:
detection and response to dynamic systems. IEEE Congress on
Evolutionary Computation, 2: 1666–1670.

Janson S, Middendorf M (2004). A Hierarchical Particle Swarm
Optimizer for Dynamic Optimization Problems. Appl. Evolut. Comput.,
pp.513–524.

Janson S, Middendorf M (2006). A hierarchical particle swarm optimizer
for noisy and dynamic environments. Gen. Program. Evolvable.
Mach., 7: 329–354.

Kamosi M, Hashemi AB, Meybodi MR (2010). A New Particle Swarm
Optimization Algorithm for Dynamic Environments. SEMCCO,
pp.129-138.

Kennedy J, Eberhart RC (1995). Particle Swarm Optimization. IEEE
International Conference on Neural Networks, 5: 1942-1948.

Kennedy J, Mendes R (2002). Population structure and particle swarm
performance. Evolutionary Computation Congress, pp.1671–1676.

Li C, Yang S (2008). Fast Multi-Swarm Optimization for Dynamic
Optimization Problems. Fourth IEEE International Conference on
Natural Computing, 7: 624–628.

Li C, Yang S (2009). A clustering particle swarm optimizer for dynamic
optimization. IEEE Congress on Evolutionary Computation, pp. 439–
446.

Li X, Dam KH (2003). Comparing particle swarms for tracking extrema
in dynamic environments. IEEE Congress on Evolutionary
Computation, pp.1772–1779.

Liu L, Wang D, Yang S (2008). Compound Particle Swarm Optimization
in Dynamic Environments. Appl. Evolut. Comput., pp. 616–625.

Liu L, Yang S, Wang D (2010). Particle Swarm Optimization with
Composite Particles in Dynamic Environments. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, pp. 1–15.

Lung RI, Dumitrescu D (2007). A collaborative model for tracking optima
in dynamic environments. IEEE Congress on Evolutionary
Computation, pp.564–567.

Moser I (2007). All Currently Known Publications on Approaches Which
Solve the Moving Peaks Problem. Swinburne University of
Technology, Melbourne.

Thomsen R (2004). Multimodal optimization using crowding-based
differential evolution. IEEE Congress on Evolutionary Computation,
pp. 1382–1389.

