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Dynamic optimization in which global optima and local optima change over time is always a hot 
research topic. It has been shown that particle swarm optimization works well when facing dynamic 
environments. On the other hand, a learning automaton can be considered as an intelligent tool (agent) 
which can learn what action is the best interacting with its environment. The great deluge algorithm is 
also a search algorithm applied to optimization problems. All these algorithms have their drawbacks 
and advantages. This paper explores how one can combine these algorithms to reach better 
performance in dynamic spaces. Indeed a learning automaton is employed per particle in the swarm to 
decide whether its particle updates its velocity (and consequently its position) considering the best 
global particle position, local particle position or a combined position extracted out of global and local 
particle position. Water level in the deluge algorithm is used in the progress of the algorithm. 
Experimental results on different dynamic environments modeled by moving peaks benchmark show 
that the combination of these algorithms outperforms PSO algorithm, fast multi-swarm method (FMSO), 
a similar particle swarm algorithm for dynamic environments, for all tested environments.  
 
Key words: Particle swarm optimization, great deluge, learning automaton, moving peaks, dynamic 
environments. 

 
 
INTRODUCTION 
 
The standard particle swarm optimization (PSO) 
algorithms have performed well for static environment. 
Also, it is shown that the original PSO is not able to 
handle dynamic environments. So researchers turn to 
new variations of PSO to overcome its inefficiency. 

Hu and Eberhart (2002) proposed a re-randomization 
PSO for optimization in dynamic environments in which 
some particles are randomly relocated after a change is 
detected or when the diversity is lost, to prevent losing 
the diversity. Li and Dam (2003) showed that a grid-like 
neighborhood structure used in fine grain particle swarm 
optimization (FGPSO) (Kennedy and Mendes, 2002) can 
perform better than re-randomization particle swarm 
optimization (RPSO) in high dimensional dynamic 
environments by restricting  the  information  sharing  and  
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preventing the convergence of particles to the global best 
position, thereby enhancing population diversity. Janson 
and Middendorf (2004) proposed hybrid particle swarm 
optimization (HPSO), a tree-like structure hierarchical 
PSO, and reported improvements over standard PSO for 
dynamic environments. They also suggested partitioned 
hierarchical PSO in which a hierarchy of particles is 
partitioned into several sub-swarms for a limited number 
of generations after a change in the environment is 
detected (2006). Lung and Dumitresc (2007) used two 
collaborating populations with same size. In their work, 
one swarm is responsible for preserving the diversity of 
the particles by using a crowding differential evolutionary 
algorithm (Thomsen, 2004) while the other keeps track of 
global optimum with a PSO algorithm. 

Li and Yang (2008) proposed a fast multi-swarm 
method (FMSO) which maintains the diversity through the 
run. To meet this goal, two types of swarm are used: a 
parent swarm which maintains the  diversity  and  detects  
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the promising search area in the whole search space 
using a fast evolutionary programming algorithm and a 
group of child swarms which explore the local area for the 
local optima found by the parent using a fast PSO 
algorithm. This mechanism makes the child swarms 
spread out over the highest multiple peaks, as much as 
possible, and guarantees to converge to a local optimum 
in a short time. Moreover, Li and Yang (2009) introduced 
a clustering particle swarm optimizer in which a clustering 
algorithm partitions the swarm into several sub-swarms 
each searching for a local optimum.  

Liu et al. (2008) introduced compound particle swarm 
optimization (CPSO) utilizing a new type of particle which 
helps explore the search space more comprehensively 
after a change occurred in the environment. In another 
work, they used composite particles which help to quickly 
find the promising optima in the search space while 
maintaining the diversity by a scattering operator (Liu et 
al., 2010). 

Hashemi and Meybodi (2009) introduced cellular PSO, 
a hybrid model of cellular automata and PSO. In cellular 
PSO, a cellular automaton partitions the search space 
into cells. At any time, in some cells of the cellular 
automaton, a group of particles search for a local 
optimum using their best personal experiences and the 
best solution found in their neighborhood cells. To 
prevent losing the diversity, a limit on the number of 
particles in each cell is imposed. Furthermore, to track 
the changes in the environment (Hashemi and Meybodi, 
2009), particles in cellular PSO change their role to 
quantum particles and perform a random search around 
the previously found optima for a few iterations after a 
change is detected in the environment. 

Kamosi et al. (2010) proposed some variations of PSO 
that can perform well for dynamic environments. In their 
work, they proposed a multi-swarm algorithm for dynamic 
environments which address the diversity loss problem 
by introducing two types of swarm: a parent swarm, 
which explores the search space to find promising area 
containing local optima and several non-overlapping child 
swarms, each of which is responsible for exploiting a 
promising area found by the parent swarm. 

This paper explores how to combine the PSO, learning 
automaton (LA) and great deluge algorithms to eliminate 
their weaknesses in order to reach better performance in 
dynamic spaces. A learning automaton is employed per 
particle in PSO to decide whether its particle updates its 
velocity (and consequently its position) considering the 
best global particle position, local particle position or a 
combined position extracted out of global particle position 
and local particle position. Water level in the deluge 
algorithm is used in the progress of the algorithm to 
prevent it from premature convergence of the algorithm. 
 
 

RELATED WORKS 
 
A learning automaton (LA) is an adaptive decision-making unit 
situated in a  random  environment  that  learns  the  optimal  action 

 
 
 
 
through repeated interactions with its environment. The actions are 
chosen according to a specific probability distribution which is 
updated based on the response the automaton obtains from the 
environment by performing a particular action. 

Given a finite number of actions that can be performed in a 
random environment, when a specific action is takes place, the 
environment provides a random response which is either favorable 
or unfavorable. The objective in the design of the automaton is to 
determine how the choice of the action at any stage should be 
guided by past actions and responses. 

The particle swarm optimization algorithm (PSO) was introduced 
by Kennedy and Eberhart (1995) in their work. In PSO, a potential 
solution for a problem is considered as a bird, which is called a 
particle, flies through a D-dimensional space and adjusts its 
position according to its own experience and other particles’. In 
PSO, a particle is represented by its position vector x and its 
velocity vector v.  

The great deluge algorithm (GD) was introduced by Dueck 
(1993), but unfortunately was not widely useful in succeeding years. 
This local search meta-heuristic is different to its predecessors (for 
example, consider hill-climbing or simulated annealing) in the 
acceptance of a candidate solution from a neighborhood. The GD 
algorithm accepts all solutions, for which absolute values of the cost 
function are less than or equal to the current boundary value, called 
“level”. The local search starts with the initial value of “level” equal 
to an initial cost function and during the search its value is 
monotonically reduced. A decrement of the reduction (defined by 
the user) appears as a single algorithmic parameter.  
 
 
PROPOSED COMBINATION FRAMEWORK OF PSO, LA AND 
GD ALGORITHMS 

 
To get rid of premature convergence of PSO algorithm, there is 
need for the use a mechanism that produces perturbation in the 
population. A very promising method is to turn to multi-swarm 
mechanisms. In the multi-swarm mechanism, there must be a 
parent swarm which is responsible for finding promising area in the 
search space and also some child swarms which are created to 
exploit the new found promising area (Blackwell and Branke, 2006, 
2004; Kennedy et al., 1995; Blackwell et al., 2008). 

This paper differently deals with the premature problem. It uses a 
PSO in which each particle uses a learning automaton based on 
which particle decides how to update its velocity. Indeed, each 
automaton learns how to behave in predefined situations. These 
situations contain variance of the best fitness of local optima and 
the distance of the particle to its local and global optima. The 
learning of automaton is based on feedbacks received from the 
environment. A feedback per each particle is set according to its 
fitness and the previous position's fitness. It means that if the 
previous position's fitness is higher than the current position's, the 
action taken on the previous position to reach current position 
punishes, else it is rewarded. 

Figure 1 depicts the proposed method flowchart for a particle Pi 

(i∈1..N) in the swarm. In Figure 1, Ai stands for automaton related 
to ith particle whose position is denoted by xi. Xg stands for global 
best position so far and X

i
l stands for best position found by Pi so 

far. As it is obvious from Figure 1, the automaton Ai makes a 
decision for particle i on how to update its velocity. Based on the 
position of ith particle, position of other particles, position of global 
best solution Xg and position of local best solution Xl, the automaton 
decides the action a. Based on the action a, the next velocity of the 
current particle denoted by V'i is calculated. 

After calculating the next position of particle Pi denoted by x'i, if 
the fitness reduces (in minimization problems) rather than previous 
position xi, the state-action is rewarded, else it is punished. Then, 
according to the punish-reward signal, the automaton is updated.  

After the great deluge we accept the  relocation  of  ith  particle  if 
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Pi∈∈∈∈Pop 

a=Extract(Ai,Pop,Pi,Xil,Xg) 

V'i=Update(Vi,xi,Xg,Xil) 

 

V'i=Update(Vi,xi,Xil) V'i=Rand_Walk 

x'i=xi+V'i 

Fitness(x'i)>fitness(xi) 

B=punish B=reward 

Ai=LA(Ai,B,Pop,a) 

Fitness(x'i)<Level 

xi=x'i, Vi= V'
i 

Level = level-step 

Update(Xi
l,Xg) 

Yes 
No 

Yes No 

 
 
Figure 1. The proposed method flowchart for a particle in the PSO algorithm.  

 
 
 

the fitness of its new position is better than an acceptance level. 
This flowchart is accomplished per particle. One generation is 

completed after repeating the flowchart for each particle. The whole 
process is repeated for a predefined generation number. 

In the proposed method, the states of learning automaton Aj is a 
triple denoted by (var, dis

j
1 and dis

j
2), where var, dis

j
1 and dis

j
2 are 

linguistic variables belonging to {0,1,2}. For calculating var first 

maximum  distance  between  two  arbitrary  selected  X
i
l (i∈1..N)  is 

defined as max_disqp. 

 

NpqXXdisqp
p

l

q

l ..1,)max(max_ ∈−=           (1)     

 
Then, the normalized variance of X

i
l (i∈1..N) denoted by nvar is 

defined as follows: 



5124          Int. J. Phys. Sci. 
 
 
 

NqdisqpXVarn
q

l ..1max_/)(var ∈=           (2)                                                  

 
Now var is calculated according the following equations. 
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where v1 and v2 are two user-specified thresholds. For calculating 
dis

j
1, max_disp first is defined as following equation.  
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Then the normalized distance between X

j
l and Xg denoted by ndis

j
1 

is defined as follows: 
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j
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j
max_/)(1 −=                (5)                                                           

 
Now dis

j
1 is calculated according the following equations. 
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where d11 and d12 are two user-specified thresholds. And finally, for 
calculating dis

j
2, max_disq first is defined as follow: 

 

NpXXdisq
p

lp ..1)max(max_ ∈−=           (7)               

 

Then the normalized distance between X
j
l and xj denoted by ndis

j
2 

is defined as follows: 
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p
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j
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Now dis
j
2 is calculated according the following equation. 
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where d21 and d22 are two user-specified thresholds. Pseudo code 
of the proposed algorithm is presented in the Algorithm 1. In this 
code, r1 and r2 are both 0.5. Also all w1, w2 and w3 are 0.33. 

 
 
RESULTS AND DISCUSSION 

 
We have implemented all algorithms by Matlab 2008a 
and have run all algorithms on a PC with a core 2 duo 
processor 2 GHz and a 3 G Bytes RAM memory.  

Branke (1999) introduced a dynamic benchmark 
problem, called moving peaks benchmark (MPB) 
problem.  In  this  problem,  there  are  some  peaks  in  a  

 
 
 
 
counter=0 
max_fitness=maximum of possible fitness in an arbitrary problem setting 

level= max_fitness 
Repeat  

     counter=counter+1 
     step = exp( -1*counter)*max_fitness 

     each particle i 
     Update particle position xi According to one of the three below equations 

                 For each particle i 

       compute situation according to equation 3, 6 and 9 
                      a=make_decide(Automatai, situation) 

                      if(a=0) 

                             ))()(())()(()()1( 321 txtxwtxtxwtvwtv i
g

i
l
iii −+−+=+

                       elseif(a=1) 

                               ))()(()()1( 21 txtxrtvrtv i
l
iii −+=+

                        elseif(a=2) 

                               randomtvi =+ )1(

                       

 

End if 
                 

 

End for 

     xi'=xi+vi 
     if(f(xi’)> f(xi))  

          punish(Automatai,situation,a) 
     else 

         reward(Automatai,situation,a)) 

     End if 
     if(f(xi’)<level)  

          xi=x i’ 
     End if 
     if(f(xi’)<f(xg))  

          xg=xi’  

     End if 
     if(f(xi’)<f(xl

i)  

          xl
i=xi 

     End if 

    level=level+step 
Until termination criterion reached 

 

 
 
Algorithm 1. Pseudo code of the proposed algorithm. 
 
 
Table 1. Setting of parameters in moving peaks benchmark. 
 

Parameter Value 

Number of peaks m 10 

F Every 5000 evaluations 

Height severity 7.0 

Width severity 1.0 

Peak shape cone 

Shift length s {0.0} 

Number of dimensions D 5 

A [0, 100] 

H [30.0 , 70.0] 

W [1, 12] 

I 50.0 
 
 
 

multi-dimensional space, where the height, width and 
position of each peak change during the environment 
change. This function is widely used as a benchmark for 
dynamic environments in literature (Li et al., 2008; Moser, 
2007). 

The default parameter setting of MPB used in the 
experiments is presented in Table 1. In MPB, shift length 
(s) is the radius of peak movement after an environment 
change, m is the number of peaks, f is the frequency of 
environment     change    as    the    number    of    fitness  
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Table 2. Offline error ± standard error for f = 500. 

 

f = 1000 
Proposed 

algorithm 

Multi swarm PSO 

(Kamosi et al., 2010) 
Cellular PSO FMSO mQSO 10 

1 6.12 ± 0.22 2.90 ± 0.18* 6.77 ± 0.38 14.42 ± 0.4 18.6 ± 1.6 

5 5.66 ± 0.20 3.35 ± 0.18* 5.30 ± 0.32 10.59 ± 0.2 6.56 ± 0.38 

10 5.88 ± 0.16 3.94 ± 0.08* 5.15 ± 0.13 10.40 ± 0.1 5.71 ± 0.22 

20 5.36 ± 0.16 4.33 ± 0.12* 5.23 ± 0.18 10.33 ± 0.1 5.85 ± 0.15 

30 5.37 ± 0.16 4.41 ± 0.11* 5.33 ± 0.16 10.06 ± 0.1 5.81 ± 0.15 

40 4.45 ± 0.11* 4.52 ± 0.09 5.61 ± 0.16 9.85 ± 0.11 5.70 ± 0.14 

50 4.49 ± 0.15* 4.57 ± 0.08 5.55 ± 0.14 9.54 ± 0.11 5.87 ± 0.13 

100 3.79 ± 0.09* 4.77 ± 0.08 5.57 ± 0.12 8.77 ± 0.09 5.83 ± 0.13 

200 3.93 ± 0.10* 4.76 ± 0.07 5.50 ± 0.12 8.06 ± 0.07 5.54 ± 0.11 
 

* Result of the best performing algorithm(s) with 95% confidence. 

 
 
 
evaluations. H and W denote range of height and width of 
peaks which will change after a change in environment 
by height and width severity, respectively. I is the initial 
heights for all peaks. Parameter A denotes minimum and 
maximum value on all dimensions. For evaluating the 
efficiency of the algorithms, we use the offline error 
measure, the average deviation of the best individual 
from the optimum in all iterations. 

In the proposed method, the acceleration coefficients c1 
and c2 are set to 2.8 and 1.3 and the inertial weight w is 
set to mean of c1 and c2 (2.05). The number of particles 
in the swarm is set to 20 particles. d11, d21, d12, d22, v1 and 
v2 are set to 0.4, 0.4, 0.6, 0.6, 0.4 and 0.6, respectively. 
The proposed algorithm is compared with multi-swarm 
PSO (Kamosi et al., 2010), mQSO (Blackwell and 
Branke, 2006), FMSO (Li and Yang, 2008) and cellular 
PSO (Hashemi and Meybodi, 2009). In multi-swarm PSO, 
the acceleration coefficients c1 and c2 are set to 1.496180 
and the inertial weight w is set to 0.729844. The number 
of particles in the parent swarm and the child swarms (π) 
are set to 5 and 10 particles, respectively. The radius of 
the child swarms (r), the minimum allowed distance 
between two child swarm (rexcl) and the radius of 
quantum particles (rs) are set to 30.0, 30.0 and 0.5, 
respectively. For mQSO, we adapted a configuration 10 
(5 + 5q) which creates 10 swarms with 5 neutral 
(standard) particles and 5 quantum particles with rcloud = 
0.5 and rexcl = rconv = 31.5, as suggested (Blackwell 
and Branke, 2006). For FMSO, there are at most 10 child 
swarms, each has a radius of 25.0. The size of the parent 
and the child swarms are set to 100 and 10 particles, 
respectively (Li and Yang, 2008). For cellular PSO, a 5-
Dimensional cellular automaton with 105 cells and Moore 
neighborhood with radius of two cells embedded into the 
search space. The maximum velocity of particles is set to 
the neighborhood radius of the cellular automaton and 
the radius for the random local search (r) is set to  0.5  for 

all experiments. The cell capacity θ is set to 10 particles 
for every cell (Hashemi and Meybodi, 2009). 

As depicted in Tables 2 to 5, the proposed algorithm 
outperforms other tested PSO algorithms when the 
number of peaks increases. 

For all algorithms, we reported the average offline error 
and 95% confidence interval for 100 runs. Offline error of 
the proposed algorithm, mQSO 10 (5 + 5q) (Blackwell 
and Branke, 2006), FMSO (Li and Yang, 2008), cellular 
PSO (Hashemi and Meybodi, 2009) and multi-swarm 
PSO (Kamosi et al., 2010) for different dynamic 
environment is presented in Tables 2 and 3.  

Also to show the effect of the dimension of the problem 
over the efficacy of the algorithm, the results of offline 
error of the proposed algorithm is given in Table 6.  

The convergence of the proposed method compares 
with the best method proposed so far to deal with 
dynamic moving peak problem is shown in Figure 2. 
 
 

Conclusion 
 

In this paper, new PSO algorithm is proposed for 
dynamic environment. In the proposed PSO, there is one 
learning automaton per particle in which it learns for each 
particle, how to act during the evolution. To prevent 
redundant search in the same area, the LA belonging to 
particle Pi, which is denoted by Li, learns the relationship 
between the variance of the solutions, normalized 
distance between the position xi and position of its local 
optima and normalized distance between the position of 
its local optima and global optima, and the behavior of 
the particles. Indeed the proposed PSO is a kind of 
indirect niching method. In addition, the deluge water 
level is employed during the evolution. 

Results of the experiments show that for many tested 
dynamic environments, the proposed algorithm out-
performs all competent tested PSO algorithms. 
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Table 3. Offline error ± standard error for f = 1000. 
 

f = 5000 Proposed algorithm Multi swarm PSO (Kamosi et al., 2010) Cellular PSO FMSO mQSO 10 

1 2.54 ± 0.19 0.56 ± 0.04* 2.55 ± 0.12 3.44 ± 0.11 3.82 ± 0.35 

5 1.49 ± 0.11 1.06 ± 0.06* 1.68 ± 0.11 2.94 ± 0.07 1.90 ± 0.08 

10 1.44 ± 0.10* 1.51 ± 0.04 1.78 ± 0.05 3.11 ± 0.06 1.91 ± 0.08 

20 1.85 ± 0.11* 1.89 ± 0.04 2.61 ± 0.07 3.36 ± 0.06 2.56 ± 0.10 

30 2.00 ± 0.09* 2.03 ± 0.06 2.93 ± 0.08 3.28 ± 0.05 2.68 ± 0.10 

40 2.02 ± 0.08* 2.04 ± 0.06 3.14 ± 0.08 3.26 ± 0.04 2.65 ± 0.08 

50 2.03 ± 0.08* 2.08 ± 0.02 3.26 ± 0.08 3.22 ± 0.05 2.63 ± 0.08 

100 2.23 ± 0.04 2.14 ± 0.02* 3.41 ± 0.07 3.06 ± 0.04 2.52 ± 0.06 

1 2.54 ± 0.19 0.56 ± 0.04* 2.55 ± 0.12 3.44 ± 0.11 3.82 ± 0.35 
 

* Result of the best performing algorithm(s) with 95% confidence.  
 
 
 

Table 4. Offline error ± standard error for f = 5000. 

 

f = 10000 Proposed algorithm Multi swarm PSO (Kamosi et al., 2010) Cellular PSO FMSO mQSO 10 

1 1.52 ± 0.17 0.27 ± 0.02* 1.53 ± 0.12 1.90 ± 0.06 1.90 ± 0.18 

5 0.88 ± 0.11 0.70 ± 0.10* 0.92 ± 0.10 1.75 ± 0.06 1.03 ± 0.06 

10 0.91 ± 0.06* 0.97 ± 0.04 1.19 ± 0.07 1.91 ± 0.04 1.10 ± 0.07 

20 1.32 ± 0.07* 1.34 ± 0.08 2.20 ± 0.10 2.16 ± 0.04 1.84 ± 0.08 

30 1.35 ± 0.05* 1.43 ± 0.05 2.60 ± 0.13 2.18 ± 0.04 2.00 ± 0.09 

40 1.27 ± 0.04* 1.47 ± 0.06 2.73 ± 0.11 2.21 ± 0.03 1.99 ± 0.07 

50 1.30 ± 0.03* 1.47 ± 0.04 2.84 ± 0.12 2.60 ± 0.08 1.99 ± 0.07 

100 1.32 ± 0.03* 1.50 ± 0.03 2.93 ± 0.09 2.20 ± 0.03 1.85 ± 0.05 

200 1.51 ± 0.02 1.48 ± 0.02* 2.88 ± 0.07 2.00 ± 0.02 1.71 ± 0.04 
 

* Result of the best performing algorithm(s) with 95% confidence.  
 
 
 

Table 5.  Offline error ± standard error for f = 10000. 
 

Peaks versus dimension 1 2 3 4 5 

1 0.38   ± 0.01 0.62   ± 0.04 1.00   ± 0.03 1.19   ± 0.02 1.52   ± 0.17 

5 0.13   ± 0.02 0.56   ± 0.03 0.93   ± 0.03 0.76   ± 0.02 0.88   ± 0.11 

10 0.26   ± 0.05 0.33   ± 0.01 0.84   ± 0.05 1.01   ± 0.01 0.91   ± 0.06 

20 0.13   ± 0.02 0.55   ± 0.04 0.88   ± 0.04 1.20   ± 0.03 1.32   ± 0.07 

30 0.16   ± 0.03 0.54   ± 0.18 0.60   ± 0.03 1.23   ± 0.18 1.35   ± 0.05 

40 0.15   ± 0.02 0.52   ± 0.11 0.81   ± 0.05 1.15   ± 0.04 1.27   ± 0.04 

50 0.16   ± 0.05 0.69   ± 0.35 0.76   ± 0.06 0.93   ± 0.04 1.30   ± 0.03 

100 0.08   ± 0.02 0.57   ± 0.14 0.73   ± 0.04 1.01   ± 0.03 1.32   ± 0.03 

200 0.04   ± 0.01 0.66   ± 0.11 0.81   ± 0.15 1.14   ± 0.05 1.51   ± 0.02 
 
 
 

Table 6. Offline error ± standard error of the proposed algorithm for f = 10000 through different dimension. 
 

Peaks versus dimension 1 2 3 4 5 

1 0.38   ± 0.01 0.62   ± 0.04 1.00   ± 0.03 1.19   ± 0.02 1.52   ± 0.17 

5 0.13   ± 0.02 0.56   ± 0.03 0.93   ± 0.03 0.76   ± 0.02 0.88   ± 0.11 

10 0.26   ± 0.05 0.33   ± 0.01 0.84   ± 0.05 1.01   ± 0.01 0.91   ± 0.06 

20 0.13   ± 0.02 0.55   ± 0.04 0.88   ± 0.04 1.20   ± 0.03 1.32   ± 0.07 

30 0.16   ± 0.03 0.54   ± 0.18 0.60   ± 0.03 1.23   ± 0.18 1.35   ± 0.05 

40 0.15   ± 0.02 0.52   ± 0.11 0.81   ± 0.05 1.15   ± 0.04 1.27   ± 0.04 

50 0.16   ± 0.05 0.69   ± 0.35 0.76   ± 0.06 0.93   ± 0.04 1.30   ± 0.03 

100 0.08   ± 0.02 0.57   ± 0.14 0.73   ± 0.04 1.01   ± 0.03 1.32   ± 0.03 

200 0.04   ± 0.01 0.66   ± 0.11 0.81   ± 0.15 1.14   ± 0.05 1.51   ± 0.02 
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Figure 2. Convergence of the proposed method when compared with the best 
proposed method with frequency 500 and peak number equal. 

 
 
 

For further study, researchers are advised to turn to 
employ more actions which can be learned by learning 
automata during exploration phase of particle swarm 
optimization algorithm. 
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