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A learning genetic algorithm is proposed to solve the experimental parameters optimization problem. This 
method can not only enhance the efficiency of genetic algorithm through the pre-given user experience, 
but also improve the efficiency of genetic algorithm via learning the knowledge obtained from the 
optimization process. Experimental results suggest that the learning genetic algorithm can effectively 
optimize the experimental parameters. 
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INTRODUCTION 
 
As a result of the complexity and randomness of 
experimental parameters optimization and the difficulty in 
determining the optimal parameter combination, various 
researchers have done a lot of research works (Su et al., 
2004; Lin et al., 2000; Marafona and Wykes, 2000), on 
neural networks, genetic algorithms and fuzzy logic to the 
effect of the experimental parameters optimization. In 
recent years, the experimental parameters optimization 
approach based on experimental design obtains a wide 
range of applications. Jia et al. (2003) executed the 
multi-objective process parameters optimization via a 
combination of the gray correlation analysis with 
orthogonal design. Huang et al. (2005) established the 
multiple linear regression equation to the electrical 
parameters on surface roughness and process time 
through the uniform design. However, the performance of 
these methods is not satisfied, more research works 
should be done to improve the efficiency of optimization 
algorithms. 

Recently, more and more scholars have studied the 
applications of the interaction between evolution and 
learning (Xing et al., 2008a, b, 2010a). Normally, these 
approaches keep useful features of previous individuals to 
improve the performance of current individuals (Xing et al., 
2006a, 2007, 2009). In fact, such approaches outperform 
traditional evolutionary algorithms on several benchmarks 
(e.g., flexible job shop scheduling problem, traveling 
salesman problem, and capacitated arc routing problem) 
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(Xing et al., 2006b, 2010b; Ho et al., 2007; Louis and 
McDonnell, 2004). In a similar fashion, a Learning Genetic 
algorithm (LGA) is proposed in this work. 

This paper is organized as follows. The experimental 
parameters optimization problem is formulated. The 
learning genetic algorithm is introduced in detailed. Also, 
computational experiments and comparison studies are 
reported. Finally, some concluding remarks are made. 
 
 
PROBLEM FORMULATION 
 
The experimental parameters optimization problem can be 
formulated as follows. 
 
(1) Inputs: In the experimental parameters optimization problem, the 
inputs are the different parameters in the given experiments. The 
parameters can be the continuous variables, discrete variables and 
Boolean variables. The inputs of experimental parameters 
optimization problem can be displayed as  
 

{ }1 2 1 1, , , , , , , , ,a a a b a b a b cX x x x x x x x+ + + + + += ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅        (1) 

 

Where 1 2, , , ax x x⋅ ⋅ ⋅ denote the a continuous 

variables 1, ,a a bx x+ +⋅ ⋅ ⋅ denote the b discrete variables, 

and 1, ,a b a b cx x+ + + +⋅ ⋅ ⋅ denote the c Boolean variables. 

 
(2) Outputs: The outputs of experimental parameters optimization 
problem can be displayed as 
 

{ }* * * *
1 2, , , a b cX x x x + += ⋅ ⋅ ⋅                 (2) 
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(3) Constraints: To these continuous variables, the constraints can 
be displayed as 
 

, 1,2, ,i i il x u i a≤ ≤ ∀ = ⋅ ⋅ ⋅  

 

il and iu denote the minimum value and the maximum value if 

variable ix . 

 
To these discrete variables, the constraints can be displayed as 
 

, , 1, 2, ,i i i ix Z l x u i a a a b∈ ≤ ≤ ∀ = + + ⋅ ⋅ ⋅ +  

 

il and iu denote the minimum value and the maximum value if 

variable ix . 

 
To these Boolean variables, the constraints can be displayed as 
 

{ }0,1 , 1, 2, ,ix i a b a b a b c∈ ∀ = + + + + ⋅ ⋅ ⋅ + +  

 
(4) Objectives: In most experiments, there are two kinds of 
objectives: one is the maximum objective, and another is the 
minimum objective. For this reason, the objectives of experimental 
parameters optimization problem can be displayed as 
 

{ }
{ }

1 2

1 2

max , , ,

min , , ,
s

s s s t

J J J

J J J+ + +

� ⋅ ⋅ ⋅�
�

⋅ ⋅ ⋅��
                       (3) 

 

Where 1 2, , , sJ J J⋅ ⋅ ⋅ denote the s maximum objective, and 

1 2, , ,s s s tJ J J+ + +⋅ ⋅ ⋅  denote the t minimum objective. 

 
 
THE LEARNABLE GENETIC ALGORITHM 
 
To the experimental parameters optimization problem, a learning 
genetic algorithm was proposed in this paper. The learning genetic 
algorithm is characterized by the following points: it can not only 
enhance the efficiency of genetic algorithm through the pre-given 
user experience, but also improve the efficiency of genetic algorithm 
via learning the knowledge from the optimization process. 
 
 
Population initialization 
 
Chromosome, also called individual, is the encoded solution for 
specific problems. To the experimental parameters optimization 

problem, this paper adopts a matrix Pop  with the a b c+ +  

size as one chromosome. Where Pop  denotes Population, 

which is the set of chromosomes. In this paper, each chromosome is 
initialized using random generation. 
 
 
Selection operation 
 
In the learning genetic algorithm, the binary tournament is employed 
to implement the selection operation. First, two chromosomes are 
randomly selected, and then the least-cost one is kept.  

 
 
 
 

To improve the performance of the learning genetic algorithm, the 
elitism among the current population is directly copy to the next 
population. 
 
 
Crossover operation 
 
In the genetic algorithms, crossover operator is a main method for 
producing new individuals. In order to inherit a set of building blocks 
from each parent, the crossover operator recombines the 
gene-codes of two parents and produces offspring. It is very pivotal 
to select a small, but representative sample of points as the potential 
offspring. Therefore the orthogonal crossover with quantization 
(Leung and Wang, 2001) is applied as the crossover operator of 
learning genetic algorithm. 
 
 
Mutation operation 
 
Mutation takes place on some newly formed children in order to 
prevent all solutions from converging to their particular local optima. 
According to traditional ways, to perform mutation on a chromosome, 
it randomly generates an integer [ ]1,j N∈ and a real 

number ,j jz l u� �∈ � �
, and then replaces the

thj component of 

the chosen chromosome by z to get a new chromosome. 
 
 
Termination conditions 
 
The learning genetic algorithm is terminated when one of the 
following conditions are satisfied: the elitism is not improved in the 
successive S I generations, and the maximum M I generations are 
exhausted. 
 
 
The user experience 
 
In order to enhance the efficiency of genetic algorithm, we can apply 
these user experiences to guide the evolution of learning genetic 
algorithm. Normally, the users can learn some experiences from 
many experiments. For example, the influence of one variable to the 
final objective (Figure 1) is very important to deal with the practical 
problem. 

As displayed in Figure 1(a), ( )f x is increased with the 

increasing of variable x while in Figure 1(b), ( )f x  decreased  

variable x  increases. Also, in Figure 1(c), the retaliation between 
the objective ( )f x and variable x is the U Curve while in Figure 

1(d), the retaliation between the objective ( )f x and variable x is 

the reversed U Curve. As shown in Figure 1(e), the retaliation 
between the objective ( )f x and variable x is one line, and the 

influence of variable x to objective ( )f x is small. As displayed in 

Figure 1(f), the retaliation between the objective ( )f x and 

variable x is too complex. In fact, these user experiences are very 
important to enhance the efficiency of genetic algorithm. 
 
 
Learning the knowledge from the optimization process 
 

In this paper, the feasible space[ ],i il u of variable ix   is  divided
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Figure 1. The user experience learning from many experiments. 

 
 
 

Table 1. A favorable choice of parameters to learning genetic algorithm. 
 
Name Role Value 

SP  Population size 100 

XP  Crossover rate 0.9 

mP  Mutation rate 0.05 

SI  The elitism is not improved in the successive generations 200 

MI  The maximum generations 2000 
 
 
 
into 10 subintervals. To these near-optimal solutions, the times of 

variable ix fall into each subinterval are recorded. We called this 

information as knowledge. This knowledge is very important to 
improve the performance of genetic algorithm. In this paper, the 
knowledge is employed to guide the sequential crossover and 
mutation of learning genetic algorithm. 
 
 
EXPERIMENTAL RESULTS 
 
The learning genetic algorithm was  implemented  using 

Visual C++ language, and executed on a personal 
computer with the 2 GHz processor and 2 GB memory. 
We established a favorable choice of parameters, as 
listed in Table 1, by means of systematic experimentation. 
In this paper, the final experimental results were averaged 
over 100 trials. 

In order to validate the performance of learning genetic 
algorithm, the standard genetic algorithm (SGA), the 
intelligent genetic algorithm (IGA) (Xing et al., 2006a) and 
the multiprogramming genetic algorithm (MGA) (Xing et 
al., 2007) are applied to compare with the learning genetic
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Table 2. The experimental results of learning genetic algorithm 
 

Approach Objectives Experimental results 

Standard genetic algorithm 

1J (maximum) 210.98 

2J (maximum) 235.61 

3J (maximum) 198.18 

4J (minimum) 35.68 

5J ( minimum) 33.75 

   

Intelligent genetic algorithm 

1J (maximum) 215.39 

2J (maximum) 241.52 

3J (maximum) 202.83 

4J (minimum) 32.06 

5J ( minimum) 30.69 

   

Multiprogramming genetic algorithm 

1J (maximum) 221.13 

2J (maximum) 248.05 

3J (maximum) 209.11 

4J (minimum) 28.13 

5J ( minimum) 26.05 

   

Learning genetic algorithm 

1J (maximum) 230.55 

2J (maximum) 253.67 

3J (maximum) 231.39 

4J (minimum) 21.05 

5J ( minimum) 22.77 

 
 
 
algorithm. These different versions of genetic algorithms 
were implemented using Visual C++ language in this 
research. The final experimental results were summarized 
in Table 2. 

From the experimental results of Table 2, we can see 
that, to the maximum objectives, the objective obtained by 
learning genetic algorithm is larger than other three 
approaches. To these minimum objectives, the objective 
obtained by learning genetic algorithm is smaller than 
other three approaches. In terms of the optimal objective, 
the learning genetic algorithm is powerful than other 
different genetic algorithms. In summary, experimental 
results suggest that the learning genetic algorithm can 
effectively optimize the experimental parameters. 
 
 
Conclusion 
 
The contribution of this paper can be summarized  thus: 

A learning genetic algorithm is proposed to solve the 
experimental parameters optimization problem. This 
method can not only enhance the efficiency of genetic 
algorithm through the pre-given user experience, but also 
improve the efficiency of genetic algorithm via learning the 
knowledge obtained from the optimization process. 
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