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The purpose of this work is to examine the flow of a binary mixture including chemically inert 
incompressible Newtonian fluids in a duct of semicircular cross-section. Such a flow model has great 
significance not only of its own theoretical interest, but also for application to various engineering 
processes. The governing equations have been solved analytically using the finite Fourier sine and 
Hankel transforms for the following four problems: (1) steady Couette flow in a semicircular duct, (2) 
unsteady Couette flow in a semicircular duct, (3) steady Poiseuille flow in a semicircular duct, (4) 
unsteady Poiseuille flow in a semicircular duct. The previous solutions corresponding to pure 
Newtonian fluid appear as the special cases of the present analysis. 
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INTRODUCTION 
 
The subject of a mixture of fluids is currently one of 
importance in view of its relevance to a number of 
engineering processes. A familiar example is an 
emulsion, which is the dispersion of one fluid within 
another fluid. Typical emulsions are produced by mixing 
water and oil with an emulsifier. Water by itself is a very 
poor lubricant, but when mixed with oils to form 
emulsions, some useful lubricants can be developed. 
These liquids are used as coolants in metalworking 
where the combination of the lubricity of oil, high 
conductivity and the latent heat of water provide the 
optimum fluid for this application. Mining machinery is 
also lubricated by water-based fluids to minimize the risk 
of fire from leakage of lubricants. Another example where 
the fluid mixtures play an important role is in multigrade 
oils. In order to enhance the lubrication properties of 
mineral oils such as the viscosity index, polymeric type 
fluids are added to the base oil (Al-Sharif et al., 1993; 
Chamniprasart et al., 1993; Wang et al., 1993; Dai and 
Khonsari, 1994; Stachowiak and Batchelor, 2001). 

Truesdell (1957) was the first to derive the balance and 
conservation equations through the use of a continuum 
theory of mixtures. The principal  idea  for  the  theoretical 
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treatment of the mechanics and thermodynamics of 
mixtures is the supposition that the mutual 
interconnection of the different constituents is 
conceptually idealized so as to assume that each spatial 
point is simultaneously occupied by one particle from 
each constituent (Truesdell and Toupin, 1960). Such an 
idealization obviously requires the mixture to be 
sufficiently dense. This principle forms the basis of 
approach in most texts and articles dealing with the 
theory of mixtures. Truesdell’s (1957) pioneering work 
gave impetus to many researches on the continuum 
theory of mixtures, and a good amount of literature has 
grown up around this subject. The theoretical progress 
and detailed analysis of various results on the mixture 
theory can be found in the review articles by Bowen 
(1976), Atkin and Craine (1976a, b), Bedford and 
Drumheller (1983) and in the books by Truesdell (1984), 
Samohyl (1987) and Rajagopal and Tao (1995). Much 
has been written since 1957 on the subject of the theory 
of mixtures, and they dealt with the general formulations 
of the basic equations and constitutive models. A 
literature survey clearly indicates that very little work 
seems to have been done on applications of the theory of 
interacting continua to practical problems. This is 
because there are serious difficulties with regard to 
specifying boundary conditions and modeling of the 
interactions   between   constituents   in   mixture    theory 
(Rajagopal and Tao, 1995; Massoudi, 2003). The mixture 
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of two compressible Newtonian fluids was first 
considered by Green and Naghdi (1965). Their results 
were used by Mills (1966) studying a binary mixture of 
incompressible Newtonian fluids and applied to problem 
of helical flow. Craine (1971) examined the flow induced 
by the steady oscillations of an infinite plate in a mixture 
of two incompressible Newtonian fluids. In his 
subsequent study (Craine, 1973), he considered the 
same problem for a binary mixture of incompressible 
Newtonian hemihedral fluids. Wilhelm and Van Der Werff 
(1977) presented a theoretical analysis for the flows of 
two miscible, viscous, incompressible fluids, subject to 
oscillatory pressure gradients in a cylindrical tube. Later, 
some exact solutions for the flow of a binary mixture of 
incompressible Newtonian fluids were obtained by Göğüş 
(1988, 1991, 1992a, b, 1994, 1995). Several problems 
relating to the mechanics of oil and water emulsions were 
considered within the context of the mixture theory by Al-
Sharif et al. (1993), Chamniprasart et al. (1993) and 
Wang et al. (1993). Recently, Barış (2005) considered 
the unsteady flow of two chemically inert incompressible 
Newtonian fluids in the annular region between two 
infinitely long coaxial cylinders. 

To the best of the authors’ knowledge, no results 
(theoretical or experimental) currently exist for the steady 
and unsteady flows of a binary mixture of incompressible 
Newtonian fluids in semicircular ducts. The objective of 
the present investigation is to generate theoretical results 
for the flow of the mixture of two incompressible 
Newtonian fluids in a semicircular duct. Therefore, this 
paper has not been concerned with experimental 
substantiating the validity of the established analytical 
solutions. The flow and heat transfer in these ducts, apart 
from their theoretical interest, are of considerable 
practical importance and arise frequently in industrial 
processes. For example, in response to the strong social 
demand for reduction of fuel oil consumption, a 
semicircular duct type energy saving device for a full ship 
has been developed. It is found that the energy saving 
effect of this device was greater than that of conventional 
circular ducts, and horsepower was reduced by 
approximately 5% based on a model test (Yasuhiko et al., 
2007). Besides, semicircular ducts are also used in heat 
exchanger design in various engineering applications. 
These ducts can carry Newtonian or non-Newtonian fluid 
under the constant wall temperature or constant heat flux 
boundary conditions (Oztop, 2005). In the present paper, 
we have sought special semi inverse solutions of the 
equations of motion governing the steady and unsteady 
flows of a binary mixture of incompressible Newtonian 
fluids in semicircular ducts. We have obtained the exact 
solutions in series form for the velocity fields by means of 
finite integral transforms. Exact solutions are important 
not only because they are analytical solutions for some 
fundamental flows but also because they can serve as 
accuracy     checks   for    experimental,    numerical  and 

 
 
 
 
asymptotic methods. 
 
 
FUNDAMENTAL EQUATIONS 

 
In this section, for the sake of completeness and continuity, we 
provide a very brief summary of the basic balance laws and the 
appropriate constitutive theory for a binary mixture of 
incompressible Newtonian fluids. For a review of these issues, the 
reader is referred to the articles by Atkin and Craine (1976a, b). 

We considered a mixture of two continua 
(1)S  and 

(2)S  which 

are in motion relative to each other. We assume that each point 

within the mixture is occupied simultaneously by 
(1)S  and 

(2)S  and 

refer the motion of the continua to a fixed system of rectangular 

Cartesian coordinates. Let 
( )

X  be the reference position of typical 

particles of the  th constituent. Throughout this paper,   takes 

the values 1 and 2. The motion of the  th constituent is denoted by: 

 
( ) ( ) ( )( , )t  x x X                          (1) 

 
We shall assume this motion is one-to-one, continuous and 
invertible. All fields appearing in the subsequent equations are 
regarded as being continuous functions of position and time. We 
shall denote the velocity vector associated with the motion through 
 

( )
( ) D

Dt


 

x
v            (2) 

 

where /D Dt  is the convective time derivative. The deformation-

rate and spin tensors are given, respectively by: 
 

( ) ( ) ( ) ( ) ( ) ( )

, , , ,2 , 2ij i j j i ij i j j id v v w v v                                     (3) 

 

where a comma denotes partial differentiation with respect to 
( )

kx 
. 

We define the mean velocity of the mixture w  and the total density 

of the mixture   by the equations as follows: 

 

(1) (2)

1 2i i iw v v              (4) 

 

1 2               (5) 

 

in which 1  and 2  are the densities of 
(1)S  and 

(2)S  at time t , 

measured per unit volume of mixture. 
If thermal, chemical and electro-magnetic effects are not 
considered, the fundamental laws of continuum mechanics reduce 
to the conservation equations for mass, linear momentum and 
angular momentum. The balance of angular momentum for the 

mixture results in the symmetry of the total stress tensor σ  for 

mixture, though the balance of angular momentum for 
( )S 

 shows 

that the partial stress tensor 
( )

σ  need not to be symmetric. The 

conservation of mass and the conservation of linear momentum for 
a binary mixture are as follows: 
 

(1) (2)1 2

1 , 2 ,( ) 0, ( ) 0i i i iv v
t t

 
 

 
   

 
    (6) 



 

 
 
 
 

(1) (1) (2) (2)

(1) (1) (2) (2)

1 , 1 2 , 2,k k

ik i k k ik i k k

D v D v
f F f F

Dt Dt
            (7) 

 

where 
kf , 

( )

ik

  and 
( )

kF 
 are in turn the mechanical  interaction 

(local exchange of momentum) between the two components, 

partial stress and body force per unit mass of the  th constituent. 

The interaction force 
kf  is possibly the most important of all 

interaction terms. The paper by Massoudi (2003) discussed a 
variety of possible form of this term. For instance, for fluid-solid and 
fluid-fluid mixtures, in general, this interaction force depends on 
densities, temperatures, velocity differences, their gradients and 

possibly other quantities. Such interactions play a very important 
role in the nature of the solutions (Johnson et al., 1991a, b). In this 
study, we assume that the interaction force incorporates only the 
effect of drag and depends on the velocity differences in a linear 
fashion. Calculations based on this assumption for various 
problems related to binary fluid mixtures have been carried out by 
some authors like Craine (1971, 1973), Al-Sharif et al. (1993), 
Chamniprasart et al. (1993), Wang et al. (1993), Göğüş (1988, 
1991, 1992a, b, 1994, 1995) and Barış (2005). 

In this work, we shall concern ourselves with a mixture of two 
incompressible Newtonian fluids. In the reference state before 

mixing, let the density of 
( )S 

 be 0  which a constant in view of 

the assumed incompressibility is. Introducing a volume fraction 
1 , 

defined as the proportion by volume of 
(1)S  and assuming that the 

mixture does not contain voids, it follows that the densities of 
(1)S  

and 
(2)S  at time t  are given by: 

 

1 1 10 2 1 20, (1 )                                (8) 

 
And hence, 

 

1 2

10 20

1
 

 
               (9) 

 
Using Equations 5 and 9, it can be easily shown that  

 

10 20 20 10

1 2

20 10 20 10

( ) ( )
,

     
 

   

 
 

 
       (10) 

 

Substituting Equation 10 into Equation 6 and eliminating / t   

between the resulting equations, we get  

 
(1) (2) (1) (2)

20 10 ,( ) ( ) ( ) 0ii ii i i id d v v                        (11) 

 
Looking at Equation 7, it is clear that in order to close the system of 

equations, we need to provide constitutive relations for 
(1)

σ , 
(2)

σ  

and f . The derivation of the constitutive equations appropriate to a 
mixture of two incompressible Newtonian fluids has been outlined in 
Atkin and Craine (1976a, b). If the mixture is considered to be 
purely mechanical system; that is, thermal effects are ignored, the 
relevant equations are: 

 

( ), ( )A A A A                         (12) 
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1 2

1 20 1 2 10 2( ) , ( )
dA dA

p p
d d

       
 

   
        

   

   (13) 

 
(1) (2)

,( )k k k kf v v                  (14) 

 
(1) (1) (2) (1) (2) (1) (2)

1 1 3 1 3 5( ) 2 2 ( )ik jj jj ik ik ik ik ikp d d d d w w                (15) 

 
(2) (1) (2) (1) (2) (1) (2)

2 4 2 4 2 5( ) 2 2 ( )ik jj jj ik ik ik ik ikp d d d d w w               (16) 

 

where A  denotes the partial Helmholtz free energy of the  th 

constituent,   is a lagrange multiplier associated with the 

constraint of Equation 11 and the Helmholtz free energy of the 

mixture A  is defined by: 

 

1 1 2 2A A A                          (17) 

 

And the coefficient 
1 5 1 4, ,..., , ,...,      satisfy the inequalities 

 
2

5 1 2 1 1 2 2 3 4 1 2

2 2
0, 0, 0, 0, 0, 0, ( ) 4 ,

3 3
                    

  

 
2

3 4 3 4 1 1 2 2

2 2 2
( ) 4

3 3 3
       
    

        
    

  (18) 

 
Finally, neglecting the body forces, we derived the equations 

governing the flow of a mixture of two incompressible Newtonian 

fluids. For this purpose, inserting 
kf , 

(1)

ik  and 
(2)

ik  from 

Equations 14 to 16 into Equation 7, with the help of Equation 3, one 
gets the following equations of motion: 

 
(1) (1)

(1) (2) (1) (2) (1)

1 1, , 1 , 2 , 5 , 6 , , 1,

k

k k k ii k ii i ik i ik i i k

D v
p M v M v M v M v v

Dt
          

 
(2) (1) (2) (1) (2) (1) (2)

, 3, , 1, , 2, , 9, , 10, ( )i i k k i i k i i i k i i k i k kv v M v M v M v M v v        (19) 

 
(2) (2)

(1) (2) (1) (2) (1)

2 2, , 3 , 4 , 7 , 8 , , 4,

k

k k k ii k ii i ik i ik i i k

D v
p M v M v M v M v v

Dt
        

 
 

(2) (1) (2) (1) (2) (1) (2)

, 2, , 3, , 4, , 11, , 12, ( )i i k k i i k i i i k i i k i k kv v M v M v M v M v v           (20) 

 
where 

 

5 5 5 5 5

1 1 2 3 3 4 4 2 5 1 1, , , , ,
2 2 2 2 2

M M M M M
    

               

 

5 5 5 5

6 3 3 7 4 4 8 2 2 9 1, , , ,
2 2 2 2

M M M M
   

                  

 

5 5 5

10 3 11 4 12 2, ,
2 2 2

M M M
  

          (21) 

 

Note that, under isothermal conditions, the material coefficients 1M  
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Figure 1. Sketch of flow geometry and coordinate system. 

 
 
 
etc. appearing in Equations 19 and 20 depend only on the total 

density  . 

 
 
STEADY COUETTE FLOW IN A SEMICIRCULAR DUCT 
 
Here, we begin with the case of the fully developed stage of the 
flow of a binary mixture of incompressible Newtonian fluids in a duct  
of semicircular cross-section. The flow geometry and the coordinate 
system are shown in Figure 1. It is assumed that the flow is entirely 

driven by the motion of the bottom wall with steady velocity U  in 

the z - direction in the absence of the pressure gradient p z  . 

We seek solutions in which the velocity vector of the  th fluid and 

densities are assumed to have the form:  
 

 ( )

1 1 2 20,0, ( , ) , ( , ), ( , )SCw r r r

         v    (22) 

 

where SCw  is the z -component of the velocity vector of the  th 

fluid. With this assumption, it is shown that the equations of 
continuity, that is, Equation 6 can be satisfied identically. 

Substituting Equation 22 into the r - and  - components of the 

equations of motion, that is, Equations 19 and 20, we get:  

 

1 2,
p p

r r r r

 
 

  
  

   
          (23) 

 

1 2,
p p 

 
   

  
  

   
                      (24) 

 

With the use of Equations 10, 13 and 17, elimination of r   

between Equations 231 and  

232, and that of     between Equations 241 and 242 give, 

respectively,  
 

2

10 20 2

( )
( )( ) 0

d A

r d

 
   




  


,                         (25) 

 
 
 
 

2

10 20 2

( )
( )( ) 0

d A

d

 
   

 


  


,                    (26) 

 

and since, in general, 
10  , 

20   and 
2 2( ) / 0d A d    

we deduce that 
0 .const    As a result, the constitutive 

coefficients 
1M  etc. in Equations 19 and 20 are constants. In the 

light of this arguments, the z - components of the equations of 
motions reduce to  
 

2 2 2 2

1 1 1 2 2 2

1 22 2 2 2 2 2

1 1 1 1SC SC SC SC SC SCw w w w w w
M M

r r r rr r r r 

        
       

       

 

 

                    
1 2( ) 0SC SCw w       (27) 

 
2 2 2 2

1 1 1 2 2 2

3 42 2 2 2 2 2

1 1 1 1SC SC SC SC SC SCw w w w w w
M M

r r r rr r r r 

        
       

       

 

 

                     
1 2( ) 0SC SCw w        (28) 

 
It is convenient at this point to introduce dimensionless variables 

and material constants. If f  is used to denote the dimensionless 

form of a quantity f , it follows that: 

 
2

, , ,
SCi

i SC

wM R r
M w r

U R








 
         (29) 

 

where   is viscosity coefficient of the mixture. The dimensionless 

governing equations are obtained from Equations 27 and 28 by 
replacing variables and material constants by those given in 
Equation 29, so they are not rewritten here. 
The boundary condition for the velocity fields are: 
 

(1, ) 0, ( ,0) 1, ( , ) 1SC SC SCw w r w r      .         (30) 

 
Throughout this paper, henceforth for convenience, unless stated 
otherwise, there is the drop of the bars that appear over the 
dimensionless quantities.  
We assume a solution in the form 
 

( , ) 1 ( , )SCw r f r    .              (31) 

 

Substitution of ( , )SCw r   in Equations 27 and 28 yields  

 
2 2 2 2

1 1 1 2 2 2

1 2 1 22 2 2 2 2 2

1 1 1 1
( ) 0

f f f f f f
M M f f

r r r rr r r r


 

        
          

       
(32) 

 
2 2 2 2

1 1 1 2 2 2

3 4 1 22 2 2 2 2 2

1 1 1 1
( ) 0

f f f f f f
M M f f

r r r rr r r r


 

        
          

       

   (33) 

 

In a similar manner, if ( , )SCw r   is inserted in the boundary 

conditions of Equation 30, we obtain 
 

(1, ) 1, ( ,0) 0, ( , ) 0f f r f r      .                   (34) 



 

 
 
 
 
Finite Fourier sine transform was used to solve the two stated 
simultaneous partial differential equations with the boundary 
conditions of Equation 34. The finite Fourier sine transform of a 

function ( )f   defined for 0     is (Debnath, 1995): 

 

0

{ ( ); } ( ) ( )sin( ) , 1,2,3,...F f k f k f k d k



         (35) 

 
with inverse transform 
 

1

1

2
{ ( ); } ( ) ( )sin( )

k

F f k k f f k k  







                (36) 

 
Application of the finite Fourier sine transform to Equations 32 and 

33 with respect to  , taking Equations 342 and 343 into account, 

gives: 
 

2 22 2

1 1 2 2

1 1 2 22 2 2 2

( , ) ( , ) ( , ) ( , )1 1
( , ) ( , )

d f r k df r k d f r k df r kk k
M f r k M f r k

r dr r drdr r dr r

   
       

   

   
   

1 2[ ( , ) ( , )] 0f r k f r k    .                                          (37) 

 
2 22 2

1 1 2 2

3 1 4 22 2 2 2

( , ) ( , ) ( , ) ( , )1 1
( , ) ( , )

d f r k df r k d f r k df r kk k
M f r k M f r k

r dr r drdr r dr r

   
       

   

   
 

 

                                 1 2[ ( , ) ( , )] 0f r k f r k    ,            (38) 

 
subject to the transform of Equation 341  
 

[1 ( 1) ]
(1, ) , 1,2,3,...

k

f k k
k



 
                            (39) 

 

Subtracting 
4M  times Equation 37 from 

2M  times Equation 38, 

and 
3M  times Equation 37 from 

1M  times Equation 38, we get the 

following equations, respectively  

 
2 2

1 1

1 1 1 2 2 42 2

1
( )( ) 0

d f df k
n f f f M M

r drdr r


 
      

 

 
              (40) 

 
2 2

2 2

1 2 1 2 1 32 2

1
( )( ) 0

d f df k
n f f f M M

r drdr r


 
       

 

 
  

         (41) 

 
and the sum of the Equations 40 and 41 is:  

 

2 2

1 1 2 1 2 1 2 2 1 22 2

1
( ) ( ) ( ) ( ) 0

d d k
n f f f f f f n f f

r drdr r

 
        

 

       
  (42) 

 

where 1 1 4 2 3n M M M M   and 2 1 2 3 4( )n M M M M    . It 

is clear that the solution of Equation 42 which satisfies the 

boundary condition 1 2(1, ) (1, ) 0f k f k    is 

 

1 2 0f f   .               (43) 
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Substituting Equation 43 into Equations 40 and 41, and solving 
them under the boundary condition of Equation 39, we have  

 

[1 ( 1) ]k
kf r

k


 
 .                        (44) 

 
With the help of Equation 36, inverting Equation 44 and then 
substituting of the results into Equation 31, we find 
 

1

2 [1 ( 1) ]
( , ) 1 sin( )

k
k

SC

k

w r r k
k

  






 
   .        (45) 

 
It is recorded that there is no relative motion between the mixture 
constituents. For steady flows, if both gravitational effects and 
applied pressure gradients are absent, the fluids in a mixture will 
have the same velocities (Atkin and Crain, 1976b). Moreover, the 
velocity field is identical to that resulting from the Navier-Stokes 
theory. 
 
 
UNSTEADY COUETTE FLOW IN A SEMICIRCULAR DUCT 

 
Now is the time to examine unsteady Couette flow of a mixture of 
two incompressible Newtonian fluids in a semicircular duct. The 
mixture and the walls of the duct are initially at rest. The bottom wall 
is suddenly accelerated from rest and moves in its own plane with a 

constant velocity U . It is assumed that the flow is caused by the 

motion of the bottom wall, the pressure far upstream and 
downstream being kept equal throughout the motion. Thus, the 

pressure gradient in the z -direction are zero. 
It seems reasonable to assume that the velocity distribution and 

total density in cylindrical coordinates are of the form 
 

 ( )

1 1 2 20,0, ( , , ) , ( , , ), ( , , )Cw r t r t r t

         v   (46) 

 
Substitution of Equation 46 into Equations 6 gives: 

 

1 20, 0,
t t

  
 

 
                            (47) 

 

Thus, 0t    and ( , )r   . As made in the preceding 

section, elimination of r   between r -components of the 

equations of motion, and that of     between the  -

components of the equations of motion give, respectively Equations 
25 and 26, which imply that   is a constant. Since   has been 

proved to be a constant, all of the material coefficients in Equations 
19 and 20 are constants. As a result, the dimensionless equation of 

motion in the z -direction are as follows: 
 

2 2 2 2

1 1 1 2 2 2

1 22 2 2 2 2

1 1 1C C C C C Cw w w w w w
M M

r r r rr r r 

        
       

       

 

                                  1

1 2 1( ) C

C C

w
w w

t
 


  


,  (48) 

 
2 2 2 2

1 1 1 2 2 2

3 42 2 2 2 2

1 1 1C C C C C Cw w w w w w
M M

r r r rr r r 

        
       

       
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2

1 2 2( ) C

C C

w
w w

t
 


  


.             (49) 

 
The boundary and initial conditions are: 

 

(1, , ) 0, ( ,0, ) 1, ( , , ) 1C C Cw t w r t w r t      ,         (50) 

 

( , ,0) 0Cw r   ,               (51) 

 
where  
 

2

2
, , , , ,

Ci

i C

wM h r t
M w r t

U R R

 

 

  
 

   
      . (52) 

 
We first transform the problem into a problem with homogeneous 
boundary conditions. This can be achieved by decomposing 

( , , )Cw r t   into the steady-state Couette velocity profile 

( , )SCw r  , which are expected to prevail at large times and the 

transient component ( , , )g r t  : 

 

( , , ) ( , ) ( , , )C SCw r t w r g r t                              (53) 

 
The transient components satisfy the following partial differential 
equations 
 

2 2 2 2

1 1 1 2 2 2

1 22 2 2 2 2 2

1 1 1 1g g g g g g
M M

r r r rr r r r 

        
       

       
 

1

1 2 1( )
g

g g
t

 


  


,      (54) 

 
2 2 2 2

1 1 1 2 2 2

3 42 2 2 2 2 2

1 1 1 1g g g g g g
M M

r r r rr r r r 

        
       

       
 

2

1 2 2( )
g

g g
t

 


  


                   (55) 

 
that are consistent with the boundary and initial conditions  

 

(1, , ) 0, ( ,0, ) 0, ( , , ) 0g t g r t g r t      ,            (56) 

 

( , ,0) ( , )SCg r w r   .                                        (57) 

 
Finite Fourier sine and Hankel transforms are used to solve the 

simultaneous partial differential equations of Equations 54 and 55 
with the boundary and initial conditions of Equations 56 and 57. Let 

( , , )g r l t
  be the finite Fourier sine transform of ( , , )g r t  . 

Transforming Equations 54 and 55 and using the initial and 
boundary conditions, we obtain  

 
2 22 2

1 1 2 2

1 1 2 22 2 2 2

( , , ) ( , , ) ( , , ) ( , , )1 1
( , , ) ( , , )

g r l t g r l t g r l t g r l tl l
M g r l t M g r l t

r r r rr r r r

      
       

     

   
   

 
 
 
 

 1

1 2 1

( , , )
[ ( , , ) ( , , )]

g r l t
g r l t g r l t

t
 


  




  ,        (58) 

 
2 22 2

1 1 2 2

3 1 4 22 2 2 2

( , , ) ( , , ) ( , , ) ( , , )1 1
( , , ) ( , , )

g r l t g r l t g r l t g r l tl l
M g r l t M g r l t

r r r rr r r r

      
       

     

   
   

2

1 2 2

( , , )
[ ( , , ) ( , , )]

g r l t
g r l t g r l t

t
 


  




  ,        (59) 

 

(1, , ) 0; 1,2,3,...g l t l                           (60) 

 

[1 ( 1) ]
( , ,0) (1 )

l
lg r l r

l


 
  .                                               (61) 

 
Finite Hankel transform will be used to solve the differential system. 

The finite Hankel transform of order   of a function ( )f r , defined 

on 0 1r  , is (Debnath, 1995): 

 
1

0

ˆ{ ( ); } ( ) ( ) ( )m m mH f r r f r f r J r dr       .         (62) 

 
The associated inverse transform is 

 

1

2
1 1

( )ˆ ˆ{ ( ); } ( ) 2 ( )
( )

m

m m m

m m

J r
H f r f r f

J






  






 

                (63) 

 
where J  is the Bessel function of the first kind of order  , and the 

summation is taken over all the positive roots 
1 2 3, , ...    of 

( ) 0mJ   . 

Taking the finite Hankel transform of order l  of Equations 58 and 

59 and employing Equations 60 result in  

 

1

1 1 2 2

ˆ ( , , ) ˆ ˆ( , , ) ( , , ) 0m

m m

dg l t
k g l t k g l t

dt


   


          , (64) 

 

2

3 1 4 2

ˆ ( , , ) ˆ ˆ( , , ) ( , , ) 0m

m m

dg l t
k g l t k g l t

dt


   


                      (65) 

 
where  

 
2 2 2 2

1 2 3 4

1 2 3 4

1 1 2 2

, , ,m m m mM M M M
k k k k

       

   

   
     (66) 

 
subject to the transform of Equation 61  

 
22[1 ( 1) ] 2 4ˆ ( , ,0) F , , 1;

( 2) ( 1) 2 2 4

l ll

m m

m

l l
g l l

l l l


 


     
  

    


1( )[1 ( 1) ]l

l m

m

J

l




 

              (67) 

 

where   ( )z    is   the  gamma  function  and   F( , , ; )a b c x   is  the 



 

 
 
 
 
hyper-geometric function. To obtain Equation 67, we applied the 
following formula (Polyanin and Manzhirov, 2007) 
 

1 2

0

1 3
( ) F , , 1;

2 2 42 ( 1) ( 1)

x
x x

r J r dr
 



 

   


  

       
  

     
 .    (68) 

 
The solution of this transformed problem is  
 

 
1

1 1 1 1 2 2 1
ˆ ˆ ˆ ˆ( , , ) sinh( ) ( , ,0)( ) ( , ,0) cosh( ) ( , ,0)

t

m m m m

e
g l t t g l k k g l t g l



       




    
 

    (69) 

 

 
1

2

2 1 2 1 1 1 2 2 1 1

2

ˆ ˆ ˆ( , , ) sinh( ) ( , ,0) 2 ( , ,0)( )
t

m m m

e
g l t t g l k k k g l k

k



      




     
 

    

2 2
ˆcosh( ) ( , ,0)mk t g l                            (70) 

 
where  

 

21 4

1 2 1 4 2 3 1 2, ,
2

k k
k k k k    


     .         (71) 

 
The inverse finite Hankel transform yields  

 

1

2
1 1

( )ˆ ˆ{ ( , , ); } ( , , ) 2 ( , , )
( )l

l m

m m m

m l m

J r
H g l t r g r l t g l t

J
  


  






 

      . (72) 

 
Thus, the inverse finite Fourier sine transform gives the final 
solution as 

 

1

2
1 1 1

( )4 ˆ{ ( , , ); } ( , , ) ( , , ) sin( )
( )

l m

m

l m l m

J r
F g r l t l g r t g l t l

J
  


   

 

 


  

     .  (73) 

 
Substituting Equations 45 and 73 into Equation 53, we obtain the 

following solution for ( , , )Cw r t   

 

2
1 1 1 1

( )2 [1 ( 1) ] 4 ˆ( , , ) 1 sin( ) ( , , ) sin( )
( )

k
k l m

C m

k l m l m

J r
w r t r k g l t l

k J
 


   

  

  

   

 
      (74) 

 
where the summation with the index m  is taken over all the 

positive zeros 1 2, ,...   of the Bessel function ( )l mJ  . 

 
 
STEADY POISEUILLE FLOW IN A SEMICIRCULAR DUCT 

 
In this section, we study the steady flow of the binary mixture under 
consideration in a duct of semicircular cross-section. The flow is 

driven by externally imposed pressure gradient in the z -direction, 

namely 0dp dz  . 

We seek a solution, compatible with mass balance equations, of 
the form 

 

 ( )

1 1 2 20,0, ( , ) , ( , ), ( , )SPw r r r

         v        (75) 

 
As previously stated, it is proved that the total density and the 

material     coefficients    become    constants.   Consequently,    the 
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equations of motion in the z -direction reduce to 

 
2 2 2 2

1 1 1 2 2 2

1 22 2 2 2 2

1 1 1SP SP SP SP SP SPw w w w w w
M M

r r r rr r r 

        
       

       

 

1 2 1( )SP SPw w                                           (76) 

 
2 2 2 2

1 1 1 2 2 2

3 42 2 2 2 2

1 1 1SP SP SP SP SP SPw w w w w w
M M

r r r rr r r 

        
       

       

 

1 2 1( ) ( 1)SP SPw w                                                        (77) 

 
where  

 
2

2
, , ,

[ / ]

SPi

i SP

wM R r
M w r

Rdp dz R








 
   


   (78) 

 
The adherence boundary conditions of the problem are as follows: 

 
(1, ) 0, ( ,0) 0, ( , ) 0SP SP SPw w r w r              (79) 

 
Application of the finite Fourier sine transform to Equations 76 and 

77 with respect to  , taking Equations 792,3  into account, gives 

 
2 22 2

1 1 2 2

1 1 2 22 2 2 2

( , ) ( , ) ( , ) ( , )1 1
( , ) ( , )SP SP SP SP

SP SP

d w r k dw r k d w r k dw r kk k
M w r k M w r k

r dr r drdr r dr r

   
       

   

   
   

1 2 1

[1 ( 1) ]
[ ( , ) ( , )]

k

SP SPw r k w r k
k

 
 

         (80) 

 
2 22 2

1 1 2 2

3 1 4 22 2 2 2

( , ) ( , ) ( , ) ( , )1 1
( , ) ( , )SP SP SP SP

SP SP

d w r k dw r k d w r k dw r kk k
M w r k M w r k

r dr r drdr r dr r

   
       

   

   
 

1 2 1

[1 ( 1) ]
[ ( , ) ( , )] ( 1)

k

SP SPw r k w r k
k

 
 

       (81) 

 
subject to the transform of Equation 791  

 
(1, ) 0SPw k                 (82) 

 
Taking the finite Hankel transform of order k  of Equations 80 and 

81, and employing Equation 82 result in 

 
2 2

1 1 2 2
ˆ ˆ( ) ( , ) ( ) ( , )n SP n n SP nM w k M w k          

2

1

2[1 ( 1) ] 2 4
F , , 1;

( 2) ( 1) 2 2 4

k kk

n nk k
k

k k k

 


     
  

    

 (83) 

 
2 2

3 1 4 2
ˆ ˆ( ) ( , ) ( ) ( , )n SP n n SP nM w k M w k          

2

1

2[1 ( 1) ] 2 4
(1 ) F , , 1;

( 2) ( 1) 2 2 4

k kk

n nk k
k

k k k

 


     
   

    

  (84) 
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It follows from the equations that 
 

2 2

2 2

1 2

2[1 ( 1) ] 2 4ˆ ( , ) F , , 1;
( 2) ( 1) 2 2 4( )

k kk
n n n

SP n

n n

m k k
w k k

k k kn n





   


 

       
  

    
     (85) 

  
where  
 

1 1 2 4 2 2 1 1 3 1( ) , ( )m M M M m M M M           (86) 

 

We now obtain the solution for the velocity of the  th fluid by 

going back through the various substitutions: 

 

2
1 1 1

( )4 ˆ( , ) ( , ) sin( )
( )

k n

SP SP n

k n k n

J r
w r w k k

J
 


  

 

 

  

      (87) 

 
where the summation with the index n  extends over all the positive 

roots 
1 2, ,...   of ( ) 0k nJ   . The most important feature of the 

above steady solution is that the fluids in a mixture have not the 

same velocities. This is a result of the presence of a non-zero 
pressure gradient. 
 
 
UNSTEADY POISEUILLE FLOW IN A SEMICIRCULAR DUCT 

 
Finally, we discussed the problem of unsteady flow of a binary 
mixture of incompressible Newtonian fluids in a duct of semicircular 
cross-section. Suppose that the semicircular duct is filled with a 

stationary mixture of two fluids. At the instant 0t  , a constant 

pressure gradient in the z -direction, namely dp dz , is imposed 

and the fluids begin to flow. 
Let us assume there exist a solution of the form 

 

 ( )

1 1 2 20,0, ( , , ) , ( , , ), ( , , )Pw r t r t r t

         v   (88) 

 
As previously stated, it is verified that the total density and all of the 
material coefficients in Equations 19 and 20 become constants. As 
a result, the dimensionless governing equations are as follows: 
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The boundary and initial conditions are  
 

(1, , ) 0, ( ,0, ) 0, ( , , ) 0P P Pw t w r t w r t        (91) 

 

( , ,0) 0Pw r            (92) 

 
 
 
 
where  
 

2
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
(93) 

 
Note that all of the boundary and initial conditions given in 
Equations 91 and 92 are homogeneous, yet there exist a non-trivial 
solution, since the partial differential equation of Equation 89 and 
90 are non-homogeneous. 

We attempted to find a solution of the form  
 

( , , ) ( , ) ( , , )P SPw r t w r h r t                                (94) 

 

The components ( , , )h r t   must satisfy the differential equations 

and boundary conditions which are obtained from Equations 54 to 

56 by writing ( , , )h r t   in place of ( , , )g r t  , but with modified 

initial conditions which now are: 
 

( , ,0) ( , )SPh r w r                             (95) 

 

The procedure for determining ( , , )h r t   is the same as that 

previously used, so it is not repeated here. As expected, the 

solution given in Equation 73 for ( , , )g r t   is also valid for 

( , , )h r t   provided ˆ ( , ,0)mg l   is replaced by the 
ˆ

( , ,0)mh l   

which is given by the following analytical expression  

 
2 2

2 2

1 2
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We now obtain the solution for the velocity of the  th fluid by 

going back through the various substitutions: 

 

2 2
1 1 1 11 1

( ) ( )4 4 ˆˆ( , , ) ( , ) sin( ) ( , , ) sin( )
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k n l mk n l m

J r J r
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  (97) 

 
where the summation with the index n  (and m ) is taken over all 

the positive zeros 
1 2, ,...   of the Bessel function ( )k nJ  (and 

( )l mJ  ). 

 
 
NUMERICAL RESULTS AND DISCUSSION 
 
In this paper, we have used the classical mixture theory 
and theoretically studied the steady and unsteady flows 
of a binary mixture composed of chemically inert 
incompressible Newtonian fluids in a semicircular duct. 
Under the very special conditions mentioned earlier, 
exact solutions in series form for the system of coupled 
partial differential equations governing the velocity fields 
are obtained using the finite Fourier sine and Hankel 
transforms. We infer from these solutions that for steady 
problems the presence of externally applied pressure 
gradient brings about the relative motion between the 

fluids,  that is, (1) (2) 0 v v .  However,  in   the   unsteady 



 

 
 
 
 
case, the difference in velocities is due to the presence of 
time-dependent terms, regardless of whether or not the 
pressure gradient term is present. 

The analytical solutions in the present work include 
those corresponding to pure Newtonian fluid as a special 
case. This provides a useful check for us. For the sake of 
completeness, we also present the velocity fields for a 
Newtonian fluid. These can be obtained from Equations 

74 and 97 by letting 
1 2 3 4 1 4M M M M     and 

1 2 1 1 2     , respectively, as follows: 

 
Unsteady Couette flow in a semicircular duct 
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  (98) 

 
Unsteady Poiseuille flow in a semicircular duct 
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 (99) 

 
For numerical evaluation of the results, we need the 
numerical values of the material coefficients appearing in 
Equations 74 and 97. Determination of these coefficients 
is not an easy task; moreover, there does not seem to be 
a unique way of formulating the problem, even when 
using a well-defined and rational theory such as mixture 
theory (Massoudi, 2008). To determine the viscosity 

coefficients 1 , 2 , 3 , 4  and  , we employ the 

following equations (Sampaio and Williams, 1977; Al-
Sharif et al., 1993): 
 

2 2

1 1 1 1 1 1 2 2 1 2 1 1 1 2 3 4 1 1 1 2(1 ) , (1 ) (1 ) , (1 ) ,                              

2 2

1 1 1 2 1 1 1 2(1 ) 2 (1 )                               (100) 

 

where 1  and 2  are the viscosities of the unmixed fluids. 

Sampaio and Williams (1977) were able to derive the 
above formulae by employing results obtained from the 

kinetic theory of fluids, in the case of 5 0  . In the 

present work, we benefit from Equation 100 to assign the 
reasonable values to the dimensionless material 

parameters 1M , 2M , 3M  and 4M . To this end, for a 

mixture composed of water and oil, we first choose the 

volume fraction of water 1 0.75  , the densities of the 

unmixed fluids 3

10 1000 kg m  , 3

20 700 kg m   and 

the viscosities of the unmixed fluids 2

1 0.001 secN m  , 
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2

2 0.01 secN m  . Later, with the help of Equations 5, 

8, 521,2 and 100, we obtain the numerical values of the 
dimensionless material parameters as follows: 
 

1 2 3 4 1 20.4868, 0.2497, 0.5132, 0.8108, 0.1892M M M M          (101) 

 
We point out that a realistic evaluation of the interaction 
coefficient   is indeed a very difficult task as stated 

previously. This coefficient should ideally be determined 
from experiments. However, there is currently no 
available systematic tabulation of   for the mixture of 

two fluids. To plot the velocity profiles and develop some 
qualitative feelings about how   affects velocity 

distributions, we choose the values of   arbitrarily. We 

have two objectives for the remainder of this section: (1) 
to discuss the reliability of the solutions in series form, 
and (2) to plot the velocity distributions for the fluids in the 
mixture. We make the calculations required to achieve 
these objectives by employing the values of the 
parameters in Equation 101. 

We discussed the reliability of the series solutions of 
Equations 74 and 97. In practice, the convergence 
behavior of Equations 74 and 97 is quite reasonable for 
large values of time. However, these solutions can also 
be used for small values of time provided the number of 
the terms in the series expansions is enough to yield 
satisfactory accuracy. To illustrate, in the case of 

unsteady Couette flow, for all r  in [0,1]  at 2   and 

0.2t  , we can approximate the infinite sums in Equation 

74 to within 410  by using the 1,000 th partial sum of the 

single series and a partial sum of the double series with l  

and m  running from 1  to 3 . Note that the converge of the 

single series seems to be rather slow at the end point 
1r  ; therefore, we take account of as many as 1,000  

terms in this series. On the other hand, for all r  in [0,1]  

at 2   and 0.03t  , the same order of accuracy is 

achieved using the terms of the double series with l  and 

m  up to 14 , while keeping the number of the terms in the 

single series fixed at 1,000 . 

To gain an insight into the patterns of flow, a few 
representative velocity profiles for the fluids in the mixture 
and pure Newtonian fluid have been plotted as a function 
of the dimensionless radial distance r  for different values 

of   and t , keeping the remaining parameters fixed at 

the values given in Equation 101. From Figures 2 to 7, 
we observe how the velocity profiles grow with increasing 
time and approach asymptotically the steady-state 
velocity profiles. It is clear that the assumptions of 
Equations 53 and 94 are convenient, since the unsteady 
problems studied here approach the steady solutions as 

t  . On comparing Figure 2 with Figure 4 or Figure 5 

with Figure 7, we  arrive  at  the  conclusion  that  with  an



1342          Int. J. Phys. Sci. 
 
 
 

 

 

 

 

 

 
 

Figure 2. Velocity profiles of Couette flow in a semicircular duct for 2  , 10  , 0.05t   

 
 
 

 

 

 

 

 

 

 

 
 

Figure 3. Velocity profiles of Couette flow in a semicircular duct for 2  , 10  , 0.15t  . 
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Figure 4. Velocity profiles of Couette flow in a semicircular duct for 2  , 50  , 0.05t  . 

 
 
 

 

 

 

 

 

 

 
 

Figure 5. Velocity profiles of Poiseuille flow in a semicircular duct for 2  , 10  , 0.05t  . 
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Figure 6. Velocity profiles of Poiseuille flow in a semicircular duct for 2  , 10  , 0.15t  . 

 
 
 

 

 

 

 

 
 

Figure 7. Velocity profiles of Poiseuille flow in a semicircular duct for 2  , 50  , 0.05t  . 



 
 
 
 
increase in the coefficient of interaction , characterized 

by the drag force between the two constituents, the 
mixture tends to behave as a single continuum. As a 
result, it is not difficult to predict that the fluid particles 
belonging to both constituents will have the same velocity 
at a given point in the mixture as   . 

The validity of the analytical solutions presented in this 
work can only be judged by comparing them with 
experimental results. Unfortunately, to the best of our 
knowledge no experimental data is available for direct 
comparison for the problem under discussion. For this 
reason, it is not possible to comment with any certainty 
on the relative merits of the constitutive equations used 
here. The researcher of necessity has to rely on the 
mixture theory to produce the correct results qualitatively 
at least. 
 
 
Conclusions 
 
In the present paper, we have considered the steady and 
unsteady flows of a binary mixture including chemically 
inert incompressible Newtonian fluids in a semicircular 
duct. Exact solutions in series form, which belong to a 
special semi-inverse class, for the system of coupled 
partial differential equations governing the velocity fields 
are obtained using the finite Fourier sine and Hankel 
integral transforms. These solutions in series form are 
rapidly convergent for large values of time but more 
slowly convergent for small values of time. If some 
conditions are satisfied, the series which is slowly 
convergent can also be used for small values of time 
without any difficulty. It is worth noting that for 

1 2 3 4 1 4M M M M     and 1 2 1 1 2     , 

Equations 74 and 97 reduce to the classical solutions of a 
single incompressible Newtonian fluid. This gave us 
confidence regarding the analytical calculations. Since 
experimental data on the problem under investigation are 
not readily available, theoretical predictions resulting from 
the mathematical model may be available for 
experimental verification. 
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