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We propose an independent component analysis (ICA) algorithm which can separate mixtures of sub- 
and super- Gaussian source signals with self-adaptive nonlinearities. The ICA algorithem in the 
framework of natural Riemannian gradient is derived using the parameterized Weibull density model. 
The nonlinear function in ICA algorithem is self-adaptive and is controlled by the shape parameter of 
Weibull density model. Computer simulation results confirm the validity and high performance of the 
proposed algorithm 
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INTRODUCTION 
 
The problem of independent component analysis (ICA) 
has received wide attention in various fields such as 
biomedical signal analysis and processing (EEG, MEG 
and ECG), geophysical data processing, data mining, 
speech recognition, image recognition and wireless 
communications (Amari and Cichocki, 1998; Amari et al., 
1997; Gardner, 1991; El-sayed Wahed and Mohamed, 
2006). In many applications, the sensory signals (Obser-
vations obtained from multiple sensors) are generated by 
a linear generative model which is unknown to us. In 
other words, the observations are linear instantaneous 
mixtures of unknown source signals and the objective is 
to process the observations in such a way that the 
outputs correspond to the separate primary source 
signals. The operation starts with a random source vector 
S defined by S(n) = [S1, S2,….,Sm] where the m 
components are supplied by a set of independent 
sources. Temporal sequences are considered here; 
henceforth the argument n denotes discrete time. The 
vector S is applied to a linear system whose input-output 
characterization is defined by a nonsigular m-by-m matrix 
A, called the mixing matrix. The result is an m-by-1 
observation vector X (n) related to S (n) as follow X=AS 
where X = [X1, X2,….,Xm]T. The source vector S and the 
mixing matrix A are both unknown. The only thing 
available to us is the observation vector X. Given X, the 
problem is to find a demixing matrix W such that the ori-
ginal source vector S  can be recovered from the output 
vector Y defined by Y=WX where Y = [Y1, Y2,….,Ym]T. This  

is called the blind source separation. The solution to the 
blind source separation is feasible, except for an arbitrary 
scalling of each signal component and permutation of 
indices. In other words, it is possible to find a demixing 
matrix W whose individual rows are a rescaling and 
permutation of those of the matrix A, that is, the solution 
may be expressed in the form Y=WX=WAS→DPS  where 
D is a nonsingular diagonal matrix and P is a permutation 
matrix. 

Since Jutten and Herault (Karhunen, 1996) proposed a 
linear feedback network with a simple unsupervised 
learning algorithem, several methods have been deve-
loped. 

Cichocki and Unbehauen (1996) and Comon (1994) 
proposed robust, flexible algorithm with equivariant 
properties. Comon (Diversi et al., 2005) gave a good 
insight to ICA problem from the statistical point of view. 
Bell and Sejnowski (Bell and Sejnowski, 1995) adopted 
an information maximization principle to find a solution to 
ICA problem. Maximum likelihood estimation (Alberg et 
al., 2002; Amari et al., 1997; El-sayed Wahed, 2007) was 
proposed by Pham et al. and was elaborated in (Abu-
Taleb et al., 2006; El-sayed Wahed, 2007). The nonlinear 
extension of PCA was extensively studied in (Karhunen, 
1996; El-sayed Wahed and Mohamed, 2006). Serial 
updating rule was introduced by Cardoso and Laheld 
(Cardoso and Laheld, 1996) and the resulting algorithm 
was shown to have equivariant performance. 
Independent, natural gradient was proposed and applied 
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Figure 1. Maximum Entropy Method. 

 
 
 
to ICA by (Amari et al., 1996; Gardner, 1991; Gradshteyn 
et al., 1994). Conditions on cross cumulants for the 
separation of the source signals were investigated in 
(Alberg et al., 2002; Amari, 1998; Amari and Cichocki, 
1998; Abu-Taleb et al., 2006; Choi et al., 1998; Choi and 
Cichocki, 1997). 
 
 
Maximum entropy algorithm 
 
This is an adaptive algorithm based on information theo-
retic approach and was suggested by Bell and Sejnowski 
(Bell and Sejnowski, 1995). The block diagram in Figure 
1 explains the maximum entropy method for blind source 
separation. 

The demixer operates on the observed data X to 
produce an output Y = WX, which is an estimate of 
source S. The output Y is transformed into Z by passing it 
through a non-linearity G (.), which is invertible and 
monotonic. For a given non-linearity G (.), the maximum 
entropy method produces an estimate of source S by 
maximizing the entropy h (Z) with respect to W. The 
mathematical representation of the whole process may 
be given as follows: 
 

Z = G(y) = G (WAS)       �S = �(z)(z)1G1W1A =−−−
  
 

 
where G-1 is the inverse non-linearity. 
 
The probability density function of the output Z is defined 
in terms of that of the source S by 
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Hence, maximizing the entropy h (Z) is equivalent to 
minimizing the Kullback-Leibler divergence between fs(s) 

and a probability density function of S, defined by 
det[J(s)]. 
If the random variable zi (ith element of z) is uniformly 
distributed inside the interval [0, 1] for all i, then the 
entropy h (z) is equal to zero. Accordingly, 
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Under the ideal condition,
1AW −= , the above 

relationship reduces to 
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Conversely, the results from Maximum Entropy Method 
may be stated as follows: 
Let the non-linearity at the demixer output be defined in 
terms of the original source distribution as 
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Then, maximizing the entropy of the random vector z at 
the output of the non-linearity G is equivalent to W = A-1, 
which yields perfect blind source separation. The 
maximum entropy and maximum likelihood methods for 
blind source separation are equivalent under the 
condition that the random variable i z is uniformly 
distributed inside the interval [0, 1] for all i. This 
relationship may be proven with the help of chain rule of 
calculus as 
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The Jacobian matrix J is expressed as J = DWA, where D 
is a diagonal matrix given by 
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In the light of the above equation, an estimate of the 
probability density function fs(s) parameterized by the 
weight matrix W and the non-linearity G may be written 
formally as  
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Therefore, under the above condition, maximizing the 
log-likelihood function {logfs (s/W, G)} {}) is equivalent to 
maximizing the entropy h (Z) for blind source separation. 
Referring to the expression h (Z) = -E[log fz(z)] = -E 
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source distribution is fixed, maximizing the entropy h(Z) 
requires maximizing the expectation of the denominator 
term {logdet(J(s)} with respect to the separating matrix 
W. 

To do the computation using an adaptive algorithm that 
will maximize the objective function, the instantaneous 
objective function � may be considered as: 
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On expanding (2), we get: 
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The non-linear function should be judiciously selected to 
deal with the super-Gaussian, sub-Gaussian, stationary 
and non-stationary signals. The popular non-linearity 
used is logistic function and hyperbolic tangent function: 
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The non-linear functions should be monotonic and 
invertible. 
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Finding out W∂
∂ϕ

 using the above non-linearity, we obtain 
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 where x is the observed 
source vector, z is the non-linearly transformed output 
vector and 1 is a corresponding vector of ones. 
Using the steepest ascent method to maximize the 
entropy h(Z), the change in weight matrix W is given by 
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where � is the learning rate parameter. The generalized 
final version for the update on W or the learning rule is 
obtained by using the natural gradient, which is equiva-
lent to multiplying the expression for ∆W by WTW instead 
of evaluating W-T as given below: 
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Where y is the output of the demixer before passing 
through the non-linearity, I is the unity matrix and is a 
fixed learning rate parameter with value less than 1. 
The algorithm gives better result when applied on pre-
whitened data. It is sensitive to the learning rate 
parameter and works better for super-Gaussian signals. 
 
 
WEIBULL MODEL FOR SOURCES 
 
Optimal nonlinear activation function fs(s) is calculated by 
(1). However, it required the knowledge of the probability 
distribution of source signals which are not available to 
us. A variety of hypothesized density model has been 
used. For example, for the supper-Gaussian source 
signals, unimodal or hyperbolic-Cauchy distribution 
model (Bell and Sejnowski, 1995) leads to the nonlinear 
function given by 
 

.(s))ftanh(�(s)f ss =                                      (5) 
 
Such sigmodal function was also used in (Bell and 
Sejnowski, 1995). For sub-Gaussian source signals, 
cubic nonlinear function fs(s) - fs

3 has been a favorite 
choice. For Mixtures of Sub- and super-Gaussian source 
signals, according to the estimated kurtosis of the 
expected signals, nonlinear function can be elected from 
two different choices (Diversi et al., 2005; Douglas et al., 
1997) [For example, either fs(s) - fs

3 or fs(s) = tanh(βfs(s)].  
several approaches (Girolami and Fyfe, 1997; Choi et al., 
1998; Cichocki et al., 1997) are already available.  

This paper present a flexible nonlinear function derived 
using Weibull density  model.  It  will  be  shown  that  the 
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Figure 2. The plots of the standard Weibull density function for c = 0.25, 0.5, 1, 1.5. 

 
 
 

 
 
Figure 3. The plots of the standard Weibull density function for c = 2, 
3, 4, 5. 

 
 
 
nonlinear function is self-adaptive and controled by 
Weibull shape parameter. It is not a form of fixed 
nonlinear function. 
 
 
The weibull distribution 
 
The weibull probability distribution is a set of distributions 
parameterized by a positive real number c which is 
usually referred to as the shape parameter of the distri-
bution. The shape parameter c controls the peakiness of 
the distribution. The probability density function (PDF) for 
Weibull is described by 
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It is necessary c be greater than –1, for otherwise the 

integral of  ),,;( 0 αζcyp  between θθθ φˆ== yandy  will 
be infinite. The standard form of the distribution will have 

00 =ζ  and 1=α  so that the standard density function is  
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Figure 4. The plot of kurtosis k(c) versus the shape parameter c for 
leptokurtic and platykurtic signals. 
 
 
 
The distribution of y now depends on the shape 
parameter c alone. The plots of the standard density 
function in (7) for c = 0.25, 0.5, 1, 1.5, 2, 3, 4, 5 are 
presented in Figures 2 and 3 respectively. 
 
 
The moments of weibull distribution 
 
In order to fully understand the Weibull distribution, it is 
useful to look at its moments (specially 2nd and 4th 
moments which give the kurtosis). The nth moment of 
Weibull distribution is given by: 
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The moment ratios, coefficient of variation, and standard 

cumulants 
2/

2
r
r

k
k

 of the standard distribution in (7) are of 
course the same as those of the distribution in (6). 
 
 
Kurtosis and shape parameter 
 
The kurtosis is anondimensional quantity. It is measures 
the relative peakdness or faltness of a distribution. A  
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distribution with positive kurtosis is termed leptokurtic 
(super-Gaussian). A distribution with negative kurtosis is 
termed platykurtic (sub-Gaussian). The kurtosis of the 
distribution is defined in terms of the 2nd-and 4th –order 
moment as 
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Where the constant term –3 makes the value zero for the 
standard normal distribution. For Weibull distribution, the 
kurtosis can be expressed in terms of the shape 
parameter, given by 
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The plots of kurtosis )(ck versus the shape parameter c 
for leptokurtic and platykurtic signals are shown in Figure 
4. The activation function for Weibull distribution in (3) is 
given by 
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COMPUTER SIMULATION RESULTS 
 
Consider the system involving the following three 
independent sources 
U1(n) = a square wave of amplitude a, and fundamental 
frequency w0 
U2(n) = a triangular wave of amplitude, and fundamental 
frequency w0 
 

)30cos()400sin(1.0)(3 nnnU =    
                                                 (15) 
The mixing matrix A is  
 

�
�
�

�

�

�
�
�

�

�

−
−

−
=

48.032.017.0

86.065.075.0
37.079.056.0

A

                                   (16) 
 

The algorithm was implemented using the following 
conditions: 
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Figure 5. The original and demixed signals. 

 
    
 
i.) Initialization. The weights in the demixing matrix W 
were picked from a random number generator with a 
uniform distribution inside the range [0.0, 0.5]. 
ii.) The learning rate parameter was fixed at η = 0.1  
iii.) Signal duration. The time series produced at the 
mixer output had a sampling period 10-4s and contained 
N = 65,000 samples.  
 
Figure (5) displays the waveforms of the source signals 
and the signals produced at the output of the demixer. It 
can be observed that after 3000 iterations, source signals 
are well separated. 
 
 
Conclusion 
 
We have proposed ICA algorithem (in the framework of 
natural Riemannian gradient) where the self-adaptive 
nonlinear function easy derived using Weibull density 
model for the probability distributions of the source 
signals. We have shown that the proposed ICA algorithm 
can separate the mixtures of sub-and super-gaussian 
signals with self adaptive nonlinearities which is 
controlled by Weibull shape parameter. Finally we apply 
our algorithm on a mixture of other distributions and 
image separation, which give a good result. 
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