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After relativity was introduced by Einstein in 1905, several attempts were made to reformulate the other 
fields of physics to make them consistent with the postulates of Relativity. However, relativistic 
reformulation remains a bone of contention even today after over a hundred years since Einstein's 
epoch making papers. This is mainly due to seemingly conflicting yet consistent ways of defining the 
macroscopic variables to be Lorentz invariant. Here, it will be shown from statistical origins that the 
current definition of entropy is untenable in relativistic scenarios. 
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INTRODUCTION 
 
There are various ways to go about transforming the first 
and second laws of thermodynamics. One approach 
(Plank-Einstein) is to consider the invariance of pressure 
and obtain (Callen and Horwitz, 1971):  
 

  
 
From standard length contraction formulation. We are 
going to use standard notation implying: 
 

  

 
P is the pressure, U is the internal energy, Q is the Heat 
content, V is the volume and T is the temperature. In the 

 term, v is the relative velocity of the frame while c is the 

 

speed of light. Also, the subscript 0 has been used to 
indicate the macroscopic variables in the rest frame). And 
therefore from standard Charles' Law: 
 

  
 

Also extending using the first law ( : 

 

 
 
The second approach (Ott) is to consider the 
conservation of momentum before and after the 
thermodynamic process to get inverse of the above 
relations (Dunkel et al., 2009).  

Simply by considering the energy transferred as seen 
from a moving frame (Rothenstein and Zaharie, 2003): 
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And therefore by the invariance of entropy 
 

 
 
This will also lead to: 
 

 
 
Note, that since the first law has been used to obtain 
these relations, none of them violate it or provide any 
inconsistencies to the definition of entropy which is 
considered invariant in both the cases. The problem of 
course arises when we choose to consider the results of 
an observation. Thus here, we choose to look at a more 
fundamental way by looking at the statistical origins of 
entropy. 
 
 
REFORMULATING ENTROPY 
 
Let's begin with Boltzmann's ubiquitous equation: 
 

  
 
There was a great deal of controversy, when this 
equation was introduced by Boltzmann a century ago 
(Campisi and Kobe, 2010). Succinctly Einstein had said, 
the equation lacks proper theoretical basis and the 
concept of microstates is heuristic at best. However, 
nevertheless it does simplify quite a lot of scenarios and 
a relativistic reformulation is much needed. 
 
 
Modified H-Theorem  
 
A most straightforward quasi-derivation comes from 
Boltzmann's own H-Theorem which states: 
 

  
 

 Where H(f) is 
defined as: 
 

 
 
The Boltzmann equations which can easily be derived 
from Louiville's theorem which states: 

 

 
 
Applying the Louiville's theorem here, for phase space 
distributions gives us the compact form: 

 
 
 
 

  
 
Extending, this to make it Lorentz invariant gives us 
(Clemmow and Wilson, 1957): 
 

 
 

Here,   

 
Compared to the original non-relativistic scenario, the 
below equation due to Clemmow and Wilson contain the 

additional   term which although not apparent is 

simply due to the first order Taylor-Expansion of the 
Jacobian of transformation from 

. However, what 

is important is that this term will have a non-trivial effect 
on the resulting H-Theorem. 

Coming back to the H-theorem, we see that the only 

physically useful function  which satisfies the Boltzmann 

equations is a probability distribution. Note, that there 
might be other functions which also satisfy the above 
criteria but are not relevant in this context. Thus, this 
function must be an invariant. However, engaging in a 
simple Jacobian of transformations from: 

 

 
 
Where the primed co-ordinates denote the relativistic 
scenario, we see that the integral is no longer of the 
same form. 

Thus, as pointed out, because of the additional factor, 
H(f) does not retain its form and needs suitable 
modifications, although the moot idea remains same. It's 

important to note though that  is still invariant due to our 

above made assumption. 
There is an important caveat to make here: Namely the 

Loschmidt paradox wherein Boltzmann supposedly 
obtains irreversibility using Louiville's theorem based on 
Newton's equations which are time symmetric. However, 
we will not digress and it will suffice to say here that this 
was resolved by assuming that initial states have low 
entropy which evolve to higher entropy over time. 

 
 
Modified Helmholtz theorem 

 
Campisi and Kobe (2010) demonstrated that for a 
Hamiltonian of a system given by (Campisi and Kobe, 
2010):
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Figure 1. Point particle in the U-shaped potential =mV
2
x

2
/2. (a) Shape of the potential for a V=V1. (b) Shape of 

the potential for a V=V2. (c) Phase space orbit corresponding to the potential  at energy E1. (d) Phase space 

orbit corresponding to the potential  at energy E2. The two quantities E,V, uniquely determine one “state,” that 
is, one closed orbit in phase space. 

 
 
 

 
 

Here  is the kinetic energy and p is the 

momentum. The particle is considered to be moving in a 

U-shaped potential  as illustrated subsequently. Also 

note that V is some externally controllable parameter so 

that . Figure 1 is due to Campisi and Kobe 

(2010). 
For a fixed V, the particle's energy E is a constant of 

motion. For simplicity, we define the zero energy in such 
a way that the minimum potential is 0, regardless of the 
value of V. 

Once E and V are specified, the orbit of the particle in 
phase space is fully determined. Now applying Helmholtz 
theorem (Campisi and Kobe, 2010):  
 
A function S(E,V)  satisfying the following equations exist 
and is given by: 

 

 
 
Where the equations to be satisfied are: 

 
 
The entropy can be written more compactly as: 
 

 
 

Where  which is called the 

reduced action (Campisi and Kobe, 2010). It is basically 

the area  in phase space enclosed by the orbit of energy 
E and parameter V, 
 

 
 

Where,  

What is remarkable about the above result is that it 
suggests that there exists a consistent one dimensional 
mechanical counterpart of entropy given by the logarithm 
of the phase space volume enclosed by the curve of 

constant energy  
To generalize the model to more  degrees  of  freedom,  
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we find: 

 

 
 
Also using: 
 

 
 
Further, this allows us to define the normalized space 
probability density function as: 
 

 
 
Thus to make a meaningful formulation, we extend to N-
particle system in 3 dimensions with 3N degrees of 
freedom. 

Thus the Hamiltonian for a N-particle system is 
(Campisi and Kobe, 2010): 

 

 
 
Thus in further analogy, we define the micro canonical 
probability distribution as: 
 

 
 

Where the normalization,  is given by: 
 

 
 
 
Generalized Helmholtz theorem 
 
From the above we obtain the generalised Helmholtz 
theorem (Campisi and Kobe, 2010):  
 

 
 

Where,  
 
 
Boltzmann principle 
 
For a system composed of a large number of particles 
that interact through short range forces, the phase space 

volume approaches . Because , we 

also have  (From above definition of 
normalization). 

Since  is  a  measure  of  the  shell  constant  energy  

 
 
 
 

, it is proportional to the number of 
microstates (W) (Campisi and Kobe, 2010).  

This therefore proves Boltzmann's equation to an 
arbitrary constant which is irrelevant anyway. 
 
 
Relativistic formulation 
 

Now, for the adiabatic scenario,  is an invariant 

and conserved quantity. Replacing back in:  
 

 
 
We get,  
 

 
 

Here,  is the modified constant term after dividing by 

the factor proportional to the speed of light term. 
If we stick to the above formulation, since the energy 

doesn’t remain constant, the orbit of energy E in phase 
space varies leading to an unbounded orbit potentially 
leading to an untenable definition for entropy. Even more 
important is that the phase space volume adds another 
exponential factor to the above, giving us a different 
definition for Boltzmann's eponymous equation. However, 
all of the above is based on our tacit assumption that 
entropy should be a relativistic invariant. Moreover, what 
is important is that to note is we find that simply making a 
relativistic reformulation without changing our definition 
makes Boltzmann's definition of entropy void in high 
velocity domains. 

 
 

CONCLUSION  
 
The above text shows that the current definition of 
entropy is untenable in the relativistic limit and needs to 
be suitably modified. Further, from above the distributions 
have also been shown to be derivable for high speed 
limits from a statistical perspective.  
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