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An analytical solution for the time periodic electroosmotic flow (EOF) of the generalized Maxwell model 
through a circular microtube is presented by solving the linearized Poisson-Boltzmann equation, 
together with Cauchy momentum equation and General Maxwell constitutive equation. By numerical 
calculations, we find that for lower Ω and smaller De, classical plug-like profile of Newtonian fluids is 
reduced. At lower frequency, the flow field can extend to the whole microtube. At higher frequency, 
however, the velocity amplitude variations away from electric double layer (EDL) almost decrease to 
zero. In addition, larger De leads to rapid variations of EOF velocity profiles with increased amplitude. 
The velocity amplitude of microtube is larger than that of plate microchannel by comparison. 
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INTRODUCTION 
 
The microfluidics field has drawn increasingly more 
attention in both academia and industry because of its 
feasibility and efficiency for controlling flows through 
microscale devices (Stone et al., 2004). Most substances 
acquire surface electric charges when in contact with a 
polar medium. The rearrangement of the charges on the 
solid surface results in the formation of the electric double 
layer (EDL) (Bayraktar and Pidugu, 2006). When an 
electric field is applied tangentially along the charged 
surface, it will exert a body force on the ions within the 
EDL. The migration of the mobile ions will carry the 
adjacent and bulk liquid phase by viscosity, resulting in an 
electroosmotic flow (EOF). The growing importance to the 
EOF is due to their operational advantages, like plug flow 
type flow behaviour, absence of mechanical pumping 
equipments and better flow control.  

Both theoretical and experimental investigations of 
direct current (DC) steady EOF have been well studied in 
various   micro-capillaries   geometric   domains   (Hunter,  
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1981). However, such steady EOFs are likely to 
necessitate relatively larger voltages and field strengths. 
Recently, time-dependent EOF has been attracting 
growing attention as an alternative mechanism of 
microfluidic transport. Keh and Tseng (2001), Chang 
(2009, 2010, 2012) and Kang et al. (2002) studied the DC 
transient EOF. Dutta and Beskok (2001), Wang et al. 
(2007), Chakraborty and Ray (2008) and Jian et al. 
(2010) studied the AC EOF.  

All the above mentioned studies therein are concerned 
with Newtonian fluids. However, microfluidic devices are 
usually used to analyze non-Newtonian biofluids. The 
more general Cauchy momentum equation, instead of the 
Navier-Stokes equation should be used to describe the 
constitutive equations of non-Newtonian fluids.  

Das and Chakraborty (2006), Chakraborty (2007), Zhao 
et al. (2008), Vasu and De (2010), Zhao and Yang (2010), 
Tang et al. (2009) and Deng et al. (2012) studied EOF of 
power-law fluids. They obtained analytical or numerical 
solutions of the velocity profiles which depend on the 
power law index n. Recently, the extension to viscoelastic 
fluids was done by Park and Lee (2008). Afonso et al. 
(2009) derived an analytical solution for the combined 
electroosmosis  and  Poiseuille  flow  of  Phan-Thien  and  
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Figure 1. Schematic of AC EOF of the generalized Maxwell fluids 
in a circular microtube. 

 
 
 

Tanner (PTT) and finitely extensible non-linear elastic-
Peterlin (FENE-P) models (Bird et al., 1980) in a two-
dimensional channel. Liu et al. (2011) and Jian et al. 
(2011) obtained exact solutions associated with the 
alternating current (AC) EOF of General Maxwell fluids in 
a slit microchannel and a two-dimensional rectangular 
microchannel, respectively. So, this paper extended our 
previous works to the circular microtube. The rest of this 
article is organized as follows. The physical description of 
the problem and the analytical solution to the equations 
governing the time periodic EOF of the generalized 
Maxwell model, discussion on the numerical results of the 
study and the conclusion. 
 
 

PROBLEM FORMULATION AND ANALITICAL SOLUTIONS 
 
The unsteady EOF of the incompressible generalized Maxwell fluids 
through a circular microtube of radius r with the z-axis being in the 
axial direction is shown in Figure 1. The chemical interaction of 
electrolyte liquid and solid wall generates an EDL, a very thin 
charged liquid layer at the solid-liquid interface. The EOF is pumped 
by an axial AC electric field with strength E0, the liquid inside the 
EDL sets in motion along z-direction due to electroosmosis. It is 
assumed that the flow is fully developed in space, only the axial 
velocity component exists and the radical velocity is zero.  

Traditionally, large-sized channels flow is often driven by 
pressure usually generated by mechanical pumps. In 
microchannels, however, it becomes increasingly difficult to utilize 
pressure-driven flow mode as the channel size shrinks, especially 
down to micro and submicrometer ranges. Provided that the 
pressure gradient along z-direction is ignored (the two ends are 
open), the Cauchy momentum equation of laminar flow can be 
expressed as follows: 
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Where u(r, t) is the axial velocity, which is along positive z-direction, 

ρ is the fluid density, t is time, yx is the stress tensor, ρe(r) is volume 
charge density and Ez(t) is AC electric field. Here, the applied 
electric field strength is greatly smaller than 105 V/m, the flow 
system cannot become chaotic. Because the time scale related to 
electromigration in the EDL, which is of order 10−8~10−7 s (Hsu et 
al., 1997), is at least two-orders smaller than that associated with 
the evolution of EOF, which is of order 10−5 ~ 10−3 s, the transient 
effect of the EDL can then be neglected. Therefore, we have 
assumed that the time-dependent EOF does not affect the charge  

 
 
 
 
distribution in the EDL. For generalized Maxwell fluids, constitutive  
equation satisfies (Bird et al., 2001): 
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Where 1 is the relaxation time, 0 is the zero shear rate viscosity. 
In Equation 2, the stress at time t depends on the velocity gradients 
at all past times t'. However, because of the exponentials in the 
integrand, greatest weight is given to times t' that are near t. Thus, 
the fluid “memory” is better for recent times than for more remote 
times in the past. This phenomenon is called “fading memory” (Bird 
et al., 2001). Substituting Equation 2 into Equation 1 yields: 
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AC electric field and velocity of periodic EOF can be written in 
complex forms as: 
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Where the {} denotes the real part of the function, ω is imposed 
AC electric field oscillating angular frequency. After substitution of 
Equation 4 into Equation 3, we can write: 
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We make the change of variable tts  , Equation 5 becomes: 
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Next, we perform the integration over s: 
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For small values of electrical potential ψ of the EDL, the Debye-
Hückel linearization approximation can be applied, which means 
physically that the electrical potential is small compared with the 
thermal energy of the charged species. By solving the Poisson-
Boltzmann equation subjected to proper boundary conditions, the 
well-known net charge density distribution for a circular microtube 
finally can be written as (Li, 2004): 
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Where ε is the dielectric constant of the electrolyte liquid, ψ0 is the 
zeta potentials on the wall, I0 are the modified Bessel functions of 
first kind of order zero, n0 is the ion density of bulk liquid, zν is the 
valence, e is the electron charge, kb is the Boltzmann constant, T is 
the absolute temperature and 1/k =δ denotes the EDL thickness.  

Substituting Equation 8 into Equation 7, we may now remove the 
real-operator sign from both sides, as well as the common multiplier  



 
 
 
 
eiωt, to get: 
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This equation is subjected to the following boundary conditions: 
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Equations 9 to 11 govern the EOF of generalized Maxwell fluids 
inside the EDL near a charged circular wall surface. Introducing the 
following dimensionless groups: 
 

   (12) 
 
Where K is called the normalized reciprocal thickness of the EDL 
denoting the ratio of the radius of microtube to Debye length, Ueo 
denotes steady EOF velocity of Newtonian fluids in a slit 
microchannel, De is normalized relaxation time and Ω means 
normalized oscillation frequency. The physical implication of Ω 
represents the ratio of the diffusion time scale (tdiff =ρR

2/η0) to the 
period of the applied electric field (tE =1/ω), based on the kinematic 
viscosity and the excitation frequency. 

Using Equation 12, Equation 9 and corresponding boundary 
conditions of Equation 10 to 11 are normalized as: 
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Equation 13 is a second-order inhomogeneous ordinary differential 

equation for the complex function )(0 ru , and its general solution 

can be expressed as: 

 

)()()( 000 rururu sh 
,                                                  (16) 

 

Where )(0 ru h  and )(0 ru s  are solutions of corresponding 

homogeneous equation and a special solution of Equation 13, 
respectively. The homogeneous form of Equation 13 is written as: 
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and its general solution is: 
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Where C and D are constants, which can be determined from 
boundary conditions of Equations 14 and 15. Considering the 
formation of the right hand side of Equation 13, the special solution 
can be supposed having the following form: 
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Where E is constant. Substituting Equation 19 into Equation 13 
yields 
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From the electrical potential equation 
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of the EDL, we can obtain easily its general solution 
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Therefore, the )(0 rKI  satisfies: 
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Substituting Equation 21 into Equation 20, and equalizing the 
coefficients in front of the modified Bessel functions I0 at the two 
sides of the equation, we have: 
 

)()]}1([{

)1(

0

2

2

KIiDeiK

iDeK
E






                                      (22) 
 
Inserting Equations 18, 19 and 22 into Equation 16, the normalized 
complex velocity amplitude of the EOF can be written as: 

 

])1([])1([)( 000 riDeiDKriDeiCIru 
 

 

)()]}1([{

)()1(

0

2

0

2

KIiDeiK

rKIiDeK






.                                          (23) 

 
Using the boundary conditions of Equations 14 and 15, the 
constants C and D can be determined as: 
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Inserting Equation 24 into Equation 23, the final normalized 
complex velocity amplitude can be obtained which takes the form 
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RESULTS AND DISCUSSION 
 

In the previous section, analytical solutions were derived 
for the periodic EOF of generalized Maxwell fluids 
through a circular microtube. They depend greatly on the 
normalized reciprocal thickness K of the EDL, the 
normalized oscillation frequency Ω and Deborah number 
De. This paper has adopted as rheological constitutive 
equation the generalized linear Maxwell model, which is 
limited to flows with infinitesimally small displacement 
gradients. However, it is possible to use this model 
outside this limitation provided there is very fast fading 
memory in order to remember the large strain events 

when 1max   . That is to say, some limit 1/  eoU

must apply. 
We have presented the important results with pertinent 

dimensionless parameters. However, in practical 
engineering problems, we also need to mention some 
typical values of the corresponding dimensional 
parameters. Some parametric ranges must be 
determined before we carry out numerical computations. 
Moreover, the relaxation time should be smaller than the 
oscillation period (observation time), that is, λ1<2π/ω or 
De<2π must be satisfied. Ordinarily, the value of EDL 
thickness δ has the scale of 10

-7
 to 5 × 10

-7
m in room 

temperature. Additionally, the validity of the linearized 
Poisson-Boltzmann equation is that the wall zeta 
potential is less than 25 mV. So the scale of the EOF 
velocity Ueo for Newtonian fluid is about 10

-5
 to 2.5 × 10

-4 

ms
-1

. From the above condition of 1/  eoU , the valid 

region of the relaxation time λ1 is 4 × 10
-4 

to 5 × 10
-2 

s, 
which safely fall into the region of the relaxation time λ1 [it 
changes from 10

-4
 to 10

3
s (Bird et al., 2001; 1987). 

Moreover, from the relation λ1<2π/ω, we can evaluate the 
scope of external electric field angular frequency, which 
changes from 40 to 5 π × 10

3 
rad.s

-1
. In the following 

calculations, typical parameters can be taken as follows 
(Goswami and Chakraborty, 2009): ρ ≈ 10

3 
kg.m

-3
, η0 ≈ 2 

× 10
-3 

kg.m
-1

s
-1

, R ≈ 100 µm. Thus, the normalized 
oscillation frequency Ω can be evaluated from 0.2 to 25 π 
and the normalized reciprocal thickness K of the EDL 
changes from 10 to 100, which coincides with the 
assumption of thin EDL.  

When K = 20, R = 100 µm, η0/ρ = 2 × 10
-6 

m
2
s

-1
, Figure 

2 shows normalized EOF velocity amplitudes of 
generalized Maxwell fluids across a circular microtube 
with several De (0.2, 0.5, 0.8, 1.0 and 1.5) for different Ω 
= 0.2 π, π, 5 π, 10 π, 15 π, 25 π (those correspond to 
their dimensional counterparts f = 20 Hz, 100 Hz, 500 Hz, 

 
 
 
 
1 kHz, 1.5 kHz, 2.5 kHz), respectively. It can be noted 
from Figure 2 that as expected, for lower Ω and smaller 
De, classical plug-like Helmholtz-Smoluchowski EOF 
velocity is reduced (Figure 2a and b). Moreover, the 
velocity magnitude is almost the same with that of 
Helmholtz-Smoluchowski EOF velocity.  

For prescribed normalized relaxation time De, 
increasing frequency Ω leads to wave-like EOF velocity 
profiles no matter whether the frequency is large or not. 
At the same time, the amplitudes of the EOF velocity 
decrease gradually. At lower frequencies, the flow field 
can extend to the whole microtube due to the same scale 
of the diffusion time and the oscillation time period 
(Figure 2c to d). At higher frequencies, however, the EOF 
velocity amplitude variations are restricted only within a 
thin layer near the solid surface and the velocity away 
from the EDL almost decreases to zero (Figure 2e to f). 
The reason is that the diffusion time scale is much 
greater than the oscillation time period. Therefore, there 
is no sufficient time for the flow momentum to diffuse far 
into the center of the microtube. 

From Figure 2, it can be observed that for fixed 
frequency Ω, the velocity amplitude increases with 
normalized relaxation time De whenever frequency Ω is 
large or small. Physically, the reason is that if the De 
number is large, polymer molecules that are distorted by 
the flow will not have time to relax during the time scale 
of the oscillation. Further increasing De will lead to the 
flow process happens so fast that the polymer molecules 
have no time to change configuration, and the fluid 
behaves more and more as a Hookean elastic solid. 

Figure 3 compares the normalized EOF velocity 
amplitudes of generalized Maxwell fluids between the 
plate microchannel and the microtube for fixed De and Ω 
numbers (K = 20). From Figure 3, we found that the 
velocity amplitude of microtube is larger than that of plate 
microchannel. 
 
 

Conclusions 
 
An analytical solution of the time periodic EOF of the 
general Maxwell fluids through a circular microtube under 
the Debye-Hückel approximation is presented in this 
work. The computational results show that the velocity 
profiles of the General Maxwell fluids depend greatly on 
the normalized oscillation frequency Ω and Deborah 
number De. For lower Ω and smaller De, classical plug-
like Helmholtz-Smoluchowski EOF velocity is reduced. 
For given De, increasing frequency Ω leads to wave-like 
EOF velocity profiles with decreased amplitude. At lower 
frequencies, the flow field can extend to the whole 
microtube. At higher frequencies, however, the EOF 
velocity amplitude variations are restricted only within 
EDL. It still can be observed that for fixed frequency Ω, 
the velocity amplitude increases with normalized 
relaxation time De. In addition, the velocity amplitude of 
microtube is larger than that of plate microchannel. 
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Figure 2. Normalized EOF velocity amplitudes of generalized Maxwell fluids across the microtube with several De 
numbers for different Ω (K = 20). (a) Ω = 0.2 π, (b) Ω = π, (c) Ω = 5 π, (d) Ω = 10 π, (e) Ω = 15 π, (f) Ω = 25 π. 
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Figure 3. Comparison of the normalized EOF velocity amplitudes of generalized Maxwell fluids between the plate 
microchannel and the microtube (K = 20). (a) De = 0.1, Ω = 5, (b) De = 2, Ω = 5, (c) De = 0.1, Ω = 50, (d) De = 2, Ω = 50.  
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