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We examine the behavior of 
4ϕ  theory in five dimensions. We provide the effective potential for the 

symmetric and broken symmetry phase. Our results suggests that due to the presence of an infinite flat 
extra dimension, the transition from the broken phase to the symmetric case can be delayed with 
respect to the four dimensional case. We also find that the phase transition at one-loop cannot be of the 
first-order. 
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INTRODUCTION 
 
Extra dimension is an important subject in the realm of 
theoretical physics and they are main ingredients of 
unified theories, like string theory. Large and infinite extra 
dimensions can lower the scale of grand unification 
theories (Arkani-Hamed et al., 1999; Rubakov, 2001). 
And if we are lucky, we may find evidence of such extra 
dimensions in Large Hadron Collider. So it is useful to 
study field theories in higher dimensions. 

In a seminal paper, Dolan and Jackiw (1974) presented 
a comprehensive account of temperature effects in 
variety of four dimensional field theories. In Dienes et al. 
(1999), an authoritative account of the subject matter is 
given in higher dimensions with emphasis on compact 
dimensions and applications to string theory. In a more 
recent work (Ansari and Suresh, 2007) a simple scalar 
theory has been formulated in five dimensions.  

But there are several issues that deserve further 
investigation. First of all in the treatment (Dienes et al., 
1999) of the effect of an extra dimension which is 
compactified on a circle is to contribute a Kaluza-Klein 

tower of particles. And for the 
4ϕ
 theory, their effective 

potential is the sum of a four dimensional one loop 
Coleman−Weinberg effective-potential and the  correction  
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due to Kaluza−Klein modes. Hence, they consider the 
effective potential as observed from our familiar four 
dimensional world. 

The second issue is the discussion of symmetry 
restoration at high temperature. Some authors (Dolan 
and Jackiw, 1974; Ansari and Suresh, 2007) practically 
start from a symmetric phase. But some others (Kirzhnits 
and Linde, 1976; Linde, 1979) start the discussion from a 
broken symmetry phase. We provide arguments in favor 
of the latter approach. 

The third issue is the correct computation of the 
effective potential in a fully five-dimensional theory and its 
implications. In Ansari and Suresh (2007), they consider 

the 
4ϕ
 theory in five dimensions, with signature of the 

metric (+,−,−,−,−). Even though the treatment of the 
subject matter in this paper is fully five dimensional, but 
their expressions for the zero temperature correction of 
the effective potential as well as their finite temperature 
correction of the effective potential are not correct. And 

finally, we are not aware of any study of 
4ϕ
 theory in the 

low temperature limit in higher dimensions. 
The plan of this paper is as follows: the effective 

potential at zero temperature for a 
4ϕ
 theory was dis-

cussed in five dimensions. At one loop level, we utilized 
different methods to obtain the effective potential for the 
broken symmetry phase and the symmetric phase, after 
which  we  considered   the  effective  potential   at   finite  
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temperature. In this study, it was observed that at high 

temperature, the effective potential Veff 
)(

c
ϕ

 has no odd 

power of c
ϕ

, though the critical temperature for the 
phase transition was obtained from a broken symmetry 
phase to the symmetric phase. We found that in a fully 
five dimensional theory, the presence of extra dimension 
can delay this phase transition. Also, due to lack of the 

presence of odd powers of c
ϕ

 in the effective potential, 
the first order phase transition is prohibited at one-loop 
level. Finally, this study’s conclusions are presented and 
technical details are given in the appendices. 
 
 
EFFECTIVE POTENTIAL AT ZERO TEMPERATURE 
 
In the symmetric phase, the potential at tree level is:  
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where m
2
 and  are positive. The coupling constant   

acquires dimension in 5D, hence it is divided by M to 
make it dimensionless. In the effective potential 

formalism, a classical field c
ϕ

 is defined as the vacuum 
expectation value of the field operator in the presence of 
a source (Peskin and Schroder, 1995; Ansari and 

Suresh, 2007). The effective potential Veff ( c
ϕ

) is the 
expectation value of the energy density in a certain state 

for which the expectation value of the field is c
ϕ

 
(Coleman, 1985). The effective potential at one loop level 
is: 
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There are several ways to carry out the calculations. One 
of such method is by differentiating the divergent integral 
with respect to the external momentum (Yang and Ni, 
1995). This method can be extended if we differentiate 
with respect to some mass parameter. Let, 
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Then, we differentiate 
1

effV
 with respect to M

2
 three times. 

The result is: 
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Next, we integrate the aforementioned result with respect 
to M

2
 three times and we obtain: 
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Hence, the effective potential at one loop level is: 
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The constants C1, C2 and C3 are determined by imposing 
some appropriate normalization conditions (Linde, 1979). 
For the symmetric phase by requiring: 
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We find 
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Therefore, the renormalized effective potential, at zero 
temperature for the symmetric phase is: 
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In Appendix I, we utilize another method and we obtain 
the same expression for the effective potential of the 
symmetric case. In the broken symmetry phase, the 
potential at tree level is: 
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where again m
2
 and λ  are positive. This potential has a 

local maxima at ϕ  = 0 and two minima at  

2
2

2 6
σ

λ
ϕ ==

Mm

. The computation of effective potential 



 
 
 
 
for the broken symmetry phase is similar to that of 
symmetric phase. However, for the broken phase 
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The effective potential for this 

phase at one loop level is: 
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The constants E1, E2 and E3 are determined by imposing 
some appropriate normalization conditions (Linde, 1979). 
For the broken symmetry phase, we require: 
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Our final result for the effective potential at zero 
temperature for the broken symmetry phase is: 
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EFFECTIVE POTENTIAL AT FINITE TEMPERATURE 
 
A common method to study the temperature effect in 
quantum field theory is imaginary time formalism (Quiros, 
1999). Essentially, it amounts to replacing a fifth 
Euclidian momenta k5 by a discrete wn and integration by  
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summation. This method has been extended to five 
dimension in Dienes et al. (1999). One loop correction of 
the effective potential in this formalism in five dimension 
is (Ansari and Suresh, 2007): 
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The first term of Equation 16 corresponds to the zero 
temperature one-loop correction and has been computed 
in effective potential at zero temperature. We denote the 

second term by 
)(

1

cV ϕβ  which is: 
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Effective potential at high temperature 
 

We evaluate 
)(

1

cV ϕβ  in the high temperature limit 

<<βM
 1, the result is (Appendix II): 
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Now by the addition of Equation 11 and Equation 19, we 
will have the complete one-loop effective potential for the 
symmetric case and by addition of Equations 15 and 19, 
we will have the complete one-loop effective potential for 
the broken symmetry case. At this high temperature limit, 
we see that the effective potential does not have any odd 
power of M. 
 
 

Effective potential at low temperature 
 

The general expression for the effective potential from 
Equation 40 of Appendix II is: 
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At the low temperature limit, namely when 
>>βM

1, we 
have: 
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Upon substituting the above expression in Equation 20, 
we find: 
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where the incomplete Gamma function Γ (a, x) is defined 
by: 
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By using the asymptotic expansion of the incomplete 
gamma function (Abramowitz and Steugun, 1972) for 
very large values of x, namely: 
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The leading contribution to the temperature dependent 

effective potential for very large values of 
βM

 is: 
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This expression shows that in this region of very low 
temperature and for the broken symmetry phase, the 
temperature correction of the effective potential is 
exponentially suppressed. 
 
 
SYMMETRY RESTORATION AT HIGH TEMPERATURE 
 
Having discussed the effective potential at various cases, 
we are in a position to discuss symmetry restoration at 
high temperature. The main point is that one has to start 
from a broken symmetry phase. Some authors (Dolan 
and Jackiw, 1974; Ansari and Suresh, 2007) start from a 
symmetric phase and they carry the calculation effective 

potential for zero temperature at c
ϕ

 = 0. And then use an 
imaginary mass to find the critical temperature or the 
thermal mass. The shortcoming of this approach is that 
they are faced by meaningless mathematical ex-
pressions. For instance, in the work of Ansari and Suresh 
(2007), their zero temperature one-loop correction 
becomes imaginary and hence meaningless. However, in 
the work of Dienes et al. (1999) Kirzhnitz and Linde 
(1976) and Linde (1979), they discuss the symmetry 
restoration in a proper framework. Now, we start from the 
broken phase of our theory, at zero temperature we have 
two distinct minima and by choosing one of them as the 
vacuum, the symmetry is spontaneously broken. At high 
temperature, we see that the magnitude of coefficient of 
the quadratic term in the effective potential is a 
decreasing function of the temperature. At the critical 
temperature this coefficient vanishes. 

In the leading order of the temperature we have: 
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From this expression, one can obtain the value of critical 
temperature Tc. One can calculate the position of the 
minima of the effective potential before phase transition 

in the leading order form 

0=
c
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So, at high temperature, the two minima of the broken 
phase get closer to the origin. The broken phase has 
three extremum points, two minima and one local 
maxima at the origin. At the critical temperature, these 
three points coincides. But as the potential is bounded, 
from below the resultant point is a global minima, and 
symmetry is restored. 

To compare with the result of the four dimensional 
world from Dolan and Jackiw (1974), we have: 
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And from Equation 26, we have: 
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Hence, (Tc)D=5 is dependent on fundamental mass scale. 

Furthermore, assuming the parameter λ  and the value 
of the parameter m to be the same in both cases we 
found: 
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Therefore, for large values of M, one can delay the phase 
transition. Similar result in the context of compact extra 
dimension has been obtained by Dienes et al. (1999). 

In four dimension, the presence of a term proportional 

to β

3
M

 creates a barrier which separates the local maxima 
of the scalar potential from a local minima at the origin. 

The phase transition to the symmetric phase thus 
proceed by bubble nucleation and it is of first order 
(Dolan and Jackiw, 1974). 

Our calculation of effective potential shows that there is 
no odd power of M in the effective potential as the M

5
 

terms from the zero temperature correction and from 
1

βV

 exactly cancel. Therefore, the presence of an infinite 
extra dimension prevents the occurrence of a first order 
phase transition. In fact in the work of Dienes et al. 
(1999), it was shown that for any dimension D > 4 the 
phase transition is not first order. 
 
 
Conclusion 
 
A relevant physical process pertinent to the earlier 
discussion is the cooling of the universe. Presumably, the 
universe starts at high temperature with high degree of 
symmetry. As the universe cools down, we enter the 
present low temperature universe which is in  the  broken 



 
 
 
 
symmetry phase. The vacuum expectation value of the 
field φ is zero and after the phase transition, this field 
acquires a non-zero vacuum expectation value. But the 
ordinary field theory is formulated at zero temperature. By 
using finite temperature field theory, we can find 
deviations with respect to the zero temperature case. So, 
we are forced to study the cosmological phase transition 
of the universe in the reverse order, namely, from the low 
temperature to the high temperature or from a broken 
symmetry phase to a symmetric case. Finite temperature 
field theory is a sophisticated subject. Dolan and Jackiw 
(1974) used advanced techniques, such as dimensional 
regularization to compute the effective potential in four 
dimensions. 

However, we found that their method is only suitable 
for even dimensions. We found that in odd dimensions D 

= 2N + 1 with N ≥  2, the method of calculations of the 
effective potential is different from that of even 
dimensions. And we have demonstrated this fact in 
Appendix II for the case of D = 5. 

On physical ground, our calculations predict a delayed 
cosmological phase transition, and the absence of odd 

powers of c
ϕ

 prevents this phase transition to be of the 
first-order. We know that as the universe cools down and 
after the phase transition, domain walls forms. It will be of 
interest to study the structure of these domain walls 
within the framework of higher dimensional scalar field 
theories. It is also desirable to include the effect of 
fermions. Another avenue for further work is to include 
the effect of gravity. These and other related issues are 
presently under considerations. 
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APPENDIX 
 

Appendix I: Regularization of five-dimensional 
4ϕ
 

theory  
 

Ansari and Suresh (2007) consider 
4ϕ
 theory in higher 

dimensions. But their expressions for the counter terms 
as well as their expression for the one loop correction of 
the effective potential is not correct. In addition, they 

introduce a cut off Λ  on all loop momenta and they 
integrate Equation 4 and obtain: 
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In the polar representation of complex numbers (Churchil 

et al., 1974) the angles are restricted by πθπ ≤<− . In 

the limit of ∞→Λ we have  2
1

π
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 and 2
2

π
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Therefore, the coefficient of the M
5
 term is 

2120π

h

. This 
result is consistent with Equation 7 of effective potential 
at zero temperature. It seems that Ansari and Suresh 

(2007) assumed that 2

3
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, hence, their coefficients  
 

of M
5
 term is 

2120π

h
−

. This will also affect their 
renormalization procedure for this theory. 

Now by keeping terms to order of Λ

1

, we found: 
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But this expression is divergent for ∞→Λ . We introduce 
the counter term Lagrangian as: 
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By combining Equations 3, 33 and 34, the effective 
potential with counter terms is: 
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Now, by imposing the same renormalization condition as 
stated in effective potential at zero temperature, we 
found: 
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By substituting these counter terms in Equation 35 and 
neglecting the field independent terms and terms that 

vanish in the limit of , we found: 
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This result is equivalent to the effective potential of 
effective potential at zero temperature up to some field 
independent terms. 
 
 
Appendix II: Evaluation of the integrals 
 

To evaluate the temperature effective potential 
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we notice that: 
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But from Equation 17, we have ωωdkdk = ; therefore, 
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Integrating by parts the aforementioned expression, we 
obtain I = I1 + I2, where: 
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We consider the series expansion of the logarithmic part 
and we obtain: 
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Next, we consider the decomposition I2 = I3 + I4, where: 
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To evaluate I4 first, we perform a Taylor expansion of the 
integrand, then we integrate term by term, the result is: 
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And from 
)(1

cV ϕβ = I1 + I3 + I4, we obtain the result stated 
in Equation 19 of effective potential at finite temperature. 
 
 


