Full Length Research Paper
References
Afrand M, Sina N, Teimouri H, Mazaheri A, Safaei MR, Esfe MH, Kamali J, Toghraie D (2015). Effect of Magnetic Field on Free Convection in Inclined Cylindrical Annulus Containing Molten Potassium. Int. J. Appl. Mech. 7(4):1550052. |
|
Andersson HI, Rousselet M (2006). Slip flow over a lubricated rotating disc. Int. J. Heat Fluid Flow 27:329-335. |
|
Ariel PD (1997). Computation of flow of a second grade fluid near a rotating disk. Int. J. Eng. Sci. 23:1335-1357. |
|
Ariel PD (2002). On extra boundary condition in the stagnation point flow of a second grade fluid. Int. J. Eng. Sci. 40:145-162. |
|
Asghar S, Hanif K, Hayat T, Khalique CM (2007). MHD non Newtonian flow due to non-coaxial rotations of an accelerated disk and a fluid at infinity. Commun. Nonlinear Sci. Num. Simulation 12:465-485. |
|
Asghar S, Jalil M, Hussan M, Turkyilmazoglu M (2014). Lie group analysis of flow and heat transfer over a stretching rotating disk. Int. J. Heat Mass Transfer 69:140-146. |
|
Attia HA (2009). Steady flow over a rotating disk in a porous medium with heat transfer. Nonlinear Anal. Model. Control 14:21-26. |
|
Beard BW, Walters K (1964). Elastico-viscous boundary layer flows. I. Two-dimensional flow near a stagnation point. Proc. Cambridge Philosophical Soc. 60:667-674. |
|
Benton ER (1966). On the flow due to a rotating disk. J. Fluid Mech. 24:781-800. |
|
Bradshaw V, Cebeci T, Whitelaw IH (1981). Engineering Calculation Methods for Turbulent Flows. Academic, London. |
|
Cochran WG (1934). The flow due to a rotating disc. Proc. Cambridge Philosophical Soc. 30:365-375. |
|
Garg VK, Rajagopal KR (1990). stagnation point flow of a non-Newtonian fluid. Mech. Res. Commun. 17:415-421. |
|
Hanna DM (1947). Forced flow against a rotating disc. British Aeronautical Research Council Reports and Memoranda, No. 2772, University of Michigan. |
|
Kakutani T (1962). Hydromagnetic flow due to a rotating disk. J. Phys. Soc. Japan 17:1496-1506. |
|
Keller HB (1970). A New Difference Scheme for Parabolic Problems, in Numerical Solution of Partial Differential Equations (J. Bramble, ed.). Volume II, Academic, New York. |
|
Keller HB, Cebeci T (1972). Accurate Numerical Methods for Boundary Layer Flows II: Two Dimensional Turbulent Flows. Am. Inst. Aeronautics Astronautics 10:1193-1199. |
|
Kumar SK, Thacker WI, Watson LT (1988). Magnetohydrodynamic flow past a porous rotating disk in a circular magnetic ï¬eld. Int. J. Num. Methods Fluids 8:659-669. |
|
Labropulu F, Li D (2008). Stagnation-point flow of a second grade fluid with slip. Int. J. Non-Linear Mech. 43:941-947. |
|
Malvandi A, Safaei MR, Kaffash MH, Ganji DD (2015). MHD mixed convection in a vertical annulus filled with Al2O3-water nanofluid considering nanoparticle migration. J. Magnetism Magnetic Mater. 382:296-3069. |
|
Miklavcic M, Wang CY (2004). The flow due to a rotating disk. J. Appl. Math. Phys. 54:1-12. |
|
Pande GS (1971). On the effects of uniform high suction on the steady hydromagnetic flow due to a rotating disk. Appl. Sci. Res. 11:205-212. |
|
Rajagopal KR, Gupta AS (1984). An exact solution for the flow of a non-Newtonian fluid past an infinite plate. Meccanica 19:158. |
|
Safaei MR., Rahmanian B, Goodarzi M (2011). Numerical Study of Laminar Mixed Convection Heat Transfer of Power-Law Non-Newtonian Fluids in Square Enclosures by Finite Volume Method. Int. J. Phys. Sci. 6(33):7456-7470. |
|
Santra B, Dandapat BS, Andersson HI (2007). Axisymmetric stagnation-point flow over a lubricated surface. Acta Mechanica 194:1-10. |
|
Sparrow EM, Chess RD (1962). Magnetohydrodynamic flow and heat transfer about a rotating disk. ASME J. Appl. Mechanics 29:181-187. |
|
Sparrow EM, Gregg JL (1960). Mass transfer, flow, and heat transfer about a rotating disk. ASME J. Heat Transfer 82:294-302. |
|
Tifford AN, Chu ST (1952). On the flow around a rotating disc in a uniform stream. J. Aeronautical Sci. 19:284-285. |
|
Turkyilmazoglu M (2009). Exact solutions for the incompressible viscous fluid of a porous rotating disk flow. Int. J. Non-Linear Mechanics 44(4):352-357. |
|
Turkyilmazoglu M (2012a). An implicit spectral method for the numerical solution of unsteady flows with an application to rotating disk flow and heat transfer, Isi Bilimi Ve Teknigi Dergisi/. J. Thermal Sci. Technol. 32(2):99-106. |
|
Turkyilmazoglu M (2012b). Three dimensional MHD stagnation flow due to a stretchable rotating disk. Int. J. Heat Mass Transfer 55(23-24):6959-6965 |
|
Turkyilmazoglu M (2014). MHD fluid flow and heat transfer due to a shrinking rotating disk. Comput. Fluids 90:51-56. |
|
Turkyilmazoglu M (2015). Bödewadt flow and heat transfer over a stretching stationary disk. Int. J. Mech. Sci. 90:246-250. |
|
Turkyilmazoglu M, Senel P (2013). Heat and mass transfer of the flow due to a rotating rough and porous disk. Int. J. Thermal Sci. 63:146-158. |
|
Von KT (1921). Uberlaminare und turbulente Reibung. J. Appl. Math. Mech. 1:233-252. |
|
Wang CY (2003). Stagnation flows with slip: Exact solution of the Navier-Stokes equations. Zeitschrift für Angewandte Mathematik und Phys. 54:184-189. |
|
Wang CY (2008). Off-centered stagnation flow towards a rotating disc. Int. J. Eng. Sci. 46:391-396. |
|
Watanabe T, Oyama T (1991). Magnetohydrodynamic boundary layer flow over a rotating disk, Zeitschrift fur Angewandte Mathematik und Mechanik 71:522-524. |
|
Watson LT, Wang CY (1979). Deceleration of a rotating disk in a viscous fluid. Phys. Fluids 22:2267-2269. |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0