

Vol. 5(2), pp. 7-14, July, 2014
DOI: 10.5897/IJSTER2014.0247
Aritcle Number: 95AE8A345736
ISSN 2141-6559
Copyright © 2014
Author(s) retain the copyright of this article
http://www.academicjournals.org/IJSTER

International Journal of Science and Technology

Educational Research

Review

A software ability network in service oriented
Architecture

S. Rajalakshmi

Department of Computer Science and Engineering, SCSVMV University, Kanchipuram, Tamil Nadu, India.

Received 7 March, 2014; Accepted 26 June, 2014

In recent days, Service-Oriented Architecture (SOA) is used as a proficient resolution to integrate and
potentially distributed in the software firm and enterprise. Architectures explore great vital role of
network evaluation of the system. In a SOA-network value based environment, Pattern proven the
solutions and design is one of the most important issues that must be considered because of the
loosely coupled nature of SOA. However, there are many functionalities and deal with software
Architect services such as flexible, speed, efficiency reliability and so on. SOA brings additional
settings of proper governance of design pattern which becomes a critical issue. In this paper, we
propose an Architect for Service Oriented Pattern based enterprise can play in transformation terms
applying the quality conceptual for framework.

Key words: Service-oriented design, service Intelligence, performance management systems and quality
management in SOA.

INTRODUCTION

Software architecture, Hofmeister et al. (1999), intuitively
denotes the high level structures of a software system. It
can be defined as the set of structures needed to think
about the software system, which comprise the software
elements, the relations between them, and the properties
of both elements and relations. Applying the term
“architecture” to software systems is a metaphor that
refers to the classical field of the architecture of buildings.
Garlan and Shaw, 1993, The term “software architecture”
is used to denote three concepts: high level structure of a
software system, discipline of creating such a high level
structure and documentation Bosch (2004) of this high

level structure. Software architecture exhibits the follow-
ing characteristics: multitude of stakeholders, separation
of concerns, quality-driven, recurring styles and concep-
tual integrity. Software architecture (SA) is considered to
be the most importance to the software development life-
cycle Outi et al. (2009). It is used to represent and
communicate the system structure and behavior to all of
its stakeholders with various concerns. SA facilitates
stakeholders in understanding design decisions and
rationale, further promoting reuse and efficient evolution.
One of the major issues in software systems
development today is systematic SA restructuring to

E-mail: gomathyck@gmail.com.

Author agree that this article remain permanently open access under the terms of the Creative Commons
Attribution License 4.0 International License

8 Int. J. Sci. Technol. Educ. Res.

accommodate new requirements due to the new market
opportunities, technologies, platforms and frameworks.

According to Pressman, Sobiesiak and Yixin (2010)
“One goal of software design is to derive an architectural
rendering of a system”. Architectural design, detailed
design and design reviews provide the most important
steps in a cost effective software development process.
Software engineering activities are goal directed in order
to produce working software in a timely manner within
some cost constraints Al Dallal, (2010). For complex
computer based systems, software architecture plays a
very important role in its success or failure. Software
architecture is “the overall structure of the software and
the ways in which that structure provides conceptual
integrity for a system”. Software architectural design is
immensely challenging, strikingly multifaceted, extrava-
gantly domain based, perpetually changing, rarely cost-
effective, deceptively ambiguous, and perilously con-
strained with some exceptions. Service oriented
architecture modeling is performed considering various
stages of network performing the functionalities and
services Xu et al. (2006). This model consists of three
stages: architectural analysis, architectural synthesis and
architectural evaluation. The model has been extended to
include two more stages, implementation and main-
tenance. All stages are supported by architectural
knowledge. The architectural analysis stage serves to
define the problems an architect must solve. An architect
examines architectural concerns and context in order to
come up with a set of architecturally significant
requirements.

Another major issue in software systems development
today is quality Frigo and Steven (1998). The idea of
predicting the quality of a software product from a higher-
level design description is not a new one. During recent
years, the notion of software architecture has emerged as
the appropriate level for dealing with software quality
(Rasool and Nadim, 2007). This is because the scientific
and industrial communities have recognized that Software
Architecture sets the boundaries for the software qualities
of the resulting system. The aim of analyzing the
architecture of a software system is to predict the quality
of a system before it has been built and not to establish
precise estimates but the principal effects of architecture
(Abdelmoez et al., 2009). Designing architecture so that
it achieves its quality attribute requirements is one of the
most demanding tasks an architect faces (Taylor et al.
2009). It is demanding for several reasons including lack
of specificity in the requirements, shortage of documented
knowledge of how to design for a particular quality
attributes, and the trade-offs involved in achieving quality
attributes (Outi et al., 2009). It would be desirable to have
a method that guides the architect so that any design
produced by the method will reliably meet its quality
attribute requirements.

Literature review

Software architecture provides the solution for which
technical and operational problem can be resolve easily.
Lots of researchers proposed variety of papers for the
given work are given below:

Pradip Peter Dey (2011), presented a strongly adequate
software architecture defined along with some other
software quality attributes which contributed in formative
assessments of software architecture. The architectural
categories were not constrained by a particular
programming language, or domain. Software engineers
have strived for the strongly adequate software
architecture. However, software architecting was an
iterative process and formative assessments guide
that the architects to improve the qualitative aspects in
an iterative process. The categories proposed in given
paper have intended to help reviewers in formative
assessments. The role of formative assessments has
stressed during the development process in order to
produce revised architectures from initial work or working
progress.

Outi et al. (2009) proposed an approach that used SA in
software architecture design. A responsibility dependency
graph has been given as input and architecture styles
and design patterns were used as transformations when
searching for a better solution in the neighborhood. The
solution was analysed with regard to quality and
effectiveness. The experimental results achieved with
given approach showed that although extremely high
quality values have achieved with given approach, their
“true” quality as evaluated by examining the Unified
Modeling Language (UML) class diagrams was not
actually as good. However, when combining the solution
achieved with SA with a GA implementation, the actual
quality of the produced solutions increased as well as the
calculated metric values. The proposed paper would
suggest that further work should be done with studying
the combination of these two algorithms in software
architecture design. Studying the definition of evaluation
functions for simulated annealing and genetic algorithm
should be done as well, as using the same function
apparently gives quite different types of solutions when
using the different algorithms. Their future work attend to
these questions as well as deriving real test cases to
further evaluate the approach, and adding more design
patterns to cover a larger search space of possible
architectures. They have planned to implement a multi-
objective fitness function primarily for the GA
implementation.

Abdelmoez et al. (2009) given a paper in which
Software Architecture Risk Assessment (SARA) tool
designed and implemented as a tool for computing and

analyzing architectural level risk factors like
maintainability-based risk, reliability-based risk and
requirement-based risk. By manipulating the data
acquired from domain experts and measures obtained
from Unified Modeling Language (UML) artifacts, SARA
Tool used in the design phase of the software
development process to improve the quality of the
software product and identify critical components that
have high risk levels. They used the product line
architecture of a Microwave Oven to demonstrate the
usage of SARA tool in assessing PLA. The modified
version of the Microwave Model has been aggregated to
consist of 9 sequence diagrams and two class diagrams.
There were a total of 14 optional and variant classes.
From the product line architecture a total of 96 validated
product members, were generated with the instantiation
process.

Ampatzoglou et al. (2011) suggested a methodology for
exploring designs where design patterns have been
implemented, through the mathematical formulation of
the relation between design pattern characteristics and
well known metrics, and the identification of thresholds
for which one design becomes more preferable than
another. The given approach assisted goal oriented
decision making, since it was expected that every design
problem demands a specific solution, according to it was
special needs with respect to quality and expected size.
Their methodology has been used for comparing the
quality of systems with and without patterns during their
maintenance. Thus, three examples that employ design
patterns have been developed, accompanied by
alternative designs that solve the same problem. All
systems have been extended with respect to their most
common axes of change and eleven metric scores have
been calculated as functions of extended functionality.
The results of the analysis have identified eight cut-off
points concerning the Bridge pattern, three cut-off points
concerning Abstract Factory and 29 cut-off points con-
cerning Visitor. In addition to that, a tool that calculates
the metric scores has been developed.

Christian and Mila (2011) described how component-
based systems with multiway cooperation focused on the
basis of an architectural constraint that went beyond
common acyclicity requirements. The given analysis have
concerned on the property of deadlock-freedom of
interaction systems and given a polynomial-time check-
able condition that ensured deadlock-freedom by
exploiting a restriction of the architecture called disjoint
circular wait freedom. Roughly speaking, given
architectural constraint disallowed any circular waiting
situations among the components such that the reason of
one waiting was independent from any other one. On the
other hand, if their approach failed, the information
provided by the entry interactions has given a hint of
which components were involved in a potential deadlock.

Rajalakshmi 9

With given information, a software engineer has taken a
closer look at given potentially small set of components
and either resolve the reason manually or encapsulate
given set in a new composite component that has
equivalent behaviour, was verified deadlock-free with
another technique, and now causes no problems in the
remaining system. Their approach used as a design
pattern to ensure that a system was correct by con-
struction. If a software engineer sticks to the composition
rule imposed by their architectural constraint, a
subsequent application of their condition after each
composition step facilitated a correct system design in an
automatic and convenient way. They concluded the
paper with an overview of the current state of affairs in
their work on interaction systems. In their research
perspective, they followed ideas that ultimately allowed
for correctness by construction. They followed the
philosophy to develop and investigate design patterns or
architectural constraints that were amenable to the
formulation of efficiently checkable conditions for the
properties in question.

Germán et al. (2010) given a paper in which SAME tool
computed the similarity between cases by considering
the particular dimensions of connector catalogues. The
attributes and values for these dimensions depend upon
the overall design context, the application domain and the
designer’s perspective of the problem. As a
consequence, the results of the similarity are function
biased. So far, they have taken a simple approach based
on the structural characteristics of components playing
similar roles when attached to connectors. However, a
stronger compatibility check required the components to
be also equivalent from a behavioral point of view. A
related drawback indicated that there was a lack of
behavioral modelling in the C&C architectural specifica-
tions. In the current SAME implementation, the designer
gives details about the way components behave when
interacting with each other’s. The proposed method
prevented the adaptation of the object-oriented solutions
to generate behavioral diagrams - such as sequence
diagrams - that provided a more complete picture of the
object-oriented implementation to the designer. The
behavioral aspect of materializations is a topic for future
work. SAME provided an editor for the creation of
materialization experiences, the specification of the
interaction models was still a highly manual task. To
overcome the given situation, they were planning to
extend the SAME Eclipse Plugin which provides a user-
friendly interface that supported the construction of
interaction models for the materialization experiences.

PROBLEM DEFINITION

In present time, software architecture is a major issue in

10 Int. J. Sci. Technol. Educ. Res.

any software organization, which develops software for
some particular organization or firm. Lots of things affect
software development life cycle. To design any software
designs we have to keep some points in mind to develop
effective software in reasonable time and cost. Here we
described the following issues, which have to be removed
at the time of software design phase (Hofmeister et al.
1999):

What is the most essential part for a software
development industry to do to get the main out of its
software architects and provide software architectures of
the top essential quality?
What should be steps to measure the capability?
In what way the "theory of software architecture
competence" look like?
What are the possible organizational practices presently
at work to enhance capability?

SOA framework

The desire for enterprise systems that have flexible
architectures, detailed designs, implementation agnostic
and operate efficiently continues to grow. A major effort
towards satisfying this need is to use SOA. Moreover,
there is new research and development in order to
achieve more demanding capabilities (example, workflow
service composition with run-time adaptation to changing
Quality of service attributes) that have been proposed for
service- based systems, especially in the context of
system. A basic concept is for SOA to enable specifying
the creation of services that can be automatically
composed to deliver desired system dynamics while
satisfying multiple Quality of service attributes. As shown
in Figure 1. A fundamental SOA concept is to enable
flexible composition of independent services in a simple
way. The simple concept is crucial since it separates
details of how a service is created and how it may be
used. This kind of modularity is defined based on the
concept of brokers and its realization as the broker
service. The SOA conceptual framework lends itself to
the separation of concerns ranging from application
domains (example, business logic) Information Techno-
logy (IT) infrastructure is one of the choices of
programming languages and operating systems. The
interoperability at the level of services means loose
coupling of reusable services. The high-level description
of the SOA principals does not account for the operational
dynamics of SOA, especially with respect to time-based
operations. Therefore, understanding the dynamics of a
service-based system using simulation is important.
Simulation can also support specific kinds of service-
based software systems that are targeted for business
processes with specialized domain Knowledge.

SOA resources

Enterprise applications typically require different kinds of
interfaces to the data they store and the logic they
implement: data loaders, user interfaces, integration
gateways and others. Despite their different purposes,
these interfaces often need common interactions with the
application to access and manipulate its data and invoke
its business logic. The interactions may be complex,
involving transactions across multiple resources and the
coordination of several responses to an action. Encoding
the logic of the interactions separately in each interface
causes a lot of duplication. As shown in Figure 2. A
Service Layer defines an application's boundary and its
set of available operations from the perspective of
interfacing client layers. It encapsulates the application's
business logic, controlling transactions and coordinating
responses in the implementation of its operations

SOA architectural model

Service-Oriented Architecture (SOA) has been widely
promoted by analysts and IT vendors as the architecture
capable of addressing the business needs of modern
organizations in a cost-effective and timely manner.
Perceived SOA benefits include improved flexibility and
alignment between business processes and the sup-
porting enterprise applications, lower integrations costs
(in particular for legacy applications), and numerous other
advantages. Although, SOA can play an important role in
inter enterprise business-to-business (B2B) applications,
SOA is primarily regarded as an intra-enterprise archi-
tecture used for internal integration. SOA adoption was
initially driven by the emergence of Web Services and
related technologies and the need to provide a more
effective enterprise computing architecture oriented
modelling. SOA is explored in network drivers using in
service oriented distributed enterprise applications.
Service oriented architecture is generally the structure of
components in a program or system, their inter-
relationships, and the principles and design guidelines
that control the design and evolution in time. Software
engineering, a design pattern is a general reusable
solution to a commonly occurring problem within a given
context in software design. A design pattern is not a
finished design that can be transformed directly into
source or machine code. It is a description or template for
how to solve a problem that can be used in many
different situations. Patterns are formalized best practices
that the programmer must implement in the application
Object-oriented design. Patterns typically show relation-
ships and interactions between classes or objects, without
specifying the final application classes or objects that are
involved. Patterns that imply object- orientation or more

Rajalakshmi 11

 Reference
Architecture/Models

Software patterns
Architectural patterns
Network Architecture

Software
Architecture

Figure 1. SOA framework model.

Data

Loaders

Recognition

Service

User

Interfaces

Integration

Gateway

 Service Layer

Figure 2. SOA resource activities.

generally mutable state are not as applicable in functional
programming languages.

The Software Architect will be responsible for
contributing specialized technical knowledge in multiple
development efforts using object-oriented analysis and
design, Service Oriented Architecture (SOA) and distri-
buted systems. Principle responsibility will be the design
and implementation of an enterprise-class platform to
enable application supportability and performance
management. SOA is the aggregation of components that
satisfy a design needs. It comprises components,
services and processes. Components are binaries that

have a defined interface (usually only one), and a service
is a grouping of components (executable programs) to get
the job done. This higher level of application development
provides a strategic advantage, facilitating more focus on
the business requirement. SOA isn't a new approach to
soft-ware design; some of the notions behind SOA have
been around for years. A service is generally implemen-
ted as a coarse-grained, discoverable software entity that
exists as a single instance and interacts with applications
and other services through a loosely coupled (often asyn-
chronous), message-based communication model. The
most important aspect of SOA is that it separates the

12 Int. J. Sci. Technol. Educ. Res.

Figure 3. SOA proposed architect design.

service's implementation from its interface. Service
consumers view a service simply as a communication
endpoint supporting a particular request format or contract
as shown in Figure 3.

Reference architecture is a more concrete artifact used
by architects. Unlike the reference model, it can introduce
additional details and concepts to provide a more
complete picture for those who may implement a
particular class. Reference architectures declare details
that would be in all instances of a certain class, much like
an abstract constructor class in programming. Each sub-
sequent architecture designed from the reference archi-
tecture would be specialized for a specific set of require-
ments. Reference architectures often introduce concepts
such as cardinality, structure, infrastructure, and other
types of binary relationship details. Accordingly, reference
models do not have service providers and consumers. If
they did, then a reference model would have infra-
structure (between the two concrete entities) and it would
no longer be a model. The reference model and the

reference architecture are intended to be part of a set of
guiding artifacts that are used with patterns. Architects
can use these artifacts in conjunction with others to
compose their own SOA. The concepts and relationships
defined by the reference model are intended to be the
basis for describing reference architectures that will
define more specific categories of SOA designs. Speci-
fically, these specialized architectures will enable solution
patterns to solve a particular problem. Concrete archi-
tectures may be developed based upon a combination of
reference architectures, architectural patterns and
additional requirements, including those imposed by
technology environments. Architecture is not done in
isolation; it must account for the goals, motivation, and
requirements that define the actual problems being
addressed. While reference architectures can form the
basis of classes of solutions, concrete architectures will
define specific solution approaches.

Visibility and Real World Effect are also key concepts
for SOA. Visibility is the capacity for those with needs and

those with capabilities to be able to see and interact with
each other. This is typically implemented by using a com-
mon set of protocols, standards, and technologies across
service providers and service consumers. For consumers
to determine if they can interact with a specific service,
Service Descriptions provide declarations of aspects
such as functions and technical requirements, related
constraints and policies, and mechanisms for access or
response. The descriptions must be in a form (or can be
transformed to a form) in which their syntax and
semantics are widely accessible and understandable.
The execution context is the set of specific circumstances
surrounding any given interaction with a service and may
affect how the service is invoked. Since SOA permits
service providers and consumers to interact, it also
provides a decision point for any policies and contracts
that may be in force. The purpose of using a capability is
to realize one or more real world effects. At its core, an
interaction is “an act” as opposed to “an object” and the
result of an interaction is an effect (or a set/series of
effects). Real world effects are, then, couched in terms of
changes to this shared state. This may specifically
mutate the shared state of data in multiple places within
an enterprise and beyond.

The concept of policy also must be applicable to data
represented as documents and policies must persist to
protect this data far beyond enterprise walls. This
requirement is a logical evolution of the “locked file
cabinet” model which has failed many IT organizations in
recent years. Policies must be able to persist with the
data that is involved with services, wherever the data
persists. A contract is formed when at least one other
party to a service oriented interaction adheres to the
policies of another. Service contracts may be either short
lived or long lived.

Contribution of the paper

Software architecture is a main concern to improve the
experience in current industry for producing quality
software at reasonable time and cost. It will examine
some of the essential issues, which play an important
role in software architecture design and it explored five
different phase in organization by which we can provide
most essential practices which will be unique models of
industry and human behavior that can be given on
software architecture design and will be used to help
organization and also enhance the architectural capability
of personal and organizations.
Phase I: It will analyze the duties, skills and knowledge.
We will analyze the work of individuals. In which the skills
he/she has and how much knowledge he/she have? We
will divide knowledge on the basis on domain specific and
technology specific.

Rajalakshmi 13

Phase II: In this phase we will analyze the human
performance technology. It can be measured in the terms
of time and cost.
Phase III: In this phase we will analyze the organizational
learning. It analyze the learning phase through providing
some questionnaires, conducting interviews, identifying
change in knowledge and organizational performance.
Phase IV: In this phase we analyze the organizational
coordination. In what manner we can provide co-
ordination, coordination will be for a team or for some
team. The main concern part is generating an inter-team
coordination model for firm developing a single product or
a closely related set of products.
Phase V: In this phase we will manage the task using
neural network. In this phase we will have a group of task
using neural network as the main task will be executed.

It will select best task among the group of task. There
are number of task an organization has to perform. But
the main concern is to know which of the task will be
executed first. Choosing the best task according to the
environment factors and availability of employees is the
best practice in the real world. Software architecture is
the set of significant decisions about software of organi-
zation which include security, task management, main-
tainability, performance, resilience, reuse, usability. Our
main aim is to enhance these constraints in a proper way.
In any organization lots of tasks will be present to
perform. Here we will give some priority weightage to
each task. In the case of a neural network (NN) based
task scheduler, once the job parameters are exactly
trained for a particular schedule, it will never miss that
given scheduling pattern for that particular task.

CONCLUSION

This paper proposed new intelligence with service
oriented architect paradigm to enable system quality to
connect with software architectural models from which it
is possible to extract precisely information. Our scheme
has been proven to have software design with quality in
the standard model. A systematic complexity analysis
and extensive experiments shows that our proposal is
also efficient in terms of computation and design of
network used to describe different varieties of messages
in SOA.These features of service with network analysis
framework scheme a talented solution to group-service
oriented communication with access control in various
types of design.

Conflict of Interests

The author has not declared any conflict of interest.

14 Int. J. Sci. Technol. Educ. Res.

REFERENCES

Abdelmoez WM, Jalali AH, Shaik K, Menzies T, Ammar HH (2009).

"Using Software Architecture Risk Assessment For Product Line
Architectures." In International conference on communication,
computer and power. Pp. 15-18.

Bosch J (2004). "Software architecture: The next step." In Software
architecture. pp.194-199.

Christian L, Mila MC (2011). “Efficient deadlock analysis of component-
based software architectures”, Elsevier.

Frigo M, Steven GJ (1998). "FFTW: An adaptive software architecture
for the FFT." In Acoustics, Speech Signal Proc. 3:1381-1384.

Garlan D, Shaw M (1993). "An introduction to software architecture."
Adv. Software Eng. Knowledge Eng. pp.1-40.

Germán VJ, Andres DP, Marcelo C (2010). “Reusing design
experiences to materialize software architectures into object-oriented
designs”, Elsevier.

Hofmeister C, Robert LN, Dilip S.(1999)"Describing software
architecture with UML." In Software Architecture pp.145-159.

Outi R, Erkki M, Timo P (2009). "Using simulated annealing for
producing software architectures. 4(7):2131-2136.
http://www.sis.uta.fi/cs/reports/dsarja/D-2009-2.pdf.

Pradip PD (2011). “Strongly Adequate Software Architecture”. World

Academy of Science, Engineering and Technology. 5:12-28.
http://waset.org/publications/1338/strongly-adequate-software-
architecture.

Rasool G, Nadim A (2007). "Software Architecture Recovery." Int. J.
Comput. Inf. Syst. Sci. Eng. 1:3.

Sobiesiak R, Yixin D (2010). "Quantifying software usability through
complexity analysis." IBM Design: Papers and Presentations.

Taylor RN, Nenad M, Eric MD (2009). ”Software architecture:
foundations, theory, and practice”. Wiley Publishing.

Xu L, Hadar Z, Thomas AA, Debra JR (2006)
"An architectural pattern for non-functional dependability
requirements." J. Syst. Software 10:1370-1378.

