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Accurate quantification of heavy metals is essential for optimizing remedial efforts at polluted 
waterfronts. Although surface water quality models can be helpful tools for rapid quantification of 
heavy metals in streams, they cannot be extrapolated to other water bodies. This study estimated Mg, 
Cd, and Ni levels in one of the polluted urban waterfronts in the Niger Delta Province, Nigeria (5.317°N, 
6.467°E) using one-dimensional transport model. To do this, water samples were collected along the 
waterfront in both dry and rainy seasons and analyzed for the selected heavy metals using a 
SHIMADZU

®
 AA6800 Atomic Absorption Spectrophotometer according to international standards. 

Model parameters were determined by simple linear regression using the experimental dataset. Results 
showed that the average concentrations of Mg (5.964 mg/L), Cd (0.088 mg/L), and Ni (0.071 mg/L) in the 
waterfront in both dry and rainy seasons exceeded both local and international regulatory values. The 
seasonal variation of the heavy metals in the waterfront showed that the concentrations of Mg and Cd 
were higher during the dry season. Model validation of experimental data showed reasonable prediction 
precision with root mean square error (RMSE) of 0.0016-0.2254 mg/L in the dry season, RMSE of 0.0026-
0.3259 mg/L in the rainy season, and corresponding average validation r

2
 of 0.985 in both seasons. 

These results suggest that the waterfront is laden with heavy metals and the one-dimensional transport 
model is a useful tool to rapidly estimate the levels of Mg, Cd, and Ni in the waterfront for pollution 
control. 
 
Key words: Environmental monitoring, heavy metals, water pollution, water quality modelling. 

 
 
INTRODUCTION 
 
Water is an important commodity for human beings and it 
covers over 70% of the earth’s surface. Surface water 
includes creek, river, stream, pond, lake, and sea 
(Donald, 1997). Water is required in almost every life 
process including biochemical reaction, digestion, 
absorption,      dissolution        of        substances,      and 

thermoregulation, as well as other activities such as 
transportation and sports (Kleiner, 1999). Although 
because of anthropogenic activities, water quality has 
significantly been impaired. Additionally, the degradation 
of water environment has posed serious challenges in the 
management  of  water  resources.  In  most   waterfronts   
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(coastal areas), a lot of human activities including 
tourism, shipping, transportation, agriculture, and oil and 
gas processing activities are carried out; and wastes from 
these activities have had damaging effects on aquatic 
organisms (Dublin-Green et al., 1999). 

Waterfronts in Nigeria Niger Delta Basin have suffered 
prolonged environmental pollution and degradation from 
human activities, leading to deposition of heavy metals 
and all sorts of environmental contaminants (Abu and 
Egenonu, 2008; Abbasi, 2012; Onojake et al., 2017; 
Okparanma et al., 2016). Most water pollutants are 
detrimental to humans and organisms. For instance, the 
effects of oil spillage on water bodies could leave many 
organisms still affected years after the spill (Fingas, 
2010). This is even worse when polycyclic aromatic 
hydrocarbon (PAH)-carrying compounds such as soot is 
released into the water as in most cases from local oil 
refining operations (Vincent-Akpu and Nwachukwu, 2016; 
Osuagwu and Olaifa, 2018).  

Water quality is a term used to describe the chemical, 
physical, and biological characteristics of water in relation 
to its suitability for a particular purpose (Gupta et al., 
2009). Since the mid twentieth century, there has been 
growing concern on the effects of inorganic and organic 
pollutants such as heavy metals and hydrocarbons 
respectively on water quality. Consequently, past studies 
have been dedicated to the assessment and 
management of water quality involving water quality 
modelling and water quality index evaluation (Moez et al., 
2019; Sutadian et al., 2016). In recent times, several 
studies have formulated various water quality indexes 
and their application has been strongly advocated by 
agencies responsible for water supply and control of 
water pollution (Lumb et al., 2003; Patterson et al., 2003; 
Darren et al., 2005; Kannel et al., 2007).   

Surface water quality models can be helpful tools in 
simulating and predicting contaminant levels, distribution, 
and risks in a water body. This is because results from 
the models under different pollution scenarios are very 
important components of environmental impact 
assessment and they can give a basis and decision 
support for environmental management. For instance, the 
rates of biological oxygen demand caused by sediment 
release and surface runoff, as well as the changing rate 
of dissolved oxygen in rivers have been studied through 
water quality models (Wang et al., 2013). Similarly, 
Vincent-Akpu and Nwachukwu (2016) studied the 
pollution of Nembe/Bonny/Iwofe Rivers in Rivers State, 
Nigeria due to waste discharged into the Rivers; and 
reported that lead, chromium, cadmium, copper, and zinc 
concentrations were high. Moreover, Xia et al. (2017) 
have also shown that pollution from urban runoff was 
heavier in the rainy season, which increased the level of 
contaminants in rivers.  

Despite the benefits of surface water quality models, no 
study has as yet given attention to the application of this 
important    decision-support     tool    in    evaluating   the  

 
 
 
 
concentration of heavy metals such as Mg, Cd, and Ni 
along the polluted Marine-Base waterfront of Amadiama 
creek in Port Harcourt metropolis, Nigeria. The objective 
of this study was to investigate the application of one-
dimensional transport model in the estimation of Mg, Cd 
and Ni levels along the polluted Marine-Base waterfront 
of Amadiama creek in Port Harcourt metropolis, Nigeria 
for pollution control. 
 
 
MATERIALS AND METHODS  
 
Study area  
 
Marine-Base waterfront of Amadiama Creek in Port Harcourt City 
Local Government Area of Rivers State in the Niger Delta Province 
of Nigeria (Figure 1) is subject to human induced pressures 
resulting from industrialization, urbanization, and heavy navigation. 
The waterfront lies on the north of Bonny River in Rivers State 
between longitude 5°60′-6°60′N and 6°06′-6°07′ E. The creek is 
brackish water, which flows and ebbs daily and links Okirika Island 
and other neighbouring communities. The waterfront also has a 
jetty where local boats and other vessels used for navigation 
anchor. People living close to the waterfront and marine companies 
operating nearby now use the waterfront for illicit dumping of all 
kinds of wastes including water from slaughter houses and 
domestic wastes, as well as wrecked vessels. There are also local 
crude oil refining activities around the waterfront resulting in oil 
bunkering and the emission of soot. Both the soot and spilled 
petroleum products eventually end up in the river, contributing to 
the increasing level of pollution in the waterfront and making fishing 
and trading almost impossible. Therefore, it is expedient to regularly 
monitor the waste load of the waterfront.  
 
 

Sample collection, preparation, and analysis for heavy metals 
 

The sampling points along the Marine-Base water front in the 
Amadiama creek in the Niger Delta Province of Nigeria are shown 
in Figure 1. The waterfront was partitioned into three sections 
namely SW1, SW2, and SW3; and  water samples were collected 
from each section using a canoe, wading gear, and 1 m long 
marine rope of 3 mm diameter. From the waste discharge point, 
water samples were collected at intervals of 10 m up to 100 m away 
from the discharge point in the direction of water flow on the water 
surface in both rainy and dry seasons. The samples were collected 
in triplicates at each sampling point to reduce error that may arise 
due to non-uniform distribution of the water properties. Sample 
management was strictly in line with standard procedures (APHA, 
1998). The concentrations of heavy metals in the water were 
determined by flame atomic absorption spectrophotometry using a 
SHIMADZU

®
 AA6800 Atomic Absorption Spectrophotometer 

according to APHA (1998) method. 
 
 

Measurement of the river velocity 
 

The velocity of the river was measured to enable the application of 
the model. To do this, two stainless steel rods were planted in the 
river at a distance of 1 m apart in the direction of water flow. 
Afterwards, a floating material was dropped on the water surface 
(using the upstream rod as starting point) and allowed to move with 
the river current towards the second rod downstream. The time 
taken for the floating material to move from the upstream rod to the 
downstream rod was recorded. This was repeated three times and 
the  average  velocity  of  the  river  was  deduced  by   dividing  the  
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Figure 1. The sampling locations (SW1, SW2, and SW3) along Marine-Base Waterfront of the Amadiama Creek, Port 
Harcourt in the Niger Delta province, Nigeria (Projection: GCS/WGS/1984; Datum: D/WGS/1984; Prime Meridian: 
Greenwich; Angular Unit: Degrees; Africa Shape File Source: ESRI™, CA, USA). 

 
 
 
distance covered by the floating material by the average time 
recorded. 
 
 
Modelling procedure 
 
In order to study the transport of the selected heavy metals in the 
contaminated waterfront, the simplified one-dimensional expression 
describing the processes in the movement of contaminants in water 
was applied. The simplified one-dimensional transport model for 
contaminants in water (Chawla and Singh, 2014; Patil and Chore, 
2014) is stated in Equation 1. 
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Where: C  Concentration of heavy metal (mg/l); k  
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contaminated water (g/l); v  Velocity of contaminated water 

(m/s); t  Time of contaminant transport (s); and x Distance 

along the direction of transport (m). 

Letting D
C

k

p




(longitudinal dispersion coefficient of 

contaminant in the river (m
2
/s)), then Equation 1 reduces to 

Equation 2. 
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Assuming steady state transport, where change in concentration 
with time is constant, Equation 2 reduces further to Equation 3. 
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Since concentration of contaminants was decreasing as distance 
away from the discharge point increases, concentration gradient 

dx

dC
would be negative; thus, equation 3 can be re-written as in 

Equation 4. 
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The solutions to equation 4 can be obtained by solving for m in the 
auxiliary Equation 5. 
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But for real and different roots, the solution of Equation 4 is as 
shown in Equation 10: 
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To obtain values for the constants, A and B, the following boundary 
conditions were applied:  
 

At oCCx  ;0 , and at 0;  Cx
 

 

Therefore, 0A                (11) 

 

And oCB                 (12) 

 
Substituting Equations 11 and 12 into Equation 10 gives Equation 
13. 
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 )              (13)   

             
Where, C0 is the concentration of the heavy metal at source of 
pollution. In the waterfront, the heavy metal is assumed to be a 
non-conservative contaminant, whose concentration follows a 
simple exponential function of the form shown in Equation 13. 
Therefore, Equation 13 becomes the model for predicting the 
concentration of the heavy metal at any distance in the range 0 to 

100 m in the contaminated waterfront. The ratio 
D

v
and C0 were 

determined by linearizing Equation 13 as shown in Equation 14. 

 

              (14) 
 
By regression, Equation 14 was fitted to the experimental dataset 
by plotting     against x and estimating the constant coefficient (α) 
and regression coefficient (β) in the estimated regression line of the 
form shown in Equation 15. 
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Where, α is equivalent to       and β is equivalent to –
D

v
; 

comparing Equations 14 and 15. The values of α and  β  were  then  

 
 
 
 
substituted into equation 13 and D was calculated for each of the 
selected heavy metals in both dry and rainy seasons using the 
values of v measured during the dry and rainy seasons, 
respectively.  
 
 

Testing the significance of β 
  

The significance of β was also tested to determine whether there is 
association between y and x in the manner assumed in Equation 
15. The β was considered to be significantly different from zero if 
the calculated Student-t value (tcal) is greater than the tabular 
Student-t value (ttab) with n‒2 degrees of freedom at 5% level of 
significance; and not significantly different from zero if otherwise. If 
β is significantly different from zero, then there is association 
between y and x in the manner assumed; otherwise, there is no 
association. The tcal was deduced using Equation 16. 
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With              (17) 
 

And                (18) 
 

Where,     
  is the residual sum of squares, b is the estimate of β, 

and n is the number of samples in the dataset (or number of pairs 
of x and y). 
 
 

Statistical evaluation of model quality 
 

Model validation was carried out by predicting the concentrations of 
the selected heavy metals using the developed model and 
comparing the experimental data with the model results. The 
prediction ability of the model developed was evaluated on the 
bases of the root-mean-square error (RMSE) (Equation 19) and 
corresponding coefficient of determination (r

2
) (Equation 20). 
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Where,           are the predicted and measured ith values 
respectively; and  ̅  and  ̅  are the predicted and measured mean 
values respectively. 

 
 

RESULTS AND DISCUSSION 
 

Concentrations of studied heavy metals in the urban 
waterfront 
 

Figure    2    shows   the   concentrations   and   seasonal 
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Figure 2. Seasonal variations in concentrations of (a) Mg, (b) Cd, and (c) Ni in the urban waterfront (Charts show error bars with 
standard error). 

 
 
 
variations of Mg, Cd, and Ni in the urban waterfront. The 
results showed that the concentrations of the heavy 
metals under study varied distinctly among sampling 
points and also between seasons. It can be observed in 
Figures 2a and 2b that the average concentrations of Mg 
(5.964 mg/L) and Cd (0.088 mg/L) were far too high 
compared with the World Health Organization (WHO, 
2008) permissible limits of 0.2 and 0.003 mg/L for Mg and 
Cd respectively. On the other hand, the average 
concentration of Ni (0.071 mg/L) (Figure 2c) was slightly 
higher than the WHO (2008) permissible limit of 0.07 
mg/L. The high Mg, Cd, and Ni levels observed in this 
study underscore the need for this study; and are a 
clarion call for researchers to start focusing on the 
prevalence of these heavy metals in waterfronts much 
the same way it is currently done for Cr and Pb. 
Moreover, consumption of contaminated sea food from 
the waterfront could lead to trophic transfer and bio-
magnification of these heavy metals in the food web, 
which could have ramifications for ecological health.  

The concentrations of Mg were higher in the dry 
season than in the rainy season at the three sampling 
points (Figure 2a) while the opposite trend was observed 
with Cd (Figure 2b). For Ni, its concentration was slightly 
higher in the rainy season at sampling point  SW1, but  at 

sampling points SW2 and SW3 there were no appreciable 
changes in its concentrations in both seasons. This 
seasonal variation in heavy metal levels may be as a 
result of the differences in the types of activities at the 
different sections of the waterfront. This variability in 
concentration of studied heavy metals due to season in 
the waterfront could also be attributed to mass action of 
the bulk fluid. The trends exhibited by the heavy metals in 
this study are corroborated by reports in previous studies 
that seasons have effect on pollutant variability in creeks 
(Onojake et al., 2017).  
 
 
Transport of studied heavy metals in the urban 
waterfront 
 
In Figure 3, the variations in concentrations of studied 
heavy metals with distance in the urban waterfront are 
presented. As it can be observed in Figure 3, the 
concentrations of the heavy metals generally decreased 
with distance across both seasons. It was also observed 
that the heavy metals (except Cd during the dry season 
(Figure 3b)) dispersed at a faster rate in the first 60 m 
than they did in the last 40 m in both seasons (Figure 3). 
This  decay pattern exhibited by the studied heavy metals  



76          Int. J. Water Res. Environ. Eng. 
 
 
 

 
 

Figure 3. Change in concentration with longitudinal distance for (a) Mg, (b) Cd, and (c) Ni in the urban waterfront. 

 
 
 
is typical of non-conservative contaminants (Kashefipour 
et al., 2006).  

Although the concentration of Mg decreased with 
distance (Figure 3a), the dry season residual 
concentration of 2.296 mg/L at 100 m from the source of 
pollution was still higher than the permissible WHO 
(2008) limit of 0.2 mg/L. However, the rainy season 
residual concentration of Mg (0.119 mg/L) at 100 m from 
the source of pollution (Figure 3a) was less than the 
WHO (2008) permissible value. This suggested that in 
the dry season Mg in the waterfront dispersed farther 
than 100 m from the origin; and Mg poisoning can still 
occur more than 100 m from the source of pollution. 
Similar trends in the seasonal variations of river 
contaminants have been reported by Edwin and Murtala 
(2013).  

Similarly, the concentrations of Cd decreased as the 
distance from the origin increased (Figure 3b). However, 
both the dry and rainy season residual concentrations of 
0.0095 and 0.021 mg/L respectively at 100 m from the 
pollution source were higher than the permissible WHO 
(2008) limit of 0.0.003 mg/L. This suggested that Cd in 
the waterfront dispersed farther than 100 m from the 
origin regardless of the season. As stated, unlike Mg, Cd 
concentrations measured during the rainy season were 
higher than those measured during the dry season. 
However, like Mg in the dry season, Cd poisoning beyond 

100 m from the source of pollution is inevitable all 
season. A similar observation has also been reported in 
previous studies including Onojake et al.  (2017) and 
Amic and Tadic (2018).  

Furthermore, like the other heavy metals, the 
concentration of Ni decreased with distance in the 
waterfront (Figure 3c). However, as can be observed in 
Figure 3c, Ni concentrations measured during the rainy 
season were only slightly higher than those measured 
during the dry season. The average concentrations of Ni 
remaining 100 m away from the source of pollution in 
both dry and rainy seasons were about 8-folds less than 
the permissible WHO (2008) limit of 0.07 mg/L. In both 
reasons, it is clear that Ni concentrations dropped to non-
lethal concentrations of about 0.06 mg/L at 20 m distance 
from the pollution source (Figure 3c). Even then, up to 
100 m from the origin, Ni did not decay completely; 
suggesting that other smaller organisms in the waterfront 
100 m away from the pollution source might still be at risk 
of Ni poisoning. 
 
 
Heavy metal‒regression models and longitudinal 
dispersion coefficients 
 
Figure 4 shows the plots of natural logarithm of metal 
concentration  against  longitudinal  distance   from  origin  
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Figure 4. Plots of InC vs. x for (a) Mg, (b) Cd, (c) Ni in the dry season and (d) Mg, (e) Cd, and (f) Ni in the rainy season. 

 
 
 
(for 0 ≤ × ≤ 100 m). The plots were used to determine the 
model parameters, α and β for the estimation of C0 and D 
(discussed shortly). As can be observed in Figure 4, the 
plots yielded non-zero negative β for all the studied heavy 
metals across the two seasons. By extension, this implies 
that the natural logarithm of the metal concentration is 
negatively linearly correlated with the longitudinal 
distance of travel from the origin. Thus, a positive change 
in the longitudinal distance is associated with a negative 
change in the natural logarithm of the metal 
concentration. Table 1 summarizes the calculation to test 
the significance of β. As shown in Table 1, for all the 
studied heavy metals in both seasons, there was no 
significant difference (tcal < ttab) between β and 0 at the 
5% significance level. This suggests that the relationship 
between concentration of the heavy metal and longitudinal 
distance from the origin in the polluted waterfront is not 
linear, which is in agreement with Figure 3. The models 
developed for prediction of Mg, Cd, and Ni in the studied 
waterfront in both dry  and  rainy  seasons  are  shown  in 

Table 2, which confirms an exponential instead of a linear 
relationship between concentration of the heavy metal 
and longitudinal distance. As stated, this agrees with the 
decay pattern of non-conservative contaminants in water 
bodies (Kashefipour et al., 2006).  

Furthermore, Table 2 shows the estimated longitudinal 
dispersion coefficients of the studied heavy metals across 
the two seasons. It is evident in Table 2 that Mg had the 
highest longitudinal dispersion coefficient during the dry 
season despite the higher mean velocity of the water 
body in the rainy season. It is well known that apart from 
mean velocity, other mixing characteristics of the water 
body can affect dispersion coefficient. The longitudinal 
dispersion coefficients shown in Table 2 indicate that Mg 
dispersed farthest in the waterfront during the dry season 
and least during the rainy season. This explains why in 
the dry season, relics of Mg as far as 100 m from the 
pollution source were extremely high compared with 
NESREA (2009) permissible limit; and during the rainy 
season,   the    remaining    concentration   at   the   same  



78          Int. J. Water Res. Environ. Eng. 
 
 
 

Table 1. Summary of calculation to test the significance of β. 
 

 Heavy metal 
t(cal) t(tab) 

Dry season Rainy season 5% 

Mg 2.15
 ns

 0.86 
ns

 2.26 

Cd 1.92
 ns

 1.47
 ns

 2.26 

Ni 1.83
 ns

 1.91
 ns

 2.26 
 

t(cal) = Calculated Student-t values, t(tab) = Tabular Student-t value,
 ns

, not significant at 5% 
significance level. 

 
 
 

Table 2. Heavy metal‒regression models and corresponding dispersion coefficients of studied heavy metals in the urban 
waterfront as estimated in this study. 
 

Heavy metal Season v (m/s) D (m
2
/s) Model 

Magnesium 
Dry 0.71 52.21                      

Rainy 0.77 20.87                      
     

Cadmium 
Dry 0.71 44.38                      

Rainy 0.77 38.31                      
     

Nickel 
Dry 0.71 41.28                      

Rainy 0.77 47.24                      
 

 
 
 
distance of 100 m was way less than the permissible limit 
(Figure 4). On the other hand, Ni had very close 
longitudinal dispersion coefficients in both seasons, 
which indicates that seasonal variation in the waterfront 
did not have much effect on the dispersion of Ni as it did 
for Mg and Cd. This also supports the close similarity 
observed in the decay curves for Ni in both seasons 
(Figure 4).  
 
 
Quality of heavy metal‒regression models 
 
Figure 5 shows the scatter plots of measured vs. 
predicted values of Mg, Cd, and Ni in the waterfront in 
both dry and rainy seasons. Typically, the plots show how 
the experimental and the model results are comparable. 
The error in model prediction, as indicated by the RMSE 
value, was highest for Mg in the rainy season (Figure 5d). 
For Cd and Ni, the prediction errors were very low in both 
seasons (Figure 5b, c, e, and f). Overall, it was observed 
that the RMSE values were higher during the rainy 
season than during dry season (Figure 5). This trend 
might be attributed more to the magnitude than frequency 
of the difference between the laboratory-measured and 
model-predicted concentrations of the heavy metal due to 
high model predictions. For instance, for Mg, there were 
five high model predictions in the dry season at 0, 10, 30, 
80, and 100 m respectively (Figure 5a), but only four 
were recorded in the rainy season  at  0, 10, 90,  and 100 

m respectively (Figure 5d). Regardless, the rainy season 
RMSE value for Mg prediction was almost one-and-half 
times higher than the dry season’s (Figure 5d and a, 
respectively). This is due largely to the relatively large 
difference (1.0233 mg/L) between the model-predicted 
(5.5113 mg/l) and laboratory-measured (4.488 mg/L) Mg 
concentrations particularly at the pollution source (that is, 
at x = 0) (Figure 5d). It is important to state that the error 
in the prediction of heavy metals in water bodies can be 
influenced by a number of factors including (but not 
limited to) the decay process (Kashefipour et al., 2006) 
and covariates like pH (Wu et al., 2005), electrical 
conductivity (Turner et al., 2002), and organic carbon 
(Sakultantimetha et al., 2009). Therefore, in this study, 
there was no attempt to study the influence of these 
factors on heavy metal prediction. 

The r
2
 was used to assess the ability of the model to 

predict the concentrations of the heavy metals in the 
linear regression system. The validation r

2
 obtained for 

the selected heavy metals in this study ranged from 0.98-
0.99 across the two seasons (Figure 5); suggesting that, 
on the average, 98.5% of the variance in the predicted 
dataset was explained by the linear regression line. This 
high validation r

2
 indicates that the model is a good fit for 

the experimental dataset. Previous studies have also 
reported good fits for measured data for Cd in river water 
(Wu et al., 2005; Wu, 2008; Kashefipour and Roshanfekr, 
2012). In a related study, Torres-Bejarano et al. (2019) 
reported high prediction of Cd, Pb,  and  Ni  in  river water  



Igoni et al.          79 
 
 
 

 
 

Figure 5. Scatter plots of measured vs. model-predicted values of (a) Mg, (b) Cd, (c) Ni in the dry season; and (d) 
Mg, (e) Cd, and (f) Ni in the rainy season at the waterfront. 

 
 
 
using two-dimensional water quality model they 
developed numerically. 
 
 
Conclusions 
 
In this study, the levels of Mg, Cd, and Ni in the polluted 
Marine-Base waterfront of Amadiama Creek in Port 
Harcourt Metropolis, Nigeria were estimated using one-
dimensional transport model in both dry and rainy 
seasons. Results obtained support the following 
conclusions: (1) the average concentrations of Mg (5.964 
mg/L), Cd (0.088 mg/L), and Ni (0.071 mg/L) in the 
waterfront in both dry and rainy  seasons  exceeded  both 

local and international regulatory values; (2) the 
concentrations of Mg and Cd in the waterfront were 
higher during the dry season; (3) magnesium dispersed 
farthest (longitudinal dispersion coefficient = 52.21 m

2
/s) 

during the dry season with relics of up to 2.296 mg/L and 
exceeding safe limit were observed 100 m from the 
pollution source; and (4) model validation showed 
reasonable prediction precision with RMSE ranging from 
0.0016-0.2254 mg/L) in the dry season, 0.0026-0.3259 
mg/L in the rainy season, and average validation r

2
 of 

0.985 in both seasons. These results show that the 
Marine-Base waterfront of Amadiama Creek in Port 
Harcourt Metropolis, Nigeria is highly polluted and the 
one-dimensional   transport   model  is  a   useful   tool  to  
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rapidly estimate the levels of Mg, Cd, and Ni in the 
waterfront for pollution control. Therefore, it is 
recommended that urgent remediation of the waterfront 
be carried to protect ecological health. 
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