
 

Vol. 11(1), pp. 1-8, January-June, 2021 

DOI: 10.5897/JBSA2020.0114 

Article Number: 88594DF66287 

ISSN 2141-2464 

Copyright © 2021 

Author(s) retain the copyright of this article 

http://www.academicjournals.org/JBSA 

 

 
Journal of Bioinformatics and Sequence 

Analysis 

 
 
 
 

Full Length Research Paper 

 

Genomic profiles of Pseudomonas aeruginosa gene 
clusters based on profile HMMs, reveal novel 

therapeutic targets for clinical intervention 
 

Michael Ambutsi1* and Patrick Okoth2 
 

1
Department of Biological Sciences, School of Natural Sciences [SONAS], Masinde Muliro University of Science and 

Technology, P. O. Box 190-50100 Kakamega, Kenya. 
2
Department of Biological Sciences, School of Natural Sciences [SONAS], Masinde Muliro University of Science and  

P. O. Box 190-50100 Kakamega, Technology, Kenya. 
 

Received 5 December 2020; Accepted 8 February, 2021 
 

Pseudomonas aeruginosa has developed antibiotic resistance, a major health concern worldwide, 
through different mechanisms including the formation of biofilms. Thus far, typing has been primarily 
assay based. However, the many sequences available from the US National Center for Biotechnology 
Information (NCBI) and the International Consortium of Pseudomonas Database (IPCD) offer alternative 
ways of characterizing the biofilm formation genes which would reveal novel therapeutic targets for 
intervention. The current study employed profile hidden Markov models (pHMMs) in the characterization 
of biofilm formation genes and identification of possible variations based on the different ecological 
niches occupied by strains of P. aeruginosa. Statistical analyses were performed in R (v. 3.1.3) to 
determine the significance of these variations. Validated pHMMs identified a total of 197 hits for the 13 
different ecological niches, with the human metagenomes recording 144 hits (73%) while the non-human 
metagenomes recorded 53 hits (27%). Human metagenomes had a significantly higher density of hits, 
with the abscess metagenomes indicating the highest density of hits. The overall result indicated a 
significant variation in density of hits between the different sites within the human metagenomes. This 
study successfully highlighted the significant value of already sequenced metagenomes in the 
identification of potential targets for novel therapeutic compounds. The profile hidden Markov model 
successfully identified 197 unique biofilm gene clusters emphasizing its importance in analyzing 
different sequenced pathogenic strains. The study recommends that experimental assays could be 
carried out to shed further light on the different biofilm formation gene clusters. 
 
Key words: Profile hidden Markov model, metagenomics, biofilm formation, antibiotic resistance. 

 
 
INTRODUCTION 
 
Conventional investigation of Pseudomonas aeruginosa 
biofilm  formation   genes  has  primarily  been  based  on 

biological assays such as the evolution assays. These 
assay-based  analyses  are  time  consuming   and  labor 

 
*Corresponding author. E-mail: ambutsim@gmail.com. Tel: +254706350662.   

  

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution 

License 4.0 International License 

http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US


2          J. Bioinform. Seq. Anal. 
 
 
 
intensive, and may give negative results if changes occur 
due to mutations in the biofilm formation genes (Gong et 
al., 2012). In the last few years P. aeruginosa sequences 
have become increasingly available, so that a database 
search and pair-wise comparisons are alternative ways of 
characterizing them. 

A previous study has indicated that pair-wise sequence 
identification of long alignments that are greater than 
40% are ideal for providing unambiguous results (Zheng 
et al., 2019). A different study indicated that a database 
search may not identify the relationship between the 
query and target sequences if the sequence identities of 
related proteins are less than 30% (Kirsip and Abroi, 
2019). The comparison performed for both these 
methods requires that a known reference strain is chosen 
for the analyses. To select an appropriate representative 
strain, one requires extensive biological knowledge of the 
protein family under study. The choices made at this 
point will inevitably affect the outcome of the downstream 
analyses.    

Rather than using all available biofilm formation gene 
sequences, the study chose sequence representatives 
for downstream analyses. The sequences were multiply 
aligned and their consensus used to build the 
probabilistic profile hidden Markov model (pHMM). Model 
construction was performed using the software package 
HMMER (Eddy, 2011). Profile HMMs have previously 
been used to molecularly detect viruses within 
metagenomic data, search for Cry proteins expressed by 
Bacillus spp. genomes and characterize the subtypes of 
HA gene (Gong et al., 2012; Skewes et al., 2014; 
Castillo-Esparza et al., 2019). 

A profile HMM is an ideal model to quantitatively 
assess how an individual sequence belongs to a profile 
given that it is both probabilistically and statistically 
intrinsic (Eddy, 2004, 2011). The Pfam database which 
comprises annotated protein families has relied heavily 
on profile HMMs in the characterization of such families. 
With this database, researchers can search for, 
characterize and classify members of these protein 
families (Sonnhammer et al., 1997). The current study 
explored the use of profile HMMs in revealing the 
variation and conservation patterns of biofilm formation 
genes in different strains of P. aeruginosa. All non-
redundant P. aeruginosa sequences were downloaded 
from the NCBI and IPCD databases for investigation. 
Custom python scripts were used to retrieve the biofilm 
formation gene sequences from representative strains of 
the opportunistic pathogen. We constructed individual 
models for the 13 biofilm formation genes that were 
retrieved by the custom python scripts. This made it 
possible to construct gene-specific profiles and evaluate 
how different strain sequences fitted into the specific 
profiles to provide an overview of how the genes are 
distributed in the pathogen strains occupying different 
ecological niches. These analyses provided insights into 
the relationship between the biofilm formation genes  and  

 
 
 
 
pathogens occupying specific ecological niches. 
 
 
MATERIALS AND METHODS 
 
Identifying protein family of interest 
 
The construction of profile hidden Markov models was based on 
multiple sequence alignments of DNA or proteins sequences from 
the same functional family. The pHMM was used to represent the 
patterns, motifs along with other statistical properties of the 
alignments. Before the actual construction was performed the 
protein family of interest under investigation was selected. The 
criteria identified by Henikoff et al. (1997) were used to identify the 
protein family of interests. In this case the protein family of interest 
represented a set of genes performing similar functions in different 
strains of P. aeruginosa, the pathogen under study. 

 
 
Selecting sequences representative of this family 
 
With a protein family of interest identified, representative sequences 
from these sequences were selected for model construction. 
Purposive sampling of sequences initially retrieved from the custom 
python scripts was performed in this case to ensure that the 
selected sequences provide the most informative findings in the 
downstream analyses. A 40% sequence similarity threshold was 
chosen as suggested by a previous study which indicated that long 
alignments greater than 40% are ideal for providing unambiguous 
results (Zheng et al., 2019). Sequence files with similarity identities 
less than 40% were excluded from the downstream analyses.  

 
 
Building multiple sequence alignment 
 
To create a pHMM of each of the classes of biofilm formation 
genes, a global multiple sequence alignment was generated using 
MUSCLE (v.3.8.31) (Edgar, 2004). The MUSCLE algorithm used for 
these analyses is available in the UGENE platform (Okonechnikov 
et al., 2012). The study used the default values for the gap open 
penalty (54.00), gap extension penalty (8.00), and terminate gap 
penalty (4.00). These gap penalties were used to control the 
positions of the conserved regions within the alignment. The 
consensus sequence from these global alignments informed the 
construction of the specific profile hidden Markov model.  

 
 
Building of profile HMM 
 
From the multiple sequence alignments, the HMMER3 toolkit 
available on the UGENE software was used to construct profile 
Hidden Markov Models (pHMMs) for the different classes of biofilm 
formation genes for analyses of genomes of P. aeruginosa strains 
(4). For each of the twelve biofilm formation genes, the study 
created a profile HMM. The hmmbuild algorithm within the 
HMMER3 tool (v 3.1b1) in the UGENE software was used to create 
a suitable profile HMM from the MSA aligned-FASTA file 
(http://hmmer.janelia.org). The algorithm generated a hmm file 
containing a consensus sequence for the biofilm formation genes in 
P. aeruginosa.  The HMMER3 platform was accelerated by the 
Multiple Segment Viterbi (MSV) algorithm that is implemented in the 
software package (Eddy, 2011). 

The study chose different threshold values for estimation of the 
conserved regions to facilitate different simulations of the database 
search. These simulations were performed to give credence to the 
sensitivity  of  the  models   which  previous  studies  have  shown is  



 
 
 
 
Table 1. Controls used in the validation of the profile HMM. 

 

Organism Accession number 

Pseudomonas aeruginosa PA01 NC_002516 

Bat Adenovirus 2 NC_015932 

Gyrovirus 4 NC_018401 

Duck circovirus NC_007220 

Domestic cat hepadnavirus NC_040719 

 
 
 
more important than the model’s specificity. The accurate models 
can efficiently detect protein family members even when they fail to 
identify ineffective residues. 
 
 

Validation of profile HMM (select positive and negative 
controls)  
 

Using the hmmer search algorithm on UGENE, sequences used to 
construct the model were searched for as positive controls. 
Sequences of unrelated microorganisms (Table 1) were also 
searched for as negative controls. The presence of signals for the 
positive control search and lack of signals for the negative control 
search demonstrated the efficiency in the prediction by the 
constructed models. The controls were also screened using a 
traditional BLASTn with the algC phosphomannomutase as the 
driver sequence (GenBank accession number NC_002516.2) to 
compare the sensitivity and specificity of each approach. The 
visualization of the constructed pHMM was performed using the 
HMM visual editor (HMMVE_1.2). 
 
 

Target sequence translation 
 

The study created a python script to translate the nucleotide 
sequences of P. aeruginosa into protein sequences to facilitate the 
comparison with the constructed protein profile HMMs. The 
constructed python script used the standard genetic code to 
translate nucleotide sequences in six frames. 
 
 
Screening the selected database 
 

The study used the HMMER3 hmmsearch tool with default 
parameters to search for the biofilm formation profile HMM against 
sequences of P. aeruginosa drawn from different ecological niches 
as listed in Table 2. A significance cutoff of E ≤ 1 × 10-5 was chosen 
for the search by the profile HMMs. A traditional BlastP was 
performed on the pathogen’s sequence as an additional 
comparison of performance. 
 
 

Statistical analyses 
 

Statistical analyses were performed in R (v. 3.1.3) (R Core Team, 
2015). 

 
 

RESULTS AND DISCUSSION 
 

Homologous genes with highly similar functions are often 
classified as gene families. For this study, genes 
responsible for biofilm formation in different strains of P. 
aeruginosa were identified and selected as the protein 
family of interest. Using the criteria identified  by  Henikoff 
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Table 2. Statistics of Pseudomonas aeruginosa sequences 
analyzed and their respective ecological niches. 
 

Ecological niche Analyzed sequences 

Abscess 2 

Blood 15 

Bronchial 6 

Cell culture 4 

Clinical 10 

Dental 1 

Environment 8 

Eye 2 

Lung 1 

Sputum 26 

Trachea aspirates 5 

Urine 7 

Wound 9 

Total 96 

 
 
 
et al. (1997), the study classified these set of genes into a 
family of related sequences. These genes were then 
used to inform the construction and validation of the 
profile hidden Markov models. 12 sequence files were 
created by custom python scripts and selected for the 
downstream analyses as they contained sequences from 
different strains of the ubiquitous pathogen. Each of 
these sequences represented a single biofilm formation 
gene containing 43 records of P. aeruginosa sequences. 
Gong et al. previously reported that the choice of 
representative sequences of a protein family of interest 
inevitably affects the outcomes of downstream analyses 
performed on these set of sequences (Gong et al., 2012). 
An extensive biological knowledge of the protein family 
under study is necessary for one to make an informed 
decision. The study relied on the previous analyses to 
make a judgment of the sequence homology. Each of the 
biofilm formation gene sequences indicated a sequence 
similarity of 40% and above as recommended in previous 
studies (Zheng et al., 2019). Homologous sequence files 
were preferred in this case as they would contain 
patterns and motifs which could be identified by the 
pHMMs and used to analyze different strains of P. 
aeruginosa. The amino acid sequences were also 
preferred given that they provided adequate information 
that could be modelled in a pHMM. The study 
successfully created 12 pHMMs from the sequences 
retrieved using the python scripts. A representative 
section of one pHMM is shown in Figure 1. 
 
 
Validation of the profile hidden Markov model 
 
The ability of the developed profile HMM to detect biofilm 
formation genes was analyzed using the positive and 
negative  controls   listed   in  Table  3. The  reference  P. 
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Figure 1. A representative profile HMM indicating the architecture of the constructed models. The different shapes indicate states while 
the arrows indicate state transitions. The ‘S’ represents the start position of the model. The ‘N’ represents the null model that the HMMER 
algorithm constructed first before creating the rest of the representative model. The ‘M’ (squares) represents the match states which 
indicate the frequencies of the most probable amino acid in those different locations. The ‘D’ (circles) represents the delete states while 
the ‘I’ (diamonds) represents the insert states.  

 
 
 

Table 3. Comparison of the pHMM hits of the 12 biofilm formation genes across the 13 ecological niches. 
 

Niche algD algU pslJ arnB gshB htpG psl pslE pslG rsaL gshA fliC 

Abscess 2 0 2 0 0 0 0 2 2 2 1 1 

Blood 10 5 2 1 0 9 4 3 4 3 3 0 

Bronchial 4 0 0 0 0 0 1 0 0 2 3 0 

cell culture 2 1 1 1 0 1 2 1 1 3 0 1 

Clinical 7 1 0 1 0 1 3 0 0 4 2 0 

Dental 1 0 0 0 0 0 0 0 0 0 0 0 

environment 7 2 1 0 1 2 1 1 1 1 2 1 

Eye 1 1 0 0 1 0 1 0 0 0 0 0 

Lung 0 0 0 0 0 0 0 0 0 0 1 0 

Sputum 5 3 1 1 0 0 6 1 1 9 8 1 

Trachea 1 0 0 0 0 0 2 0 0 1 4 0 

Urine 1 0 0 0 0 0 6 0 0 4 1 0 

Wound 3 0 1 0 0 0 3 1 1 2 5 0 
 
 
 

aeruginosa PA01 was chosen as the positive control. All 
the constructed pHMMs correctly identified different 
biofilm formation genes in the positive control. The 
negative   controls   were   chosen  because  they  are  of 

different species and do not exhibit biofilm formation as 
one of their survival mechanisms. When searched against 
the four negative controls, the 12 biofilm formation 
pHMMs returned no false positives.  
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Table 4. Distribution of the density of pHMM hits (hits/MB) across the different ecological niches. 
 

Niche algDM algUM PslJM arnBM gshBM htpGM pslM pslEM pslGM rsaLM gshAM fliCM 

abscess 1.52E-04 0 1.52E-04 0 0 0 0 1.52E-04 1.52E-04 1.52E-04 7.60E-05 7.60E-05 

Blood 9.69E-05 4.85E-05 1.94E-05 9.69E-06 0 8.72E-05 3.88E-05 2.91E-05 3.88E-05 2.91E-05 2.91E-05 0 

Bronchial 9.77E-05 0 0 0 0 0 2.44E-05 0 0 4.88E-05 7.33E-05 0 

cell culture 7.95E-05 3.98E-05 3.98E-05 3.98E-05 0 3.98E-05 7.95E-05 3.98E-05 3.98E-05 1.19E-04 0.00E+00 3.98E-05 

clinical 1.06E-04 1.52E-05 0.00E+00 1.52E-05 0 1.52E-05 4.56E-05 0.00E+00 0.00E+00 6.09E-05 3.04E-05 0 

Dental 1.44E-04 0.00E+00 0.00E+00 0.00E+00 0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0 

Environment 1.32E-04 3.79E-05 1.89E-05 0.00E+00 1.89E-05 3.79E-05 1.89E-05 1.89E-05 1.89E-05 1.89E-05 3.79E-05 1.89E-05 

Eye 7.29E-05 7.29E-05 0.00E+00 0.00E+00 7.29E-05 0.00E+00 7.29E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0 

lung 0 0.00E+00 0.00E+00 0.00E+00 0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.45E-05 0 

sputum 2.85E-05 1.71E-05 5.69E-06 5.69E-06 0 0.00E+00 3.42E-05 5.69E-06 5.69E-06 5.12E-05 4.56E-05 5.69E-06 

trachea 2.88E-05 0.00E+00 0.00E+00 0.00E+00 0 0.00E+00 5.75E-05 0.00E+00 0.00E+00 2.88E-05 1.15E-05 0 

urine 2.13E-05 0.00E+00 0.00E+00 0.00E+00 0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.51E-05 2.13E-05 0 

wound 4.85E-05 0.00E+00 1.62E-05 0.00E+00 0 0.00E+00 4.85E-05 1.62E-05 1.62E-05 3.24E-05 8.09E-05 0 
 
 
 

Screening the selected database 
 
A search performed by the developed profile 
HMM against the P. aeruginosa sequences 
identified a total of 197 hits for the 13 different 
ecological niches as indicated in Table 3. Of the 
197 hits, 144 hits (73%) belonged to the human 
samples while 53 hits (27%) belonged to the 
nonhuman samples. 38% of the human sample 
hits were recorded from ecological niches that 
were respiratory in nature. 62% of the hits were 
associated with non-respiratory niches within the 
human host. Overall, the blood ecological niche 
recorded the highest number of hits (44) while the 
lung and dental niches had the fewest number of 
hits (1 each).  

The study sought to put these results into 
context and identified the density of the hits which 
represented the hit per Megabases as indicated in 
Table 4. Figure 2 indicates the distribution of the 
density of hits per ecological niche. In this case, 
the abscess ecological niche had the highest 
density  of   hits  while  the  dental  niche  had  the 

lowest density of hits. Figure 3 compares the 
density of hits between the human and non-
human samples (environmental samples). Strains 
of the ubiquitous pathogen from human samples 
had a significantly higher density of hits compared 
to the strains from non-human samples. The only 
different observation was indicated in the density 
of hits for the arnB gene where the nonhuman 
samples had a significantly higher density of hits 
compared to their human sample counterparts. 
Previous studies have indicated that biofilm 
formation is promoted in P. aeruginosa strains 
with a loss in function mutation in the arnB gene 
(Segev-Zarko et al., 2018). This could inform the 
higher density of genes among environmental 
samples as the human-isolated strains are less 
likely to habour and express the arnB gene as 
they look to form biofilms. The overall results also 
indicated a significant variation in density of hits 
between the different sites within the human 
metagenomes. This pattern was also reflected in 
four of the respiratory subsites, namely bronchial, 
lung, sputum and trachea. The lung metagenomes 

had the lowest biofilm formation gene density and 
exhibited significantly lower densities than all the 
other ecological niches. 

With regards to the biofilm formation genes, the 
algD gene had the highest number of hits and 
highest density of hits compared to the models of 
the other biofilm formation genes as indicated in 
both Figures 2 and 3. This result was consistent 
with previous reports which indicated higher 
prevalence of the algD gene among P. aeruginosa 
isolates from different infections within its host 
(Valadbeigi et al., 2017). This gene has also been 
associated with prevalence of multi-drug 
resistance to different classes of antibiotics 
(Ghadaksaz et al., 2015). The gene’s influence on 
persisting infections could be the reason behind 
its high prevalence in the sequences analyzed 
during the present study. Wilcoxon rank test 
indicated significant results for the htpG gene 
model which had a p-value of 0.01736 with a rank 
test value of 3. 

The study used profile HMM analyses to in-
corporate information concerning the conservation
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Figure 2. Comparison of biofilm formation genes by ecological niche reported by the profile Hidden Markov Models. The abscess 
ecological niche had a significantly high density of hits compared to the other ecological niches. 

 
 
 

 
 

Figure 3. Comparison of biofilm formation genes between human and non-human strains reported by the 
profile Hidden Markov Models. The human strains had a significantly high density of hits compared to the non-
human strains. 



 
 
 
 
of different residues. Analyses from the constructed 
profiles of biofilm formation genes would be used to 
detect homologies and structural similarities between the 
sequence families of P. aeruginosa. From the multiple 
sequence alignments, the profile method built position-
specific models to represent the conserved regions in the 
alignments. This approach has been previously applied in 
identifying putative applications of hidden Markov models 
in the analyses of biological sequence (Yoon, 2009). The 
state sequence, which in this case was a biologically 
meaningful alignment, was probabilistically inferred from 
the observed symbol sequence rather than simply being 
determined from the observed symbol sequence. 

The parameters of the gene-specific models were set 
from the pre-aligned (pre-labeled) sequences. In this 
case the study assumed that the state paths were 
already known given that the multiple sequence 
alignments had been optimized. Previous studies have 
classified this approach as an optimal method of 
constructing and parameterizing profile HMMs 
(Bernardes et al., 2007). The model converted both the 
state transitions and observed counts of symbol 
emissions into the transition and emission probabilities, 
respectively. These probabilities were based on the 
initially set transition and emission probabilities 
standards.  

The study used the Forward algorithms to score and 
optimize the gene-specific pHMMs. Eddy (2011) 
incorporated such Forward algorithms in the development 
of the HMMER3 package, an accelerated pHMM 
construction pipeline. Alignments from the previous steps 
were used as input for building the profile HMMs. Building 
HMMs from multiple alignments was preferred in this 
case as the training algorithms (local optimizers) are 
suitable for less complex HMMs. With a less complex 
parameter space, there was little chance that the 
spurious local optima would trap the training algorithm. 
Given that the study was constructing profile hidden 
Markov models, the probability parameters were 
converted to additive log-odds scores. These log-odds 
scores were later used to score a query sequence once it 
is aligned against the constructed model. The profile 
HMM was preferred given that it is a well formulated 
probability model for representing similarity patterns 
within sequence families. These models also provide a 
precise method to search sequence databases using 
aligned sequences (Ahola et al., 2003). For better 
accuracy of the database search using the pHMM, the 
study employed the efficient emission probability (EEP) 
estimation method to construct the gene-specific pHMMs. 
This estimation method ensured that the overfitting 
problem was overcome as signal was separated from the 
noise in conserved positions of the alignments, and 
reduced the parameter space as a result. The EEP 
method was preferred to the maximum likelihood 
estimation method for its better accuracy as indicated by 
a  study   conducted   by   Eddy  (2011).  The  confidence  
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intervals of representative emission probabilities were 
calculated to determine the effectiveness of the EEP 
estimation method. Shorter confidence intervals indicated 
that the model had an improved prediction power.  

On screening the retrieved sequences of P. aeruginosa 
from different ecological niches, the study identified a 
significant number of hits for most of the ecological 
niches apart from the lung and dental ecological niches. 
These results give more credence to the importance of 
biofilm formation for the survival of the ubiquitous in 
different environments. Human niches also indicated a 
significantly higher number and density of hits compared 
to the non-human niches. Our study concluded that P. 
aeruginosa is more likely to form biofilms that increase its 
chances of survival once it colonizes the human host. 
This finding is consistent with previous studies which 
have correctly indicated that biofilm formation significantly 
contributes to the antibiotic resistance ability of this 
pathogen resulting in chronic illnesses for susceptible 
patients (Olsen, 2015). 

The algD gene, previously described as a component 
of the alignate operon, demonstrated the highest number 
of hits compared to the other biofilm formation genes. 
Alignate biosynthesis, modification and export is 
important to chronic P. aeruginosa as these processes 
contribute significantly to antibiotic resistance and 
opsonization, resulting in highly potent pathogens 
(Okkotsu et al., 2014). The significantly higher number of 
hits indicates an insistent need by the pathogen to 
express the algD gene. Antibiofilm therapies could be 
introduced to target the algD gene and impair alignate 
biosynthesis. Such therapeutic agents could limit the 
pathogens ability to persist when it causes infections. A 
clear understanding of the expression and mutation 
habits of this gene could prove worthwhile in the bid of 
developing novel treatment options against pathogenic 
strains of P. aeruginosa. 
 
 

Conclusion 
 

Across the human and non-human metagemones 
examined, this study successfully identified 197 unique 
biofilm formation gene clusters using the profile hidden 
Markov model, further highlighting the tremendous value 
of already sequenced metagenomes in identifying 
potential targets for novel therapeutic compounds. Given 
that the study was performed entirely in silico, 
experimental assays can be carried out on the different 
biofilm formation gene clusters to identify and characterize 
gene clusters that can be targeted to modulate chronic 
infections arising from pathogenic strains of P. 
aeruginosa.  
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