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Most positions of the human genome are typically invariant (99%) and only some positions (1%) are 
commonly invariant which are associated with complex genetic diseases. Haplotype information has 
become increasingly important in analyzing fine-scale molecular genetics data, due to the mutated 
form in human genome. Haplotype assembly is to divide aligned single nucleotide polymorphism 
(SNP) fragments, which is the most frequent form of difference to address genetic diseases, into two 
classes, and thus inferring a pair of haplotypes from them. Minimum error correction (MEC) is an 
important model for this problem but only effective when the error rate of the fragments is low. MEC/GI 
as an extension to MEC, employs the related genotype information besides the SNP fragments and so 
results in a more accurate inference. The haplotyping problem, due to its NP-hardness, may have no 
efficient algorithm for exact solution. In this paper, we focus to design serial and parallel classifiers 
with two classifiers. Genetic algorithm and K-means were two components of our approaches. This 
combination helps us to cover the single classifier’s weaknesses. 
 
Key words: Multiple classifier systems, parallel classifiers, serial classifiers, haplotype, SNP fragments, 
genotype information, classification, reconstruction rate. 

 
 
INTRODUCTION 

 
The availability of complete genome sequence for 
human beings (Venter, 2001) makes it possible to 
investigate genetic differences and to associate genetic 
variations with complex diseases (Zhang, 2006). It is 
generally accepted that all human share about 99% 
identity at the deoxyribonucleic acid (DNA) level and only 
some regions of differences in DNA sequences are 
responsible for genetic diseases (Terwilliger et al., 1998; 
Chakravarti, 1998). Single nucleotide polymorphisms  
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(SNPs), a single DNA base varying from one individual 
to another, are believed to be the most frequent form 
responsible for genetic differences (Wang, 2005) and are 
found approximately every 1000 base pairs in the human 
genome and turn to be promising tools for doing disease 
association study. Every nucleotide in an single 
nucleotide polymorphisms site is called an allele. Most 
SNPs have two different alleles, known here as 'A' and 
'B'. The SNP sequence information on each copy of a 
pair of chromosomes in a diploid genome is called a 
haplotype which is a string over {'A', 'B'}. A genotype is 
the conflated information of a pair of haplotypes on 
homologous chromosomes. Although haplotypes have 
more information for disease association than individual 
SNPs and also more than genotype information, but it is 
substantially more difficult to determine haplotypes than 
to determine genotypes or individual single nucleotide 
polymorphisms through experiments. Hence, compu-
tational methods that can reduce the cost of determining 
haplotypes become attractive alternatives. Hole and error 
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consist in SNP fragments. 
One question arising from this discussion is how the 
distribution of holes and error in the input data affects 
computational complexity. Minimum error correction 
(MEC), longest haplotype reconstruction (LHR), 
minimum error correction with genotype information 
(MEC/GI) and some other models have been discussed 
for haplotype assembly (Terwilliger, 1998; Chakravarti, 
1998; Wang, 2005, 2007; Zhang, 2006, 2007). MEC and 
also MEC/GI are two standard models for haplotype 
reconstruction based on SNP fragments and genotype 
information as an input data to infer the best pair of 
haplotypes with the minimum error to be corrected. It is 
proved that MEC is a NP-hard problem (Bonizzoni, 2003; 
Zhang, 2006), so heuristic methods are used to reduce 
running time of this problem (Moeinzadeh et al., 2007). 
This problem was solved by some classification and 
heuristic methods. Zhang (2007) introduces a 
classification algorithm based on two distances 
(Hamming and a proposed distance) to compare SNP 
fragments together. An algorithm was implemented to 
solve MEC model (Zhang, 2007). Real and simulation 
data sets are available as two standard databases. The 
input in these databases contains an error rate between 
10 and 40%. The method by Zhang (2007) is based on 
K-means algorithm. Although the result and algorithm’s 
running time were acceptable, it is widely believed that 
K-means does not work well for noisy inputs. Solving 
MEC and MEC/GI models for haplotype assembly with 
genetic algorithm (GA) was published by Wang (2005) 
and Zhang (2006). The results in haplotyping were not 
only better than K-means but also it takes more 
execution time. On the other hand, GA has an adaptive 
behavior in terms of error rate and it approximately 
guarantees not to get stuck local minima. A variety of 
approaches that each of them might have its own 
strengths and weaknesses made us to combine the 
classifier’s results. 
We use information fusion techniques to improve our 
results. These techniques are information processes 
dealing with the association, correlation, and combination 
of data and information from single and multiple 
classifiers or sources to achieve refined estimation of 
parameters, characteristics, events, and behaviors. This 
approach is used to improve the result of the mentioned 
problem. 
In this paper, we design serial and parallel classifiers. 
Utilizing multiple classifiers would help us to increase 
reconstruction rate (RR), which is described in the 
following sections, and also using error rate for the first 
time. In our research, we concentrate on K-means and 
GA properties and use them together. K.G (K-
means.GA), G.K (GA.K-means) as two serial classifiers 
was implemented. In these two approaches, first 
classifier’s answers and main input are fused to form the 
second classifier’s inputs. We also implement K.G.K and 
G.K.G to study the results. In parallel classification, result  

 
  
 
 

 
 
Figure 1. Classification of the SNP fragments. 
 
 
 
combiner,  as  an  information  fusion  function,  was  the 

 
 
Formulation and problem definition 

 
Suppose that there are m SNP fragments from a pair of 
chromosomes, corresponding to two haplotypes with the 
length of n, defined ( `ijmM = ) as a matrix of  SNP 

fragments, whose every entry ijm  has value ‘A’, ‘B’ or ‘-’ 

(‘-’ is missing or skipped SNP site which is called gap). 
Each row of the matrix M is one SNP fragment and each 
column corresponds to one SNP site. The length of SNP 
fragments including their gaps is the same as its own 
haplotype. We use partition P (C1, C2), class C1 and 
class C2, to formulate the problem. P as an exact 
algorithm or classification method divides SNP 
fragments into two classes, C1 and C2. The SNP 
fragments in each class must combine with their own 
class members to reconstruct the haplotypes. We call 
this operation voting and define it completely in the 
following parts (Figure 1). Each genotype is the 
conflation of two haplotypes, depending on their sites. 
We define genotype as a string of ‘A’, ‘B’ and ‘-’. ‘A’ (‘B’) 
denotes that both haplotypes are the ‘A’ (‘B’) and ‘-‘when 
they are heterozygous. Reconstruction rate (shortly RR) 
is a very simple and popular way for comparing the 
results of designed algorithms in existing databases with 
each other. RR which is based on Hamming distance is 
the degree of similarity between the original haplotypes 

( ),( 21 hhh= ) and the reconstructed ones ( ),( 21 hhh ′′=′ ). It is 

defined as: 
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And also Hamming distance is based on the distance 
between two SNP fragments which we call it ),( yxd , and 

which is in turn, defined by the following formula: 



 
 
 
 

 
 

Figure 2. Parallel classifier. 
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And the usage of a second distance becomes necessary 
when the hamming distance between one and two other 
fragments are equal, which is defined as follows:  
 

 









−≠≠+

−≠=−

=′

′=′ ∑
=

otherwise

mm

mm

mmd

mmdmmD

kjij

kjij

kjij

n

j

kjijkimm

0

)(1

)(1

),(

,),(),(
1

 
 
In this paper, we study MEC (Minimum Error Correction) 
model. In this model, a matrix of SNP fragments is 
available as an input. We try to decrease the number of 
haplotype errors in comparison with corresponding real 
haplotypes. For doing so, all the aforementioned 
algorithms in MEC/GI (Minimum error correction with 
genotype information) model were implemented. 
 
 
METHODOLOGY 

 
Haplotypes assembly is considered as a multiple classifier system (MCS) 
which consists of a set of individual classifiers like genetic algorithm (GA) 
and K-means. For this system, we define a fusion or selection method to 
combine simple classifiers outputs and make the final decision. 

 
 { ( ), ( ),..., ( )}MCS W H W E W C=  
 
In this paper, we try to design special composition of classifiers based  
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on our problem models. In the following section, some serial and 
parallel designs are explained. 
 
 
Serial classifiers 

 
A serial classifier has two main components; classifiers and 
information fusion function. In our problem model, information fusion 
functions are designed based on classifiers properties. In the following 
section, we describe our serial classifier methods.  
 
 

K-means – GA 
 

Good initial population can greatly affect the results of genetic 
algorithm. Our first approach is based on classification SNP 
fragments by K-means to generate an individual with acceptable 
fitness. The result of K-means is used for generating initial population 
for genetic algorithm. The initial population of GA is consisted of K-
means answers combined with a predetermined error rate in input and 
also random individuals to escape from local minima. Genetic 
algorithm starts to optimize the result of the K-means method. For 
generating the initial population, we used error information. This 
combination produces good initial population. The algorithm for MEC 
(the changes needed for MEC/GI model) is shown in Algorithm 1. The 
results of this algorithm are discussed in experimental results section.  
 
 

GA - K-means 

 

For serial MCS information fusion techniques, K-means properties 
were the center of attention. In haplotype assembly problem, K-means 
heuristic method needs two centers to start classification procedure. 
So good initial centers can help the algorithm to converge to better 
results. In our approach, genetic algorithm was used to find these 
centers and K-means tries to change the results location towards the 
real centers. The GA- K-means designed algorithm for MEC model is 
shown in Figure 2. Here, we designed an algorithm for MEC/GI model 
with the same fusion function along with some modifications. It was 
predictable that the result of GA- K-means would be better than the 
results obtained by applying them individually (Tables 1 and 2).  
 
 

KGK and GKG  
 

We defined two different information fusion functions in the last two 
sections (K-means to GA (KG) and GA to K-means (GK). In the same 
manner, two more algorithms were designed (KGK and GKG) and 
also their result is discussed in experimental results section (Algorithm 
2).  
 
 

Parallel classifier 
 

Using a single classifier and designing efficient algorithms were not 
enough to solve MEC and MEC/GI models. The best classifiers are 
not necessarily the ideal choice in this problem due to noisy and 
incomplete inputs, so we implement parallel classifier (Figure 3).  
 
 

K-means and GA  

 
A parallel classifier is proposed which combines K-means and GA. 
Information fusion combiner function decides according to the majority 
of classifier decisions. Information fusion function was designed based 
on ignoring noisy input data. Here is the function: 
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Table 1. The comparison of reconstruction rate of multiple classifiers algorithms for MEC model. 

 

Daly database –MEC model 

Gap rate 
Error 

rate 

Single classifier Serial classifier Parallel classifier 

K-Means(k) G.A. (G) K.G G.K G.K.G K.G.K G.K.G and K.G.K 

0.25 0.1 0.999 1.000 1.000 0.999 1.000 0.999 0.997 

 0.2 0.993 0.993 0.993 0.994 0.994 0.994 0.989 

 0.3 0.931 0.933 0.933 0.920 0.929 0.932 0.875 

 0.4 0.716 0.718 0.718 0.712 0.713 0.717 0.696 

0.5 0.1 0.998 0.998 0.998 0.997 0.997 0.998 0.995 

 0.2 0.972 0.973 0.973 0.994 0.973 0.975 0.972 

 0.3 0.861 0.869 0.869 0.867 0.868 0.869 0.819 

 0.4 0.691 0.694 0.694 0.689 0.690 0.690 0.677 

0.75 0.1 0.977 0.977 0.977 0.978 0.976 0.978 0.978 

 0.2 0.896 0.898 0.898 0.889 0.892 0.901 0.897 

 0.3 0.772 0.774 0.774 0.770 0.765 0.768 0.762 

 0.4 0.663 0.665 0.665 0.660 0.653 0.661 0.678 

 
 
 

Table 2. The comparison of reconstruction rate of multiple classifiers algorithms for MEC/GI model. 
 

  

Daly database –MEC model 

Gap rate 
Error  

rate 

Single classifier 
Serial 

classifier 
Parallel classifier 

K-Means(k) G.A. (G) K.G G.K G.K.G K.G.K G.K.G and K.G.K 

0.25 0.1 1.000 1.000 
1.00

0 
1.00

0 
1.000 1.000 0.924 

 0.2 0.999 0.999 
0.99

9 
1.00

0 
1.000 1.000 0.928 

 0.3 0.993 0.974 
0.99

3 
0.99

4 
0.994 0.992 0.925 

 0.4 0.904 0.897 
0.90

8 
0.89

6 
0.903 0.896 0.894 

0.5 0.1 1.000 0.999 
1.00

0 
1.00

0 
1.000 1.000 0.934 

 0.2 0.999 0.993 
0.99

9 
0.99

9 
1.000 0.999 0.926 

 0.3 0.972 0.956 
0.97

7 
0.97

5 
0.978 0.977 0.926 

 0.4 0.881 0.882 
0.88

4 
0.88

1 
0.882 0.884 0.876 

0.75 0.1 0.998 0.992 
0.99

8 
0.99

8 
0.998 0. 997 0.925 

 0.2 0.977 0.973 
0.98

1 
0.97

8 
0.983 0.980 0.928 

 0.3 0.914 0.901 
0.92

5 
0.90

7 
0.921 0.915 0.898 

 0.4 0.872 0.869 
0.87

1 
0.86

8 
0.873 0.870 0.875 
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Figure 3. Serial classifier. 
 
 
 

Table 3. Information fusion for parallel classifier. 
 

SNP F. 1
st

 classifier 2
nd

 classifier 
Parallel fusion 

function 

1 Class 1 Class 1 Class 1 

2 Class 1 Class 2 Eliminated 

3 Class 2 Class 2 Class 2 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

n Class 2 Class 1 Eliminated 
 
 
 

For example, as can be seen in Table 3, some haplotypes (which 
might be useful for reconstruction of final haplotypes) are eliminated. 
The explanation behind this is to eliminate those noisy haplotypes, on 
which the two classifiers decisions do not match. So Algorithm 3 was 
designed. The results of this multiple parallel classifier were worse 
than serial ones due to probable elimination of some useful 
haplotypes. To modify the fusion function to avoid elimination of 
haplotypes, we must increase the number of different classifiers. It is 
predictable that if other classifiers be added to our MCS, a new fusion 
function be designed with three or more classifiers, we can improve 
the results. By doing this, a more number of haplotypes are kept and 
this can lead us to better results. 
 
 
EXPERIMENTAL RESULTS 
 
There are real biological datasets and also simulation 
datasets available for haplotyping problem like ACE, 
DALY, SIM0 and SIM50. We chose DALY dataset which 
includes 4 different subsets. Each subset has a different 
error rate (10, 20, 30 and 40%) and includes 384 
different test cases. The results of the experiments on 
DALY set for MEC model, is shown in Table 1. In Figures 
4a, b and c, the comparison of result methodology is 
focused in each model. Also we implemented all 
algorithms for MEC/GI model and the results are shown 
in Table 2 and methods are compared in Figure 4d, e 
and f. 
 
 
Conclusion 
 
In this paper, we focus on MCS (multiple classifier system)  

to solve MEC and MEC/GI model. The components 
which were used in our research were genetic and K-
means algorithms. First, for MEC model, we designed 
four serial classifiers (GK, KG, KGK and GKG). Then 
one parallel classifier which is a combination of GA and 
K-means is designed.  The information fusion function 
proposed for our MCS is described. Then all of the 
aforementioned methods are implemented and tested on 
MEC/GI model problem which are intended to infer 
haplotypes with high accuracy by employing genotype 
information. We compare the results of all methods in 
terms of RR. In both MEC and MEC/GI models, KGK 
and GK outperform the other approaches due to the fact 
that GA finds near optimal solutions in search space and 
K-means acts as a local heuristic classifier to find the 
real answer. 
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Figure 4. Comparison results of the algorithms using DALY database. a, b, c for MEC model and d, c, f for MEC/GI model . (a) DALY, g = 

0.25; (b) DALY, g = 0.5; (c) DALY, g = 0.75; (d) DALY, g = 0.25; (e) DALY, g = 0.5; (f) DALY, g = 0.75. 
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Algorithm 1. Pseudo code serial KG. 
 

Algorithm Series k –means-GA for MEC (MEC/GI) with gap 

Input SNP fragments (Genotype) 

Output Two haplotypes 

Step0 Initialize parameters 

Step 1 Executing  K –means for MEC (MEC/GI) to find two haplotypes as the class centre (c1 and c2). 

Step2 
Generating initial population for GA using k- means decision, making error them and random 
generation 

Step3 Executing GA to find the two classes (c1 and c2). 

Step4 Obtain two haplotypes from GA classes. 
 
 

 

Algorithm 2. Pseudo code serial GK. 

 

Alogorithm Series  GA k –means- for MEC (MEC/GI) with gap 

Input SNP fragments (Genotype) 

Output Two haplotypes 

Step 0 Initialize parameters 

Step 1 Executing  GA for MEC (MEC/GI)to find the clusters (c1 and c2). 

Step 2 Obtain to centers from the classes (c1 and c2). 

Step 3 Set k-means intials centers (c1 and c2). 

Step 4 Executing k- means for MEC (MEC/GI) to find two haplotypes as its centers 
 
 
 

Algorithm 3. Pseudo code parallel classifier. 

 

Algorithm Series k –means-GA for MEC (MEC/GI) with gap 

Input SNP fragments (Genotype 

Output Two haplotypes 

Step 0  Initialize parameters 

Parallel steps  

Step 1 Executing  GA for MEC (MEC/GI)to find the two classes (c1 and c2). 

Step 1                                               Executing k-means for MEC (MEC/GI) to find the clusters fragments 

Step 2 Voting on classifiers decision to eliminate noisy fragments 

Step 3 Obtain two haplotypes from new classification 

 


