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A comparative evaluation of five variants of Wilson model and eight unconstrained optimization 
methods for correlating the binary VLE data of 2-butanol-Tetrachloroethene system at 101.08 kPa 
pressure is presented. The data reduction and correlation for vapor/liquid equilibrium of the above 
system is presented. The objective of this paper was to find the parameters of the five variants of the 
Wilson models for the 2-butanol-tetrachloroethene, using optimization methods. The application of this 
optimization method for thermodynamic calculations is versatile due to its reliability, and efficiency is 
tested using phase equilibrium and parameter estimation problems. The obtained results indicated that 
proposed methodology is generally robust for the minimization of the objective functions involved in 
flash calculations using Gibbs energy minimization and in the calculation of homogeneous in non-
reactive mixtures. 
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INTRODUCTION 
 
The correlation of binary vapor liquid equilibrium data is 
very important as it provides parameters in describing the 
G

E
/activity coefficient models which can in turn be used 

for the design and simulation of distillation equipment, 
and also for testing theories of liquid mixtures. Most of 
the liquid mixtures encountered in commercial operations 
are non ideal. The non ideality in a liquid mixture can be 
concisely represented by the Excess Gibbs free 

energy ( )EE
gRTG = . There are several empirical and 

semi-theoretical models proposed in literature (Ravi, 
2004). The g

E
 models can be broadly classified as 

classical models and models based on local composition 
concept.   Often,   they   are  classified  as  enthalpic  (h

E
) 
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models, entropic (s
E
) models and complete g

E
 models 

( )EEE
Tshg −=  (Ravi Prasad, 2004). The latest G

E
 

models offer the advantage that the multi-component 
VLE data can be predicted using the parameters of the 
constituent binary pairs, only without any experimental 
data on the multi-component mixture. The correlation of 
binary VLE (P-T-x-y) data consists in the determination of 
the constants in the G

E
 model by minimizing the objective 

function ( )∑ −
2E

cal

E

exp gg . Minimization of other objective 

functions is also possible. The constants can be obtained 
by several methods based on either solution of sets of 
non linear equations or optimization. 

In Chemical Engineering, several thermodynamic 
calculations can be formulated as optimization problems 
with or without restrictions. As indicated by Henderson et 
al. (2004), the formulation of thermodynamic  calculations 



 
 
 
 
for optimization problems offers some advantages: (a) 
the use of a robust optimization method, (b) the 
possibility of using a direct optimization method which 
requires only calculations of the objective function and (c) 
the use of an iterative procedure whose convergence is 
almost independent of the initial guesses. Some 
examples of these calculations are phase stability 
analysis, phase equilibrium problems, parameter 
estimation in thermodynamic models, calculation of 
critical points, among others. In this paper, as part of a 

continuing study of comparative evaluation of γEG  

models and parameter estimation methods, eight 
methods of unconstrained optimization, namely Hooke-
Jeeves, Powell, Rosenbrock, Nelder-Mead simplex, 
Cyclic coordinate, Random search, Simulated annealing 
and Genetic algorithm (Ashok and Tirupati, 1999) are 
applied to obtain parameters in five variants of Wilson 
model namely Wilson (1964), Enthalpic Wilson (Bruin, 
1976), Effective Wilson (Sabarattinam et al., 1977), 
Modified Wilson (Huang and Lee, 1996) and T. K. Wilson 
(Tsuboka and Katayama, 1975) to describe the vapor 
liquid equilibrium data of 2-butanol-tetrachloroethene at 
101.08 kPa (Venkateswara Rao and Ravi Prasad, 1984).  
 
 
MATERIALS AND METHODS 

 
Procedure for parameter estimation 

 
1. The properties needed for processing and the experimental P, T, 
x, y data is read. 

2. The 
E

expg is calculated using 21 γ+γ= ln  xln  xg 21

E

exp  

with 
sat

iiii PxPy=γ . The vapor phase is assumed to be ideal. 

3. The 
E

calg  values are calculated using the selected model 

equation and using the assumed set of parameters. 

4. The expression ( )2E

cal

E

exp gg −  is minimized using the selected 

optimization method.  
5. With the optimized parameters vapor composition is calculated 
and absolute average deviation in experimental vapor composition 
and calculated vapor composition is evaluated 

 
 
Variants of Wilson G

E
 models 

 
The five variants of Wilson G

E
 models used in this study are listed 

below.  

 
 
Wilson (1964) 
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Enthalpic Wilson (Bruin, 1976) 
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Effective Wilson (Sabarathinam et al., 1977) 
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Modified Wilson (Huang-Lee) (Huang and Lee, 1996)  
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T. K. Wilson (Tsuboka and Katayama, 1975) 
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Optimization methods  

 
The brief details of the eight optimization methods used in this 
study are given below. All the optimization methods used are 
search methods and they do not require any derivative information 
during the calculation procedure. 

 
 
Hooke-Jeeves method (HOOK)  
 
In this method, an initial step size is chosen and the search is 
initiated from a given point. The method involves steps of 
exploration and pattern search. The step size s may be chosen in 
the range 0.05 to 1. Values beyond 1 can be tried; exploration 
about  a  point y: Let x = y. If ei is unit  vector  along  the  coordinate 
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direction x, then the function is evaluated at x + sei. If the function 
reduces, then x is updated to be x + sei. If function does not reduce, 
then the function is evaluated at x-sei. If the function reduces, then 
x is updated to be x-sei. If both fail, the original x is retained. The 
searches are performed with i ranging from 1 to n. At this stage, the 
initial point is at y and the new point is at x. Exploration is said to be 
successful if the function value at x is lower than the value at y by a 
predetermined amount. 
 
 
Powell’s method (POWE) 
 
Powell developed an idea of constructing the conjugate directions 
without using derivatives. After searching along all conjugate 
directions, a spacer step is introduced where a search is made from 
the current point along the coordinate directions. This is to ensure 
convergence. If a stage starts from point x

1
 and ends at point x

2
, 

then the convergence is said to be achieved when the norm│x
2
 - 

x
1│ 

is less than a small parameter ε or by checking the function 
improvement from x

1 
to x

2
. 

 
 
Rosenbrock’s method (ROSE) 
 
In Rosenbrocks method, the search is carried out in n orthogonal 
directions at any stage. New orthogonal directions are established 
for the next stage. The orthogonal setting makes this method robust 
and efficient. In this algorithm, the steps are taken in cyclic manner 
and repeated until there is at least one success and one failure in 
each direction. 
 
 
Nelder-Mead simplex method (NELD) 
 
In this simplex method, in an n-dimensional space n + 1 points form 
a simplex. A triangle is an example of a simplex in two dimensions. 
In three dimensions, a tetrahedron (four points) forms a simplex. An 
initial simplex in n dimensions is easily created by choosing the 
origin as one corner and n points, each marked at a distance from 
the origin along the coordinate axes. During the computation the 
operations of reflection and contraction (expansion) are performed 
on the simplex till the optimum is reached. 
 
 
Cyclic coordinate search (CYCL) 
 
In this method, the search is conducted along each of the 
coordinate directions for finding the minimum. If ei is the unit vector 

along the coordinate direction i, we determine the value αi 

minimizing f(α) = f (x + αei), where α is a real number. A move is 

made to the new point x + αiei at the end of the search along the 
direction i. In an n-dimensional problem, we define the search along 
all the directions as one stage. The function value at the end of the 
stage is compared to the value at the beginning of the stage in 
establishing the convergence. The length of the move at each stage 
is another parameter for convergence consideration. The search for 
the minimum in each direction follows the steps of the 
establishment of a three-point pattern and the search for the 
minimum in the interval established. 
 
 
Random search (RAND) 
 
Random Search through probability algorithm (RSPA) uses 
probabilities to guide search for an optimal solution. The role of left 
digit is more important than the role of right digit for evaluating 
objective function. We calculated probabilities for searching correct 
values of digits from left digits to right digits  of  every  variable.  The 

 
 
 
 
complexity of RSPA of a problem is not based on type of 
expressions in objective function or constraints (linear or nonlinear), 
but on the relation of decided variables in the formula of object 
function or constraints; therefore if there are k dependent variables, 
we select k variables to change the value of variables for every 
iteration. We cannot calculate exactly a number of iterations for 
searching an optimal solution because RSPA is a random 
algorithm; therefore we use unfixed number of iterations which has 
capability to find an optimal solution. 
 
 
Simulated annealing (SIMA) 
 
Generally we seek to update a point when the function has a lower 
value in the conventional methods of minimization and this strategy 
may lead to a local minimum. Simulated annealing is a method 
seeking global minimum by adopting a strategy where a higher 
value of a function is acceptable under some conditions. The 
analogy with annealing process where stresses are relived from a 
previously hardened body has been observed by Metropolis that 
the probability of higher energy is larger at higher temperatures and 
there is some chance of a high energy as the temperature drops. 
Energy in the annealing process some times increases even while 
the trend is a net decrease. This property applied to optimization 
problems is referred to as the Metropolis algorithm.  

 
 
Genetic algorithm (GENE) 

 
The genetic algorithm is a technique that draws its analogy from 
nature, and it simulates the evaluation process. This algorithm 
revolves around the genetic reproduction process and survival of 
the fittest strategies. The various steps in applying algorithm are: 
creation of initial population, evaluation, Creation of a meeting pool, 
cross over operation, mutation and evaluation. 
 
 
RESULTS AND DISCUSSION 
 
The binary system 2-Butanol-Tetrachloroethene at 
101.08 kPa is chosen as an example system. The 
experimental data for this system show positive 
deviations from Roult’s law and exhibit a minimum boiling 
azeotrope. The results of processing the isobaric binary 
vapor liquid equilibrium data of the above system to make 
a comparative study of five variants of Wilson G

E
 models 

and eight methods of optimization for estimating the 
parameters of the models are presented in Table 1. While 
processing the data with the various G

E
 models, the 

vapor phase is taken to be ideal. The molar volumes of 
the components are calculated using the modified Racket 
(1970) equation. The absolute average deviation 

between the experimental and calculated RTG E
values 

and vapor compositions for each model and for each 
method of optimization are shown. The parameters of the 
selected variants of the Wilson model are also presented. 

As can be observed from the values of ∆y, all the 
variants of Wilson model selected for this study are 
satisfactorily describing the experimentally observed 

data. The lowest deviation (∆y) is observed with the 
Effective Wilson model. The calculated vapor 
composition by the Effective Wilson model using the eight  
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Table 1. Absolute average deviation in G

E
/ RT, y and parameter values for each model, system: 2-butanol-tetracholoroethene pressure at 

101.08 kPa. 
 

Model Optimization Method ∆∆∆∆G
E
/RT ∆∆∆∆y A12 (j/mol) A21 (j/mol) 

Wilson 

Hooke and Jeeves 0.004249 0.004143 1426.757 3395.993 

Powell 0.004236 0.004139 1458.596 3425.231 

Rosenbrock 0.004239 0.004138 1455.541 3427.840 

Nelder Mead simplex 0.004223 0.004146 1472.358 3404.644 

Cyclic Coordinate 0.004239 0.004134 1456.724 3426.736 

Random search 0.004240 0.004134 1455.908 3427.725 

Simulated Annealing 0.004236 0.004126 1460.929 3421.765 

Genetic algorithm 0.004240 0.004134 1455.975 3427.643 

      

Enthalpic Wilson 

Hooke and Jeeves 0.004116 0.004514 666.4464 1996.071 

Powell 0.004114 0.004577 660.3227 2002.525 

Rosenbrock 0.004122 0.004529 659.5076 2003.082 

Nelder Mead simplex 0.004147 0.004288 660.0463 2002.989 

Cyclic Coordinate 0.004115 0.004521 663.8833 1998.722 

Random search 0.004120 0.004527 660.6419 2001.926 

Simulated Annealing 0.004122 0.004508 661.3513 2001.672 

Genetic algorithm 0.004120 0.004525 661.1623 2001.425 

      

Effective Wilson 

Hooke and Jeeves 0.004072 0.004100 -1896.929 -1538.071 

Powell 0.004102 0.004052 -1921.426 -1515.730 

Rosen brock 0.004071 0.004101 -1896.496 -1538.460 

Nelder Mead simplex 0.004101 0.004196 -1900.522 -1532.090 

Cyclic Coordinate 0.004062 0.004103 -1891.247 -1543.402 

Random search 0.004071 0.004096 -1896.718 -1538.452 

Simulated Annealing 0.004058 0.004069 -1893.628 -1542.497 

Genetic algorithm 0.004071 0.004096 -1896.779 -1538.383 

      

Modified Wilson 

Hooke and Jeeves 0.004212 0.004228 1962.571 2920.429 

Powell 0.004212 0.004275 1955.128 2928.496 

Rosenbrock 0.004219 0.004226 1955.581 2929.923 

Nelder Mead simplex 0.004220 0.004192 1960.406 2926.663 

Cyclic Coordinate 0.004215 0.004237 1958.415 2925.172 

Random search 0.004215 0.004237 1957.929 2925.783 

Simulated Annealing 0.004212 0.004261 1957.702 2923.799 

Genetic algorithm 0.004215 0.004240 1957.943 2925.479 

      

T. K. Wilson 

Hooke and Jeeves 0.004195 0.004270 2408.562 2417.438 

Powell 0.004185 0.004250 2428.834 2393.785 

Rosenbrock 0.004187 0.004252 2419.698 2404.217 

Nelder Mead simplex 0.004207 0.004232 2402.560 2427.461 

Cyclic Coordinate 0.004188 0.004255 2417.793 2406.445 

Random search 0.004187 0.004252 2419.629 2404.306 

Simulated Annealing 0.004209 0.004055 2414.197 2410.280 

Genetic algorithm 0.004187 0.004252 2419.634 2404.300 

 
 
 
optimization methods are presented in Table 2. As can 
be observed from the results, all the optimization 
methods   selected  for  this  study  are  equally  good  for 

describing the VLE data of the example system. The 
graphical representation of the deviation between the 
experimental and the calculated vapor composition of the
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Figure 1. Comparison of vapour composition using enthalpic and effective Wilson 
thermodynamic models for the system: 2-butanol-tetrachloroethene at 101.08 kPa. 
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Figure 2. Comparison of vapour composition using Wilson, T. K. Wilson and Modified Wilson 

thermodynamic models for the system 2- butanol-tetrachloroethene at 101.08 kPa. 
 
 
 

Enthalpic and Effective Wison model is shown in Figure 
1. The optimization method chosen is  Hook  and  Jeeves 

for the study. Figure 2 is representing the deviations of 
vapor composition using Wilson, Modified Wilson and T.
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Table 2. Calculated vapor composition by Effective Wilson equation, system: 2-butanol-tetracholoroethene at 101.08 kPa. 
 

T x1 y1 
y1 Calculated 

HOOK POWE ROSE NELD 

394.250 0.000 0.000 0.000000 0.000000 0.000000 0.000000 

387.650 0.038 0.205 0.191899 0.192327 0.191901 0.191915 

380.250 0.117 0.403 0.396964 0.397372 0.396974 0.396996 

376.650 0.182 0.491 0.485309 0.485537 0.485326 0.485347 

374.050 0.263 0.559 0.553854 0.553869 0.553876 0.553894 

372.550 0.348 0.610 0.601642 0.601490 0.601665 0.601680 

371.350 0.472 0.662 0.651066 0.650777 0.651086 0.651094 

370.950 0.520 0.672 0.667153 0.666842 0.667170 0.667175 

370.550 0.568 0.682 0.682698 0.682383 0.682712 0.682714 

370.350 0.612 0.697 0.697293 0.696989 0.697303 0.697302 

370.250 0.662 0.713 0.714944 0.714669 0.714948 0.714943 

370.250 0.824 0.788 0.792467 0.792402 0.792450 0.792434 

370.750 0.885 0.836 0.839820 0.839855 0.839797 0.839778 

371.350 0.933 0.889 0.891231 0.891321 0.891209 0.891192 

371.650 0.970 0.946 0.944104 0.944185 0.944089 0.944078 

372.450 0.992 0.984 0.983756 0.983787 0.983751 0.983748 

372.650 1.000 1.000 1.000000 1.000000 1.000000 1.000000 

 

T x1 y1 
y1 Calculated 

CYCL RAND SIMA GENE 

394.250 0.000 0.000 0.000000 0.000000 0.000000 0.000000 

387.650 0.038 0.205 0.191711 0.191903 0.192007 0.191904 

380.250 0.117 0.403 0.396819 0.396972 0.397111 0.396972 

376.650 0.182 0.491 0.485270 0.485320 0.485443 0.485319 

374.050 0.263 0.559 0.553931 0.553866 0.553962 0.553865 

372.550 0.348 0.610 0.601801 0.601653 0.601719 0.601652 

371.350 0.472 0.662 0.651276 0.651075 0.651097 0.651073 

370.950 0.520 0.672 0.667363 0.667160 0.667166 0.667158 

370.550 0.568 0.682 0.682897 0.682703 0.682692 0.682702 

370.350 0.612 0.697 0.697471 0.697297 0.697271 0.697295 

370.250 0.662 0.713 0.715087 0.714944 0.714901 0.714943 

370.250 0.824 0.788 0.792431 0.792458 0.792369 0.792459 

370.750 0.885 0.836 0.839713 0.839807 0.839715 0.839809 

371.350 0.933 0.889 0.891100 0.891220 0.891140 0.891221 

371.650 0.970 0.946 0.944006 0.944096 0.944047 0.944097 

372.450 0.992 0.984 0.983722 0.983754 0.983738 0.983754 

372.650 1.000 1.000 1.000000 1.000000 1.000000 1.000000 

 
 
 
K .Wilson. From the figures, it is clearly evident that both 
the models are correlating and the experimental data 
vary accurately. 

 
 
Conclusion 

 
The comparative evaluation of five variants of Wilson 
model and eight optimization methods for describing the 
VLE of 2-butanol-tetrachloroethene is  presented.  Effective 

Wilson model is found to produce the best agreement 
with the experimental data for the selected system. 
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