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A time dependent atmospheric model is represented for chemically reactive primary pollutants emitted 
from an elevated line source into a stable atmospheric boundary layer, over rough surface terrains. The 
time dependent model was obtained through an analytical solution from a multiple Inverse Laplace 
transform of the atmospheric diffusion equation with the parabolic eddy-diffusion coefficient (exchange 
coefficient) and the wind velocity as functions of vertical height. The pollutants were considered to be 
of chemically reactive primary pollutants emitted from a time-dependent line source of, step-Function 
type. In order to facilitate the application of the model, the results for the general situation that includes 
chemical reaction rate and time dependent line source are incorporated in the model. In this model, the 
effect of step-function type elevated line source studied near the source. The results obtained in this 
model are compared with that of the continuous line sources in the previous work. The results obtained 
in this model are of good agreement with that of the continuous line source. 
 
Key words: Stable-atmospheric boundary layer (SBL), Step-function type line sources, parabolic eddy-diffusion 
coefficient. 

 
 
INTRODUCTION 
 
The study of the atmospheric dispersion of air pollutants 
from different types of sources received a great deal of 
attention during the last few decades. The effects of 
various sources of chemically reactive pollutants are 
been investigated in the recent studies. In addition, the 
depletion of pollutants plumes will effect the pollutants 
concentration especially when the deposition occurs over 
a long distance (Robson, 1983). An analytical model for 
air pollutant transport and dispersion from a point source 
is studied (Donald, 1976). This paper addresses an 
analytical model of air pollutant dispersion and removal 
from a step-function type elevated line sources. The 
removal (washed out) of pollutant depends on the nature 
of gaseous effluents emitted  from  the   sources  and  the 

percentage of water vapors present in the atmosphere. 
The step-function type of line sources were assumed the 
series of industries or highways on during certain period 
of time and not continuous. The results were validated by 
comparing that of Robson (1987) by chemically non-
reactive and time independent case. It is interesting to 
note that when there is no chemical reaction of primary 
pollutants, the results of the present model coincide with 
the results of the model presented by Robson (1987). 
This paper analyzed unsteady state dispersion of 
pollutants from a line source into stable atmosphere 
boundary layer. The quadratic diffusion coefficient and 
step-function type line source with variable wind profile 
like   constant,  constant  shear  and  parabolic  wind   are
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incorporated. We adopted multiple Laplace transform and 
Green’s Function technique for the effective solution. In 
most of the previous models, numerical methods used 
either fully or partly. In model where the Laplace  
transform is generally inverted numerically (Robson, 
1987). Whereas in this model, the multiple Laplace 
transform inverted analytically this gives an exact 
solution. The solutions of this model verified with that of 
(Robson, 1987) by assuming no delayed removal 
(chemical reaction rate) and time independent case.  

 
 
METHODOLOGY 

 
We consider the whole atmospheric boundary layer as subdivided 

into two layers viz: (i) the surface layer (SL) that is, ozz 0

below the source height and (ii) the layer above SL and up to the 

inversion layer that is, protected zone Hzzo  above source 

height. Here, H is the height of SL and oz  is the source height. The 

situation analyzed is that the chemically reactive pollutant was 
emitted from an elevated line source, which is of step-function type. 
It is assumed that the emission of contaminant are in the gaseous 
state from a time dependent elevated line source of infinite length 
into a stable ABL, the variable wind velocity  depending on the 
nature of the  surface terrains viz. flat, buildup areas and mountains 
like elevated regions. The diffusion coefficient (exchange 
coefficient) was assumed to be of quadratic in nature, the boundary 
layer assumed to be of stable atmospheric boundary layer, where 
the mixing of pollutants is limited. To study the variation in the effect 
of pollutants, the various wind profiles like constant, constant shear 
and parabolic type are considered. The present work focused on 
the step-function type of source, where certain industries work 
during the certain allotted period and then switched off. The 
pollutant transport governed by the atmospheric advection-diffusion 
equation with delayed removal is as follows:  
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Where, C is the concentration of pollutants in the atmosphere at 

any location ( zyx ,, ) at time t; wvu ,, are the components of 

velocity; 
zyx KKK ,,  are the coefficients of eddy diffusivity 

(exchange coefficient) in the zyx ,, directions respectively; "K  is 

the first order delayed removal rate, and S is the source of the 
effluents. The height of the atmospheric boundary layer is assumed 
to be z = H, from the surface. 

The basic Equation (1) is simplified by assuming the following 
assumptions: 

 
1. Model is of time dependent and advection dominates over 
horizontal diffusion  
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2. The line source is in the direction of y-axis, which leads the 
concentration gradient and flux gradient becomes zero along y-
direction. 
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3. The vertical diffusion dominates over advection  
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4. The source (S) is of time dependent line source and is assumed 
to be 
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5. The diffusion coefficient (exchange coefficient) is of parabolic 

form
2)1( z , suited for stable atmospheric boundary layer, where 

the penetration of pollutants through the inversion layer does not 
takes place. 

 
Based on the aforementioned assumptions, the transport and 
diffusion Equation (1) becomes: 
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Initial and boundary conditions are: 
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Introducing the non-dimensional parameters 
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And     (Robson, 1987) 
 

where: ; L=the Monin-Obukovlenght; 
k=Vankarman constant; H=the boundary layer height and n=the 
constant decided on the stability of boundary layer. 

In addition, non-dimensional source term is as follows: 
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Incorporating all the aforementioned non-dimensional parameters in 
the Equation (2) and dropping out the capitals, we get: 
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Where,
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α  is the non-dimensional chemical reaction. 

Initial and boundary conditions are: 
 

0,0            ,0,0  zt   at x C(x,z,t)               (7a) 

 

0,0             ,0,0  zx   at t C(x,z,t)         (7b) 
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Solution 
 

Taking Laplace transforms along t  and using initial conditions, we 

get: 
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Initial and Boundary conditions: 
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Where, 
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Again, taking Laplace transform over (8) along x -axis, which 
assumed of semi-infinite region, then it becomes 
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Where 
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Differential Equation (11) becomes 
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boundary conditions: 
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Case 1  

 
When the wind profile is of constant (n = 0) 

 
The movements of air near the earth’s surface retarded by frictional 
effect proportional to the surface roughness. Thus, the nature of the 
terrain, the location and density of trees, the location and size of 
lakes, rivers, hills and building produces different wind velocity 
gradients in the vertical direction (Warn and Walker, 1967). The 
wind of constant type may be experienced in case of flat open 
country, lakes and seas, then the Equation (13) becomes 
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Under the boundary conditions: 
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The complete solution of equation 16a and b, through Green’s 
function technique Beck et al. (1992) assumed to be of the following 
form: 
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Where, )(za  and )(zb are the two independent solutions of 

homogeneous linear ordinary differential equation, 
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Under the boundary conditions: 
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And are found to be 
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In addition, 1A  is obtained through Wronskian of 
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By Wronskian 1A   found to be 1A  

Where, 
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The arbitrary constant 1R  determined as shown in the Equation 

(24) by using the boundary conditions on the solution (20a). There 
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z=1 respectively. Taking inverse Laplace transform using standard 
tables (Erdelyi et al., 1954) the solution (18)   becomes: 
 

 

    , )
22

2(
2

2

2
4

2

2

4

2

1

 
)1)(1(2

,, 0

)
4
1(

)(1 zz
x

x

g
Erfc

xg

e
x

x

g

e
x

g

e

ozz

et)z(xC

x

xt 


























































                                                                          (25) 
 
Where, 
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The complete solution for 

ozz  is obtained by interchanging z and 

oz  in the above solution.  

 
 
Case 2 

 
When the wind profile is of constant shear (n=1) 

 

The wind profile of constant shear zzu )(  is experienced in the 

metro cities of highly buildup areas. The velocity varies linearly with 
vertical height then differential equation (13) is reduced to the form 
for quadratic diffusion coefficient. 
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Following boundary conditions,  
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The solution of Equation 29 through Green’s function technique is 
assumed to be of the following form: 

 

 

z z ,        
A

)
o

 (z
b

(z)ψaψ

-px

W(s)e
 -  

z  z,         
A

 (z)
b

)ψ
o

(zaψ

-px

W(s)e
  

s)z(p

O

O

C














0
2

2

0
2

2

,,

 (30) 

 
Where 

2A  is obtained through Wronskian of 
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  (z) aψ and     (z)  bψ  are the two linearly independent solutions 

of the homogeneous differential equation: 
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Under the boundary conditions: 
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This is the Bessel’s differential equation of first kind since the order 

(  )(41 ps   ) of Equation 34 is assumed to be of 

non-integer when it is compared with the generalized Bessel’s 
equation   
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(Sherwood and Reed, 1939), and the solutions are found to be  
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Where, 
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An arbitrary constant 2R  is determined by imposing the boundary 

condition at z = 0 on Equation (35)  
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 Wronskian determines 2A  with help of the above solutions we 

get: 
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The solutions of Equation 32 followed by the boundary conditions, 
which is defined in two regions are follows:  
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As limiting case, where 0p   that is, 1x  , for large values 

of x , )2(  pJ   and )2(  pJ are approximated (Beck 

et al., 1992) as follows: 
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Then the solution for 

o
zz  solution is 
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This is the complete solution of the Equation (32) followed by the 

boundary conditions 33(a)- (b) for ozz  . Similarly, the solution for 

ozz  can be obtained by interchanging z  and oz  in the above 

solution.  However, we dealt   only with the case below the source 

height ozz  , that is, at the ground level.(z=0). 

 
 
Case 3 

 
When the wind profile is of parabolic type (n = 2) 

 

The wind profile of parabolic type
2z)z(u   (when n = 2) 

experienced within the study area located near the deep valley and 
oceans, then the differential Equation (4.3.6) reduced to the form 
with diffusion coefficient (exchange coefficient) is of quadratic in 
nature. 
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Solutions of Equation (48) through Green’s function are assumed to 
be of the form: 
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Where 3A  is determined by the Wronskian 
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In addition, )z(   and   )z( ba   are the linearly independent 

solutions of the differential equation. 
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in the above differential equation then it reduces to the form 
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Taking the transformation on the independent variable 
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in Equation (55), we get, 
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This is a Whittaker’s differential equation, where ps 1  



 

 
 
 
 

and p2   the two independent solutions of Equation (52) 

are the Whittaker’s Confluent Hyper geometric function as follows: 
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and also Inter-relation between Whittaker’s to Bessel’s function is 
derived as follows (Carslaw and Jeager)  
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By the transformations (62), the solution (60) and (61) becomes  
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Then complete solution of the Equation (55) becomes 
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The solution (49) using standard tables, Erdyle et al. (1954), 
Schaum Series (1950) Beck et al. (1992), and the inverse Laplace 

transform can be carried out for the solutions assuming 0ox  

we get, 
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conditions at z= 0, and is found to be 
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and 

3
A  is determined though Wronskian and is found to be  
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Then Equation (69) becomes by assuming that the concentration is 

far from the source, that is, distance 1x  or 0p . Then the 

Bessel’s function is approximated 
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Taking inverse Laplace transform along s, we get 
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RESULTS AND DISCUSSION 
 

This paper analyzed unsteady state dispersion of 
pollutants from a line source into stable atmosphere 
boundary layer. The quadratic diffusion coefficient and 
step-function type line source with variable wind profiles 
like constant, constant shear and parabolic wind are 
incorporated. We adopted multiple Laplace transform and 
Green’s Function technique for the effective solution. In 
most of the previous models, numerical methods used 
either fully or partly. In model where the Laplace 
transform is generally inverted numerically (Robson, 
1987). Whereas in this model, the multiple Laplace 
transform inverted analytically this gives an exact 
solution. The solutions of this model verified with that of 
(Robson, 1987) by assuming no delayed removal 
(chemical reaction rate) and time independent case. It is 
interesting to note that the effect of chemical reaction rte 
has virtually no impact t the short travel time but has 
significant effect t large travel time. It is interesting to note 
that when there is no chemical reaction of pollutant; the 
results of the present model coincide with the results of 
the model presented by Sulochana and Moka Shekhu 
(2009). 

The results obtained in this model are illustrated 
graphically in the Figures 1 to 8. Concentration profiles of
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Figure 1. Ground level concentration for various source heights

9.0,8.0,7.0,6.0,5.0,0  oooooo zzzzzz  corresponding to the quadratic diffusion 

and Wind coefficient of constant shear. Comparing the results with Robson (1987) as limiting case where 
chemical reaction rate alpha=0. 

 
 
 

 
 

Figure 2. Ground level concentration for variable chemical reaction rate corresponding to the quadratic diffusion and 

wind coefficient of constant shear, 0.0oz . 
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Figure 3. Ground level concentration for variable chemical reaction rate corresponding to the quadratic diffusion and 

wind coefficient of constant shear, 7.0oz . 

 
 
 

 
 

Figure 4. Ground level concentration vs. source heights corresponding to the quadratic diffusion and constant shear 

wind coefficient, chemical reaction rate 0.0 at time 5.0    ,0.5  ott . 
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Figure 5. Ground level concentration versus source heights corresponding to the quadratic diffusion and 

constant shear wind coefficient, Chemical reaction rate 0.0 at time 5.0    ,1  ott  

 
 
 

 
 

Figure 6. Ground level concentration versus source heights corresponding to the quadratic diffusion and 

constant shear wind coefficient, Chemical reaction rate 0.0 at time 5.0    ,15  ott  
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Figure 7. Ground level concentration versus downwind distance corresponding to the  quadratic diffusion 

and constant shear wind coefficient, settling velocity for various time ot  Chemical reaction rate

0.0 at time 5.0z    ,5  ot . 

 
 
 

 
 

Figure 8. Ground level concentration versus distance for various heights on the surface to the quadratic 

diffusion and constant shear wind coefficient, chemical reaction rate 0.0 at time 

5.0    ,5  ott  
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chemical reactions at large travel time are shown in 
Figures 2 to 8. 
 
 
Nomenclatures 
 
C ( zyx ,, ) = Pollutant concentration (ppm) 

H= height of the inversion layer (m) 

oz = height of the source (m) 

( oo zx , ) = the location of the source in xz -plan 

zK = Exchange coefficient along vertical direction 

Q=Source strength at ( oo zx , ) 

(.)= Dirac Delta function 

''K =First order delayed removal 

t = time in seconds  

W (t) = time dependent source of step-function type and 
is of the form: 
α = is the non-dimensional chemical reaction. 
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