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Powdered Grewia species barks was extracted in water and one part of the extract was precipitated with 
absolute ethanol. Both the crude water extract and the ethanol precipitate were freeze dried, pulverized 
into powder and subjected to physicochemical analyses. Amongst others, proximate composition, 
morphology and metal contents by Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-
EDX), functional group by Fourier-transform infrared spectroscopy (FTIR), crystallinity by X-ray powder 
diffraction (XRD), thermal behavior via Differential scanning calorimetry (DSC) and thermogravimetric 
analysis (TGA). The molecular mass of the ethanol precipitate was appraised through viscosity 
measurements and the Huggins plot. Results show that both the crude extract and the ethanol 
precipitate were rich in polysaccharide type polymers. However, precipitation led to a reduction in the 
metal contents confirmed by the ash contents and the EDX analysis as well as the absence of sharp 
peaks on the XRD plots as was the case of crude extracts. Precipitation led to a decrease in the lipid 
and protein contents initially present in the crude Grewia spp. extracts. XRD and SEM analyses 
revealed that Grewia spp. extract and the precipitate were both amorphous with a porous 
microstructure. Results also showed that Grewia spp. biopolymer has functional groups which can 
serve as active sites for the attachment of colloidal particles. 
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INTRODUCTION 
 
Due to their effectiveness, synthetic coagulants/ 
flocculants such as aluminium sulphate, iron chloride, 
polyacrylamide, and polyaluminium chloride are most 
commonly used in the coagulation-flocculation unit 
operation (Okaiyeto et al., 2016; Dihang et al., 2008; 
Okuda et al.,  2001).  However,  their  use  results  in  the 

production of large quantities of metal-contaminated 
sludge, and in addition, aluminium and iron residues in 
treated water has been linked to the development of 
certain diseases, as Alzheimer’s and some cancers 
(Okaiyeto  et al., 2016; Sotero-Santos  et al., 2007; 
Ruden,  2004;  Campbell, 2002). To overcome this issue,   
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Figure 1.  Extraction and purification process of Grewia spp. Biopolymer. 

 
 
 
some plants extracts like Moringa oleifera, Hibiscus 
esculentus (Okra), Strychnos potatorum and Bridelia 
Ferruginea have shown great potentials to serve as 
coagulation/flocculation agents (Georgiadis  et al., 2011; 
Pritchard  et al., 2010;  Kolawole  et al., 2007). Plants 
extracts used as natural coagulants/flocculants are 
macromolecules which could be extracted from different 
parts of plants (barks, leaves, roots, among others) (Daza 
et al., 2016;  Babu  et al., 2013;  Yang  et al., 2011). The 
bark extracts of Grewia species plants are traditionally 
used as a clarifying agent for beverages, domestic 
effluents and surface water in the northern part of 
Cameroon. Given that the active compound of a 
biocoagulant/flocculant can be a protein, a 
polysaccharide or a combination of both, there is need to 
investigate the composition and properties of substances 
from biological origin having coagulation/flocculation 
properties as it shall provide information on the nature of 
these extracts in order to justify its application in water 
treatment (Miller et al., 2008).   

There is not enough information on the nature of the 
molecules responsible for the coagulant/flocculant 
properties of Grewia spp. biopolymer, thus the  extraction 

and partial purification (precipitation with absolute ethanol) 
of the crude extracts prior to its characterization was the 
main objective in this study.  
 
 
MATERIALS AND METHODS 
 
Sampling and extraction of Grewia spp. biopolymer  
 
Grewia spp. barks were collected from Mokolo (North region of 
Cameroon), transported to the laboratory, dried and stored at room 
temperature. Crude Grewia spp. biopolymer was extracted following 
the method of Somboonpanyakul et al. [(2006) with some 
modification.  The dried and pulverized bark of Grewia spp. was 
dispersed in milli Q water (1:80 w/v, pH 4) at 50°C for 4 h.  The 
fibrous material from the dispersed mucilage is removed by 
straining through centrifugation at 3894 g for 20 min. Thereafter, the 
crude mucilage was precipitated with 2 volumes of 95% absolute 
ethanol and freeze-dried. The extraction process is as shown in 
Figure 1. The Grewia spp. biopolymer extraction yield was obtained 
using the following equation: 
 

     ×                                  
                                                   (1) 

 
Where  ‘m’  is  the  biopolymer  mass  after  extraction  and  ‘mi’  the  



66          J. Chem. Eng. Mater. Sci. 
 
 
 
biopolymer mass before extraction. 
 
 
Characterization of Grewia spp. biopolymer  
 
Proximate composition of Grewia spp. biopolymer 
 
Proximate composition (protein, lipids and ash contents) of Grewia 
spp. biopolymer was determined according to the methods of the 
AOAC (1975). Total sugar was determined by Anthrone sulfuric 
acid reaction. The difference between total and free sugar content 
of samples represented the polysaccharide content which was 
assimilated to gum content. 
 
 
Determination of the viscosity of Grewia spp. biopolymer 
extract    
 
Powder samples of Grewia were dissolved in milli Q water in order 
to obtain samples at various concentrations (0.005, 0.01, 0.015, 
and 0.02 g/dL). The viscosity of Grewia spp. biopolymer was 
measured with an Ostwald capillary viscometer. 15 ml of extracts 
was introduced into the viscometer which was immersed in a 
thermostatic water bath at 25°C.  The efflux time of the biopolymer 
extract at various concentrations was measured (t) and that of 
water was also measured (t0). The relative viscosity (ηrel) was 
calculated thus: 
  

                                                                                     (2) 

 
Specific viscosity (ηsp) was also determined according to: 
 

                                                                         (3) 
 
Reduced viscosity (ηred) is given by:   
 

                                                                                 (4) 

 
where C is the concentration of Grewia spp. biopolymer solution in 
(g/dL). 
 
 
Functional groups  
 
The functional groups of the Grewia spp. biopolymer was 
determined by infrared spectroscopy.  Infrared spectra of Grewia 
spp. biopolymer samples were recorded with a Fourier Transform 
Infrared Spectrometer (Perkin Elmer Spectrum GX). Approximately, 
1 mg of sample was mixed with 25 mg KBr and both were ground 
together in an agate mortar. Thereafter, a pellet was prepared using 
a 5 tons caver type press. The spectra were recorded in the 4000 to 
400 cm-1 wavenumber range. 
 
 
Powder X-ray diffraction 
 
X-ray diffraction was carried out on a Panalytical Empyrean (p-Xrd) 
diffractometer, Netherland. The equipment used Cu target and a 
pixel 3D solid state X-ray detector. Powder samples were placed on 
a sample holder and inserted into the X-ray machine. Samples 
were analyzed over an angular range of 2 Theta: 5 - 89.9823° with 
a step size of 0.0130 with a scan step time of 18.8700 s. The X-ray 
source was Cu K-α1 (1.54060 Å) and Cu K-α2 (1.54443 Å). 

 
 
 
 
Scanning electron microscopy with energy dispersive X-rays 
(SEM-EDX) 
 
A pinch of Grewia spp. biopolymer was suspended in 100 µL 
ethanol and agitated for proper dispersion of the biopolymer. This 
was closely followed by the addition of 900 µL of MilliQ water 
followed by vortexing and sonication for 30 s. The sample was then 
placed on aluminium stubs and allowed to dry in desiccator 
overnight. SEM Images were collected with a JEOL, JSM-7100F 
Field Emission Scanning Electron Microscope (Model SM 
71031SE2A) Japan.  
 
 
Thermal properties of Grewia spp. biopolymer 
 
Thermal degradation of the Grewia spp. biopolymer was studied on 
a Thermo-gravimetric Analyzer (NETZSCH, TG 209 F1 Libra, 
Germany). Approximately, 1 mg of sample was introduced into an 
aluminium oxide crucible and heated within a temperature range of 
35 to 500°C at a rate of 5K/min under nitrogen atmosphere. 
Differential Scanning Calorimetry (DSC) (NETZSCH, DSC 204F1 
Phoenix, Germany) was also used to study the thermal properties 
of the Grewia spp. biopolymer. Known weights of powder Grewia 
spp. biopolymer was loaded on an aluminium pan and the energy 
level of the samples was scanned in the range -20 to 500°C under 
nitrogen atmosphere with a temperature gradient of 5°C/min.  
 
 
RESULTS AND DISCUSSION 
 
Proximate composition of the Grewia spp. 
biopolymer  
 
Results of the proximate composition of Grewia spp. 
biopolymer before and after purification are presented in 
Table 1. Chemical analysis shows that the purified 
biopolymer is composed approximately of 4% of protein, 
42% of total sugar and 40% of gum. The sugars 
represent the main components, among which gums 
defined as polysaccharides are predominant. Our results 
are close to those obtained by Akdowa et al. (2014) and 
Saidou et al (2011). Results also show that pH does not 
have significant effect on the proximate composition of 
Grewia spp. biopolymer. The extraction and purification 
procedure used to isolate biopolymer appears efficient, 
since the most of proteins, lipids and the mineral present 
on crude biopolymer were removed after purification. This 
could lead to an improvement in the coagulation/ 
flocculation performance of Grewia spp. biopolymer.  The 
proximate composition of Grewia spp. biopolymer is 
similar to that of Okra gum used for the coagulation of 
colloidal suspensions (Sengkhamparn  et al., 2009). 
 
 
Grewia spp. biopolymer extraction yield at different 
pH  
 
In order to study the influence of pH on the Grewia spp. 
biopolymer extraction yield, the extraction was carried 
within the pH range of 2 to 7, and the results are 
presented in Figure 2. 

The  extraction  yields  of Grewia spp. biopolymer at pH  
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Table 1. Proximate composition of the Grewia spp. Biopolymer. 
  

Composition (g/100 g MS) Crude  Grewia powder 
Grewia spp. biopolymer 

pH 2 pH 4 pH 5 pH 7 
Sugar content 53.02 ± 0.06 44.41 ± 0.23 43.41 ± 0.08 41.61 ± 0.1 39.25 ± 0.15 
Gum content 52.79 ± 0.05 42.41 ± 0.15 43.36 ± 0.07 40.21 ± 0.2 37.41 ± 0.25 
Protein content 8.58 ± 0.05 2.5 ± 0.07 3.66 ± 0.07 4.45 ± 0.5 5.70 ± 0.37 
Lipid content 3.23 ± 0.08 - - - - 
Ash content 14.6 ± 1.25 5.3 ± 0.09 7.6  ±  0.08 7.9 ± 0.15 9 ± 0.95 
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Figure 2. Influence of pH on Grewia spp. biopolymer extraction 
yield. 

 
 
 
2, 4, 5, and 7 calculated after freeze drying are 35.73 ± 
0.67, 36 ± 1.28, 36.74 ± 1.60, and 35.83 ± 1.67%, 
respectively. We note that pH does not have significant 
influence on the extraction yield of Grewia spp. Akdowa 
et al. (2014) also showed during their work that pH does 
not have significant influence on the viscosity and 
extraction yield of Grewia mollis gum. The extraction yield 
obtained is close to those obtained by Nep et al. (2010).   
 
 
Influence of pH and biopolymer concentration on the 
viscosity  
 
Figure 3 shows the pH and biopolymer concentration 
effects of the Grewia spp. biopolymer viscosity. Results 
display the increase of the viscosity with the biopolymer 
concentration irrespective of the pH. The gradual 
increase of viscosity as the amount of polymer increases 
could be due to the fact that Grewia spp. biopolymer 
displays a non-Newtonian flow behavior (Huang et al., 
2019; Kamal et al., 2015; Jamal, 2012). That behavior is 
close to the work carried by Nep et al. (2010). 

It is also noted that the pH has no significant effect on 
the viscosity. For the same biopolymer concentration, the 
viscosity of the Grewia spp. extract shows little change 
over the  range  of  pH  2  to  7.  This  sharp  reduction  in 

viscosity may be due either to chemical degradation in 
acid milieu, or to a change in molecular conformation, 
which may or may not be reversible (Sorbie  et al., 1992). 
Our results are in agreement with those obtained by 
Akdowa et al.  (2014). 

The intrinsic viscosity was determined graphically from 
the Huggins plot (Figure 4). From that figure the intrinsic 
viscosity obtained was 16.5 dL/g. Morris (1990), 
proposes a classification of the polymers size according 
to their intrinsic viscosities and indicates that the intrinsic 
viscosities between 5 and 25 dL/g correspond to the high 
molecular mass polymers. Therefore, based on our 
results, Grewia spp. biopolymer falls into this range and 
is considered as high molecular mass biopolymer, 
suggesting that it can favor adsorption and bridging effect 
during coagulation-flocculation, encourage the densely 
packed aggregate nature of floc, and thus enhance floc 
settling velocity (Li et al., 2006;  Niu et al., 2013; Li et al., 
2013). These observations are in agreement with our 
previous works (Kameni  et al., 2019). 
 
 
Functional groups of Grewia spp. biopolymer by FTIR 
 
The FTIR spectrum of Grewia spp. biopolymer before 
and  after  purification  is  presented  in  Figure 5. Spectra  
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Figure 3. Influence of Grewia spp. biopolymer concentration on the viscosity of 
at different pH. 
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Figure 4. Huggins plot of Grewia spp. Biopolymer. 

 
 
 
exhibited the typical bands and peak characteristic of 
polysaccharides (Kameni  et al., 2019). There was no 
major difference between spectra obtained before (a) and 
after (b) purification. The broad band at 3406 cm-1 
indicates the presence of hydroxyl (-OH) groups due to 
moisture but could also arise from the hydroxyl of sugar 
rings. The band at 2933 cm-1 indicates the presence of 
sugars (galactose, arabinose and rhamnose); also, the 
presence of alkane C-H stretch and aldehyde C-H 
stretch.  The   glucuronic  acids  have  specific  vibrations 

such as the band at 1428 cm-1 due to COOH group. The 
band at 1255 cm-1 represents C-O-H bend of CH2OH. 
The peak obtained at 1734 cm-1 results from stretching 
mode C=O stretch (Filippov, 1992). The wave numbers 
between 800 and 1200 cm-1 represent the fingerprint 
region for carbohydrates. All these groups can serve as 
active sites for the attachment of colloidal particles. The 
FTIR spectrum of Grewia spp. biopolymer is similar to the 
one of Chitosan and Okra gum used for the aggregation 
of   colloidal   particles  (Li   et  al.,  2013;  Freitas   et  al.,  
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Figure 5.  FTIR spectrum of Grewia spp. biopolymer before (a) and after purification (b). 
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Figure 6. X-Ray pattern of Grewia spp. biopolymer before (a) and after purification (b). 

 
 
 
2015; Ani et al., 2012).  
 
 
Grewia spp. biopolymer crystalline structure 
 
XRD analysis was applied to detect the crystalline 
structure of the Grewia spp. biopolymer (Figure 6). The 
XRD pattern shows that Grewia spp. biopolymer before 
purification (a) is consisted of amorphous and crystalline 
structure. It shows peaks at 2 theta within the range of 8 
to 41°C. After purification, the XRD pattern shows zero 
peak, which suggests that purified Grewia spp.  
biopolymer is consisted of amorphous structure. The 
XRD graph of Grewia spp. biopolymer is comparable to 
the one of Okra gum used for the destabilization of 
colloidal suspension ( Freitas  et al., 2015). 
 
 
Scanning electron microscopy (SEM) pattern of 
Grewia spp. biopolymer 
 
SEM images of biopolymer before (a, b)  and  after  (c, d) 

purification are represented in Figure 7 at different 
magnifications. In both case the microphotographs are 
indicative of an amorphous material. The particles are 
mostly seen as aggregates of irregular shapes. SEM and 
XRD analyses confirm that Grewia spp. biopolymer is an 
amorphous material.   
 
 
Electron dispersive spectroscopy pattern of Grewia 
spp. biopolymer  
 
EDX was carried out to detect the elements present at 
the surface of a particular area of Grewia spp. 
biopolymer. The EDX spectrum of biopolymer before (a) 
and after purification (b) is presented in Figure 8. Result 
shows that some elements present on the surface of 
crude biopolymer disappeared after purification. We can 
observe that elements like Mn and Sr present on the 
surface of crude biopolymer are absent after purification. 
This suggests that the purification process used is 
efficient  to  reduce  the  metal content of biopolymer. The  
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Figure 7. SEM images of Grewia spp. biopolymer before (a, b) and after purification (c, 
d). 
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Figure 8. Energy dispersive spectroscopy pattern of Grewia spp. biopolymer before (a) and after purification (b). 

 
 
 
major elements present in Grewia spp. biopolymer are K, 
Ca, Cl, C, Mg and O. 
 
 
Thermal behavior of Grewia spp. biopolymer 
 
Thermal stability of the polymer is an important property 
that could make the material fit for industrial applications 
where material is thermally processed. Thermal stability 
analysis of polymer material is helpful in the selection of 
materials with the best properties for specific used. 
Thermal analysis of Grewia spp. biopolymer samples 
were  carried  out  with  Differential  Scanning Calorimetry 

(DSC) and Thermal Gravimetric Analysis (TGA).  
 
 
Differential scanning calorimetry 
 
The results of DSC analysis of Grewia spp. biopolymer 
are presented in Figure 9. The analysis reveals that the 
glass transition temperature is around 140.3°C. 
Consequently, Grewia spp. biopolymer occurs in a glassy 
state at room temperature (Nurul et al., 2014). Grewia 
spp. biopolymer is preferably stored at or below room 
temperature in a dry environment to reduce occurrence of 
any  chemical changes to the structure of molecules, thus  
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Figure 10. Thermogravimetric analysis of Grewia spp. Biopolymer.  

 
 
 
conserving its quality and functionality. The major intense 
peak recorded in the DSC graph is an endothermic 
transition. This may be due to moisture desorption. All 
those observations are close to results obtained by Nep 
et al. (2010) and Nurul et al. (2014). 
 
 
Thermogravimetric analysis  
 
The results of TGA analysis of Grewia spp. biopolymer 
are displayed in shown Figure 10. The first mass loss 
taking place between 30 and 125°C may be attributed to 
the loss of adsorbed and structural water of biopolymer 
(Bothara et al., 2012), or due to desorption of moisture as 
hydrogen bound water to the biopolymer structure. This 
resulted in a weight loss of about 16.17%. The second 
weight loss event, with an onset of over 290°C, can be 
attributed  to  thermal  decomposition  of  the  biopolymer. 

From the results, we can conclude that Grewia spp. is a 
thermal stable biopolymer. 
 
 
Conclusion 
 
The extracted biopolymer was purified and characterized 
and the results revealed that both the crude extract and 
the ethanol precipitate were rich in polysaccharide type 
polymers. The results also revealed that the purification 
process led to a reduction in the lipid, protein and metal 
contents of crude Grewia spp. biopolymer. 
Physicochemical characterization showed that Grewia 
spp. biopolymer has a fairly similar physicochemical 
composition to those of some biopolymers used as 
coagulation-flocculation agents principally the Okra gum. 
The use of Grewia spp. biopolymer in water treatment as 
a  natural  coagulant/flocculant may be an alternative with  
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numerous advantages over chemical agents, mainly 
biodegradability, low toxicity and low residual sludge 
production. These coagulants are safe to human health 
and the environment.  
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