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Adequate numbers of relations have been provided to find the three unknowns following three 
equations: the state equation, the adjoint equation and maximum principle equation. If rigor is 
sacrificed, then a partial solution is quickly obtained by using the concept of calculus of variation. Our 
appealing and intuitive harvesting policy would be that, refrain from harvesting along the singular 
path, because zero harvest is not optimal.  
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INTRODUCTION 
 
A large cross-section of contemporary problems in 
applied mathematics, related to Biology is concerned with 
the analysis and synthesis of dynamic processes. The 
structural stability of a dynamic system depends on the 
parameters or structural constants appearing in the 
system of differential equations describing the system. 
During the last three decades, the management of 
natural resources in general and that of renewable 
resources, in particular, has invited the attention of a 
large segment of researcher (Goundry, 1960; Crutchfield, 
1967; Wat, 1968; Garrod, 1973; Gulland, 1974). Coyle 
studied the dynamics of management system (Coyle, 
1977) and of capital expenditure (Coyle, 1979). If 

)(th represents the rate of removal or harvesting then the 

population growth with harvesting is described by the 
differential equation 
 

)()( thnf
dt

dn
             (1) 

 

where )(tn denote the size of a fish population at time t . 

Whenever  the  harvest  rate  )(th ,  exceeds  the  natural  

 

growth rate )(nf , Equation (1) implies that the  

population level will decline as 
dt

dn becomes negative. 

However, if )()( nfth  , then the population growth 

continue. If )()( nfth  , the population remains at a 

constant level. Thus, in this situation, the natural growth 

rate )(nf becomes the ‘sustainable yield’ that can be 

harvested while maintaining the population at a fixed 

level. Symbolically, the sustainable yield Y will be given 
by:  
 

,)( EnnfY               (2) 

 
where E is the effort per-unit catch. For density 

dependent growth models degree 2)( nf , therefore, if 

h is constant and )(max nfh  , then Equation (1) may 

possess two or more equilibriums. An explicit analysis of 

the model can be carried out only when )(nf is given in 

explicit form. However, if hth )( , then Equation (1) 

implies that a maximum sustainable yield (MSY)  is  given
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by 
  

)(maxmax nfhY
n

MSY               (3) 

 
with the property that any larger harvest rate will result 
into the depletion, and hence eventual extinction of the 
population. In order to achieve the maximum revenue 
return from fish harvesting and also to determine an 
optimal policy for fish harvesting, Pontryagin’s maximum 
principle have applied. In this direction, further, if we 
assume a constant price. 

p , per-unit of harvested bio-mass, and a constant cost 

c , per-unit catching effort, then the total sustainable 

revenue TRand total fishing cost TC are given by 

  

)(EpYTR              (4a) 

 
and 
 

cETC              (4b) 

 

The net revenue, which is the difference TR  and TC is 

called the ‘sustainable economic rent’. Thus 
 

cEEYpTCTRSR  )(. .          (4c) 

 
Gordon (1954) fundamental result state that, in the open-
access fishery, effort tends to reach an equilibrium, the 

so-called bionomic equilibrium, at the level  EE , at 

which the sustainable economic rent is completely 
dissipated, that is 

 

TCTR                (5) 

 

In Gordon’s model of open-access-fishery, if  EE then 

opportunity cost exceeds revenues, consequently 

fishermen leave the fishery. Conversely, if  EE , then 

revenues exceed opportunity costs and consequently 
efforts tend to increase, as now fishing is more profitable 
than other employment (Clark, 1990; Burghes and 
Graham, 1980). At this point a reasonable inquiry is: what 
is wrong with a situation in which fishermen earn their 
exact opportunity cost from fishing? A close scrutiny 
shows that, firstly, the fishery resource which is capable 
of producing positive economic rent, for an excessive 
level of effort is being utilized. Neither the fishermen, nor 
society at large, are enjoying the benefits that could 
accrue as when the fisheries were under management. 
This situation is called ‘economic overfishing’. Secondly, 
the fishery may suffer from ‘biological overfishing’ in the 
sense that in this case sustained biomass yield is less 
than MSY. 
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MODELS 
  
Shah and Sharma (2003) proposed a deterministic 
extension of Gordon-Schaefer (GS) model by setting 
 

En
K

n
rn

dt

dn

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

,            (6) 

 

where )(tn is the stock size, 0r is the intrinsic growth 

rate per unit, K is the carrying capacity of the system, 

E is the effort per unit catch, and   is a real positive 

number exceeding 1, that is 1 . The model 

encompasses the following three models, which have 
been extensively pursued in the management of fishery 
(Pella and Tomlinson, 1969; Holt, 1975).   
 

(i) Gordon-Schaefer (GS) model with 2 , 

(ii) Pella-Tomlinson model (PT) with 3  and 

(iii) Pella-Tomlinson model (PT) with 4 . 

  
 
MAXIMUM PRINCIPLE AND OPTIMAL HARVESTING 
 
Considering the concept of opportunity cost, the 
maximum sustainable yield may not be profitable 
economically. Now we shall re-examine the model from 
economic perspective. Usually the harvest rate is 

determined by the current stock size )(tn , and the rate of 

harvesting effort E . Therefore we can write 
 

 EnQth ,)(  .            (7) 

 

The function  EnQ , , which relates the factor of 

production n and E  to the rate of production )(th is 

referred to as the production function. In our problem, we 

shall consider  EnQ , in the form: 

 

  EnGEnQ ).(,               (8) 

 

The linearity in effort E , facilitates the application of the 
maximum principle to our model; therefore, the reasons 

for this choice are primarily mathematical. )(nG , in view 

of physical aspect, is any non-decreasing function of n . 

Next, suppose the price p per-unit bio-mass remains 

constant, and that the cost c of a unit of effort is also 

constant. The net economic revenue P  produced by an 

input of effort E  over unit time will be given by 
 

EcthpP .)(.               (9) 

 
Combining Equations (7) to (9), we obtain 
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 
  )(.)(

.).(.

thnCp

EcEnGpP




,          (10) 

 
Where 
 

)(
)(

nG

c
nC  . 

 
Now suppose that the sole owner’s objective is to 
maximize the total discounted net revenue (the present 

value) )(hJ , derived from harvesting of the fish 

population over finite horizon  T,0 , and given that 

 

 




T

t dtPehJ
0

.)( 
 

   

T

t dtthnCpe
0

)()(.

         (11) 
 

where 0 is a constant denoting the continuous 

discounting rate. In Equation (11) )(th may be viewed as 

a control variable, in conjunction with the constraint 
 

dt

dn

K
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rnth 
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obtained from Equation (6). Combining Equation (11) and 
(12), our problem reduces to: 
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It will be worth mentioning that if we sacrifice the rigor, 
then a partial solution can be quickly obtained by using 
the ideas of calculus of variation (Gelfand and Fomin, 
1961; Elsgolts, 1970; Bolza, 1951; Weinstock, 1974). 

Functional )(hJ  in Equation (13) is analogous to the 

functional  
 

 
Tx

x

dtxxtgxI

0

;,)( 

 
 
related to a variation problem seeking a path x   from 

point 0x  to 1x  in a plane along which )( xI  becomes 

maximum/minimum, depending on the nature of the 
problem (Maunder, 2002; Huo et al., 2012). Obviously, a 

necessary condition is that the path )(tx  must satisfy the 

classical Euler equation. 
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In our problem an analog of the integrand  is 
 

    nnfnCpetntntg t    )(.)()(),(, 

        (15) 

Therefore, n(t) must be a solution to 
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or 

 

      )()()(
)(

nCPe
dt

d

dn
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ndC
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(16) 

On simplification Equation (16) reduces to 

 

   )()()(
)(

nCP
dn

df
nCPnf

dn

ndC
 

 

or 
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






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dC

nCP

nf
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df

)(

)(
          (17) 

 
Equation (17) is an implicit equation describing the 
growth curve of the population yielding maximum 
economic revenue. If n   is the unique solution to 

Equation (17), then given an initial population 0)0( nn  , 

the optimal harvest policy may be stated as follows: 

Utilize the harvest rate )(th , that drives the population 

level )(tnn  towards n  as rapidly as possible. If 

maxh represents the maximum feasible harvest rate, then 

we have, 
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nnfor
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)()(
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        (18) 

 
In what follows, we shall apply Pontryagin’s maximum 
principle (Pontryagin et al., 1962) for optimal control 
theory. 
 
 
Pontryagin’s MAXIMUM PRINCIPLE 
 
Consider the differential equation 

 

 )(,,
)(

0 thntf
dt

tdn
 ,            (19) 



 
 
 
 
with initial condition 
 

0)0( nn              (20) 

 

where ),,(0 hntf  is a continuously differentiable function 

of three variables handnt, . The variable )(tn , 

which describes the state of system at time t , will be 

called the ‘state variable’, and the Equation (19) will be 

referred to as the ‘state equation’, and )(th as the ‘control 

function’. Further the terminal time T  will be called the 
‘time horizon’, and may become infinite in a problem. Any 

piece-wise continuous real-valued functions )(th defined 

for Tt 0 will be called an admissible control. For a 

given admissible control )(th , the solution to Equation 

(19) will be called the ‘response’. Finally, the condition 
 

TnTn )(             (21) 

 
will be termed as the ‘terminal control’, and a feasible 
control is one for which the response satisfies both the 
initial as well as the terminal condition. Now suppose that 
our objective functional is 
 

 
T

dtthtntghJ
0

)(),(,)(                  (22) 

 

where ),,( hntg is a given continuously differentiable 

function and )(tn denotes the response to the control 

function )(th . The maximum principle is most 

conveniently described in terms of the so-called 

Hamiltonian H defined by setting 
 

 
  )](),(,[).()(),(,

)();(),(,

0 thtntftthtntg

tthtntHH








        (23) 

       

where )(t is an additional unknown function, and is 

called the ‘ad joint’ variable in the optimal control theory. 
We now state the Pontryagin’s maximum principle 

(without proof): If )(th is an optimal control and )(tn is 

the corresponding response, then there exists an adjoint 

variable )(t such that the following equations are 

satisfied, for all t , Tt 0 : 
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    )();(),(),()();(),(, max
)(

tthtntHtthtntH
th

  .       (25) 
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The maximization is carried out over all admissible 

controls )(th . It is pertinent to note that Equation (25), 

factually tells that  
 

.0




h

H
            (26) 

 
Now the question is how to apply this principle to a 
concrete problem? Here we have three unknowns 

)(tn , )(th and )(t . For these three functions, we have 

three equations, namely: the state Equation (6) for )(tn , 

the adjoint Equation (24), and the maximum principle 
Equation (25) equivalently Equation (26). Furthermore, 
we have initial condition Equation (20), and the terminal 
condition Equation (21). Thus, in principle, adequate 
number of relations have been provided to find the 

unknown functions )(tn , )(th and )(t . In case of our 

problem it is not possible to provide the terminal condition 

)(Tn . But the function )(hJ , given by Equation (22) can 

be written as 
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or 
 

    dt
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   )(, nCpetnB t  
          (29) 

 

and 
dt

tdn )(
remains bounded for all times, that is, 

 

   tnB
dt

dn
tnA ,,  .            (30) 

 
Therefore, if we introduce 
 

)(th
dt

dn
 .             (31) 

 
Then   the    Hamiltonian    of     the    problem    becomes 
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 )(
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According to the maximum principle Equation (25), the 

optimal control )(th must maximize H  in Equation (32). 

If we define 
 

  )(,)( ttnBt   ,            (33) 

 

then )(th must satisfy 
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A control like )(th , which assumes these extreme values 

(condition Equation 30) is called a ‘bang-bang’ control, 

and for obvious reason )(t  is called the ‘switching 

function’. Whenever  )(t  vanishes, then 

 

 tnAH , ,            (35) 

 

that is, Hamiltonian is independent of the control )(th , 

and consequently the maximum principle does not 
specify the value of optimal control. The most remarkable 
case, the so called singular case, arise when 

)(t vanishes identically over some time interval of 

positive duration; thus, if  
 

  0)(,)(  ttnBt              (36) 

 

then the corresponding singular control  )(th  is 

determined as follows. Equation (36) yields 
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But Equation (37) can be directly derived from the 
Lagrange’s equation of the variational problem Equation 
(28). Hence Equation (37) is the equation of the singular 
path 

 
 
 
 

)(tnn  .            (38) 

 

Therefore, 0)( t  corresponds to the singular solution 

given by Equation (38). Thus the maximum principle 

implies that the optimal control 
dt

dn
h   for a linear 

problem must be a combination of ‘bang-bang’ and a 
‘singular control’. 
 
 
APPLICATION OF THE MAXIMUM PRINCIPLE TO 
FISHERY PROBLEM 
 

For our problem the Hamiltonian H  becomes: 
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Therefore, the switching function is given by 
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Consequently, the singular path 0)( t , gives 
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But this is precisely what is obtained on setting 0

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H
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Thus, 
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or 
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which is precisely Eq.(41). When )(Tn ; is not specified, 

we invoke the ‘free terminal-value condition’, which reads 
 

0)( T            (42) 

 

Now in our problem, since )(  nCp  the free-terminal-

value condition Equation (42) implies that we must leave 

the singular path 
 nn  before Tt  , while off the 

singular path we must use a ‘bang-bang’ control. 
Recalling that,  
 

max)(0 hth  ,            (43) 



 
 
 
 
and comparing Equation (43) with Equation (30), we get 
the optimal policy for harvesting via Equation (34), that is, 

as 0h  is not optimal, and maxhh  for Tt  , provides 

a positive contribution to present value. Therefore the 
policy should be: 
 

(i) Singular path    0h  for  0tt  ,    

(ii) Maximum harvest maxhh   for  Ttt 0 . 

 
 
CONCLUDING REMARKS  
 
In this paper, we have examined the generalization of 
Gordon-Schaefer fishery model from the economic 
perspective. In view of physical aspect, the harvest rate 
has been determined by the current stock size and the 
rate of harvesting effort. The linearity in effort facilitates 
the application of the maximum principle and for optimal 
control we have applied the Pontryagin’s maximum 
principle. In order to solve the proposed non-linear fishery 
model we have used the more powerful optimization 
techniques provided by the calculus of variation. We 
derived the conditions under which the system will exhibit 
optimality. The optimal control implies that, we should 
leave the singular path before the time horizon while 
harvesting is maximum near the final time because it 
provides a positive contribution to the present values. 
However, time near to time horizon provides a positive 
contribution to the present value.  
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