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This paper provides a parametric decomposition of output growth and total factor productivity changes, 
extending production approach to the case of non-neutral stochastic frontier. The results were based 
on unbalanced panel data from Ethiopian smallholder farmers observed over the period 1999–2015. The 
study decomposes output growth into input growth and total factor productivity changes while both 
were further decomposed into components. Output growth was decomposed into individual inputs 
contribution, whilst total factor productivity change decomposed into technical change, scale effect and 
technical efficiency changes. The empirical findings indicate output growth was mainly driven by total 
factor productivity changes (71%) while 22% attributed to input growth. Technical change found to be 
the main source of total factor productivity while scale effect also contributed significantly. Technical 
efficiency change was found to be the main source for the reduction of total factor productivity and so 
in output growth. The result indicates both changes due to inputs use and farm-characteristics were 
found the most important, in explaining technical efficiency changes, cancelling the negative impact 
due to autonomous changes and environmental factors. The finding implies there are total factor 
productivity changes and the output growth in cereal farming is mainly driven by technical change, 
suggesting policies aim at enhancing technology adoption and investment in modernizing agriculture 
are significantly effective. Thus policies directed toward enhancing agricultural technologies that 
improve technical change, enable farmers to benefit from scale of operations and their best practice 
form essential part of the overall agricultural policies. 
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INTRODUCTION 
 
As accumulating factor of production and productivity 
growth, appears among the major determinants of 

economic growth; enhancement in production efficiency 
and total factor productivity (TFP) are probably the key  
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elements that can ensure a continuous economic growth 
with a relatively low cost. Particularly in agrarian society, 
production performance study is an important indicator 
for the analysis of the overall economic growth, provides 
society with an opportunity to increase people’s welfare 
and global competitiveness. Production performance 
analysis is an important field of research with possible 
implication in the discussions on food security and 
poverty alleviation, especially in the developing world. 
Besides a high rate of factor productivity growth in the 
agricultural sector is a necessary presupposition for a 
self-sufficient economy, at least in insuring own food 
security. Moreover, the raising of unemployment in a 
country in combination with the increase of population 
requires, necessarily, a growth in agricultural production 
and its productivity. It is, therefore, worthwhile to ask: 
What determinants should policymaking focus on to 
enhance productive efficiency and TFP growth. Analyzing 
farm production performance, identifying the sources of 
TFP growth and inefficiencies is an important step 
forward to assess the developmental role of agriculture in 
developing agrarian economies, like Ethiopia. 

Agricultural sector plays an important role in overall 
economic growth in Ethiopia (World Bank, 2017), and it 
has significant spillover effects on the other sectors of the 
nation as well. Agriculture accounts for 38.5% of the 
country’s gross domestic product (GDP), up to 81% of 
total export earnings and provides livelihood to more than 
83% of the population (African Development Bank 
[AfDB], 2018). Despite frequent droughts and traditional 
farming practices in the country, Ethiopia has huge 
agricultural potential due to its ample arable land, an 
abundant workforce and diverse Agro-Ecological Zones 
(Beyan et al., 2013). The country’s agriculture is known 
by low productivity, caused by an adverse combination of 
demographic, institutional constraints including 
environmental factors. In the country’s crop production, 
mainly by the smallholder farmers, who provide the major 
share of the agricultural output; commonly employ 
backward production technology and limited modern 
inputs. Ethiopia’s grain crop production is mainly 
dominated by cereal farming which is the most vital crop 
in the country; as the major food crop; comprise about 
two-third of the agricultural share of GDP and one-third of 
the national GDP. Ethiopia’s agricultural sector is 
characterized by inefficiencies and heterogeneous 
increase in TFP growth in which cereals have shown a 
steady low productivity growth rate in recent decades; is 
one of the main challenges facing the country (AfDB, 
2018). These underline the importance of assessing farm 
performance; with a potential policy implication is an 
important issue for such an agrarian country with a food 
deficit gap and limited capacity for adopting new 
technologies, is not a matter of choice but is instead a 
must.  

Several studies have been done on farm performance 
in Ethiopian agriculture;  however,  few  of  these  studies 
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have linked productive efficiency to TFP growth 
decomposition. More importantly most studies have paid 
relatively little attention to connect efficiency analysis to 
output/TFP growth and its determinants while explaining 
TFP growth analysis in Ethiopian agriculture including the 
cereal subsector (Yohannes, 2016; Gebreegziabher et 
al., 2013). Moreover, most studies on crop productivity 
and efficiency in the country are outdated and have 
ignored unobserved heterogeneity and weather factor 
effects in productivity and efficiency analysis. Beside, 
results from previous performance studies have shown 
that methodological approaches (estimation techniques) 
and other study-specific characteristics (functional form, 
sample size, dimensionality, and geographical region) 
could affect the empirical estimates of productivity growth 
and efficiency analysis. In assessment of the farm 
performance, approach to use, which is the mainstay 
methodology of analysis, it is not distinguished to focus 
on the analysis of TFP or on the analysis of technical 
efficiency, but could be both. For instance, the 
conventional index number approach to the analysis of 
TFP cannot distinguish between a shift of production 
function (technical progress) and a movement along a 
production function (technical efficiency). In contrast the 
econometric approach is a flexible technique not only for 
identifying the sources of output growth and TFP 
changes but also for considering the technical efficiency 
of farms by explicitly specifying the underlying production 
structure. Therefore, it requires assessing level of 
productive efficiency and TFP growth as well as knowing 
root cause of their differentials in Ethiopian cereal 
farming. Along these lines, this paper provides a 
parametric decomposition of output growth and TFP 
change, extending the production approach to the case of 
non-neutral stochastic frontier that incorporates technical 
inefficiency. The empirical results were based on 
unbalanced panel data of Ethiopian smallholder cereal 
farmers observed during the 1999-2015 cropping period. 

The paper used a  Stochastic Frontier Analysis (SFA) 
applying recently developed- a four-component error 
panel data stochastic production frontier (SPF) model 
due to Kumbhakar et al. (2014), distinguished between 
farm-heterogeneity, persistent and transient  
inefficiencies and random error components. The model 
has an advantage over the traditional approaches by 
separating time-invariant heterogeneity from inefficiency. 
Accordingly, after estimating technical efficiency 
components, we decomposed output growth and TFP 
changes following Kumbhakar (2000) and other related 
growth decomposition approaches. In particular we 
utilized Karagiannis and Tzouvelekas (2005) who 
extended the earlier methods and adapted to the 
parametric approach for the decomposition of output 
growth and TFP changes to the case of non-neutral SPF. 
Consequently, output growth is decomposed into input 
growth (size effect) and TFP growth, and each was 
further decomposed into several components. The output  
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growth is decomposed into individual inputs contribution 
while TFP growth was decomposed into the technical 
change (TC), scale effect (SE) and technical efficiency 
changes (TECs). Within the proposed formulation, 
however, the TEC effect itself is attributed not only to 
autonomous changes (passage of time) but also 
attributed to change due to inputs use, change due to 
farm specific-characteristics and change due to 
environmental factors. Thus, the TECs in turn are 
decomposed into four components: (a) change in 
passage of time, (b) change in inputs use, (c) change in 
the farm-specific characteristics and (d) change in 
environmental factors.  

The study contributes to the existing literature and 
provides valuable information on the country’s farming 
performance. Apart from analytical reasons, having farm-
heterogeneity disentangled estimates and information 
about persistent and transient components of inefficiency 
is important; as each component provides different 
information with different policy options. Furthermore, 
appropriately quantifying the sources of output growth 
and TFP changes is also important for analyzing a 
sector’s long-term prospects and policy-related issues. 
The greater the portion of output growth attributed to TFP 
is, the better the long-term prospects for farm production 
are, as the size effect (input growth) is considered a 
costly source of growth; whereas TFP is costless, at least 
from farmers’ point of view. In addition, the relative 
importance of each TFP component is by itself 
informative as the factors (and seemingly the policies) 
affecting the various sources of TFP growth are not 
necessarily the same. For example, as stated in 
Karagiannis and Tzouvelekas (2005); R&D has a 
considerable impact on the TC effect but it rarely affects 
TECs. In contrast, for instance, agricultural extension 
service may have an effect both through its impact on the 
rate of diffusion and by improving farmers’ managerial 
and organizational ability. Hence, if the driving forces of 
growth are to be taken into account in shaping 
development policies, then decomposition analysis could 
provide some useful insights. To the best of our 
knowledge, this is the first paper that examines output 
growth as well as decomposes TFP growth into TC, SE, 
and TEC with further decomposition of TECs in turn into 
four components, for Ethiopian cereal farming. 
 
 
MATERIALS AND METHODS  
 
Brief overview of stochastic production frontier model with 
four-error components 
 
The method used in this paper is basically drawn from Kumbhakar 
et al. (2014) and Karagiannis and Tzouvelekas (2001, 2005). The 
recently introduced penal data SPF models (Kumbhakar et al., 
2014) are extended to include four-component error terms in which 
technical efficiency and technological progress vary over time and 
across production units. Consider that, there are sample data on N-
farmers operating in time period t that utilize various inputs to 
produce   a   non-negative   farm   output    through    a   technology 

 
 
 
 
described by a well-behaved production frontier. The specification 
of panel data versions of the 1990s SPF model can be generally 
written as: 

 

   (1) 

 
where, i = 1, . . . , N denotes observations  is an index for i

th 
farmer 

and t = 1, . . . , T denotes time period t. Yit  is output produced by 
farmer i at time period t while Xit is a (1 × k) vector of input variables 

of the i
th
 farmer at time period t. f (xit, t; ), the SPF, where t is a 

time index that serves as a proxy for TC and β is a (k×1) vector of 
unknown parameters to be estimated. The term: θit, is a “stochastic 
composed error term; where, the ηit ≥ 0 is technical inefficiency term 
of individual i; and εit is a symmetric random error that accounts for 
statistical noise term. However, a number of SPF models in panel 
data have been developed successively giving rise to alternative 
measures of technical inefficiency. Kumbhakar and Heshmati 
(1995) interpreted τit ≥ 0

 
as time-varying technical inefficiency and 

added an extra component i ≥ 0 to represent persistent 
inefficiency. The persistent component is consistent with the models 
used in the 1980s (Schmidt and Sickles, 1984), whereas the time-
varying component is consistent with the models developed in the 
1990s (Battese and Coelli, 1992). On the other hand, recently a 

philosophical question about the way of interpreting i has been 

raised -- should one view it as persistent inefficiency as in 
Kumbhakar and Heshmati (1995) or as firm-heterogeneity that 
captures the effects of (unobserved) time-invariant covariates that 
have nothing to do with inefficiencies as in Greene (2005a, 2005b). 
More recently Kumbhakar et al. (2014) and others introduced the 
first panel data SPF model including the arguments (heterogeneity 
and persistent inefficiency) by splitting the error term into four-
components  persistent inefficiency, transient inefficiency, random 
farm-heterogeneity and the random noise; thus decomposed the 

error term in equation (1) as: itiititiit andu    to 

obtain a model: 

 

   (2) 

 
The model in (2) can be written as:

 

itiitiitit uxy  0  after taking logarithms 

of both sides; where, yit is logarithm of the output variable, xit is 

logarithms of the input variables. The parameter 0 is a common 

intercept; μi is a farm-specific effect that captures time-invariant 
farms’ heterogeneity (e.g. soil quality), which has to be 
disentangled from persistent individual effects (e.g. skill of the 

farmer). The term it
 
is the random noise term, while the non-

negative terms i and uit capture persistent inefficiency and 
transient inefficiency effects, respectively. 

The SPF model in (2) due to Kumbhakar et al. (2014) refers to as 
the Generalized True Random Effects (GTRE) model because it is 
a generalization of the true random effect model. A model can be 
estimated assuming that either the inefficiency component (uit) is a 
fixed parameter that directly influences the dependent variable (the 
fixed-effects model) or assuming that the inefficiency component 
(uit) is a random variable that has a correlation with the independent 
variables (the random-effects model).  

 
 
Theoretical framework: Decomposing output growth and TFP 
changes  

 
To    decompose    output   growth   and   TFP   changes,   following 

 

         )1()exp(;,)exp(;, itititititit tXftXfY    

     )2()exp(;,)exp(;, itiitiitititit utXftXfY  



 
 
 
 
Kumbhakar (2000), based on the specification of Kumbhakar et al. 
(2014) and the methods of Alexander et al. (2015) and Karagiannis 
and Tzouvelekas (2005), we adopted the parametric approach to 
the case of non-neutral SPF. Consider a panel data production 
function of single production output, with the deterministic 
production frontier part of (2). Since farmers are not necessarily 
technically efficient, Yit ≤ f (Xit; t). Hence, based on Farrell’s, 1957 
the output-oriented measure of technical efficiency of a producer at 
a certain point in time can be expressed as the ratio of actual output 
to the maximum potential output; given as TEit (Xit; t) = Yit / f (Xit; t), 
where 0 < TEit (Xit; t) ≤ 1. Now in order to compute the output 
growth, we rewrite the above productive efficiency expression as in 
Equation 3:   
 

                                                (3) 
 

By omitting the “it” subscripts for simplicity, taking logarithm of both 
sides of Equation 3 and totally differentiating with respect to time, 
we obtain: 
 

 
 

which can be rewritten as 
 

 
 

Now let y = lnY and similarly x = lnX and denoting the growth rate of 

a variable Z, by z - that is, z = ∂ lnZ/∂t; equivalently we have: 
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where, ttxftxT  /);(ln);( is the technical change (TC),
 

tuttxTEtxET  //);();(  is the technical efficiency 

change (TEC), and jj xtxftx ln/);(ln);(  is the output 

elasticity of the j
th
 input.

 
Now we include a vector of farm-specific 

characteristics and vector of environmental factors in the above 
formulation to extend our model to correspond the Huang and Liu 
(1994) model. For this let

 
)...,,(&)...,,( 11 km wwwzzz  are the inefficiency 

effects vectors; includes a vector of farm-specific characteristics 
and vector of environmental factors, respectively. Hence following 
Karagiannis and Tzouvelekas (2005), (3) above can be rewritten 
as: 

 

                                               (4) 

 
So by making necessary rearrangement and substitutions; and 
taking logarithm of both sides of (4) and differentiating with respect 
to time, we obtain an extended form of decomposed output growth 
which has a form of:  

 (5) 

 
Now following Kumbhakar (2000) to decompose TFP into 
components, we defined TFP growth as output growth unexplained 
by input growth; that is, 
 

                                             (6) 
 
This is a conventional Divisia index of productivity change defined 
as the difference between the rate of change in the output and the 
rate of change in the input quantity index. Substituting this index 

into  Equation 5, that is replacing y  in Equation 6 with Equation 4, 

the TFP growth in Equation 5 can be rewritten as: 

 (7) 
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Equation 8 is the TFP change, in which TFP changes may be 
attributed to three sources: the TC effect; scale effect and TEC 
effect (the sum of the last four terms). Thus, in decomposing the 
TFP changes as in Equation 8: (i) The first term on the right-hand 
side (RHS) measures the TC effect that relates to the technological 
progress, including not only advances in physical technologies, but 
also innovation in the overall knowledge base that leads to better 
decision making and planning. The technological progress is 
positive (negative) under progressive (regressive) TC, respectively 
or vanishes when there is no TC. 

 

(ii) The second term on the RHS 
measures the SE that refers to the proportionate increase in output 
due to proportionate increase in all inputs in the production process. 
Note that the sign of SE depends on both the magnitude of the 
inputs elasticity and the changes of the aggregate input over time. It 
is positive (negative) under increasing (decreasing) RTS as long as 
input use increases and vice versa. This term vanishes when either 
the technology is characterized by constant RTS. (iii) The remaining 
terms (last four terms) on the RHS constitute the TEC measure, 
which contributes positively (negatively) to TFP growth as long as 
efficiency changes are associated with movements towards (away 
from) the production frontier. Thus, what really matters is not the  
 

 
 
 
 
degree of technical efficiency per time, but its changes overtime. 
That is, even at low levels of technical efficiency, output gains may 
be achieved by improving resource use. These TECs may be due 
to four factors: changes due to passage of time, due to input use, 
due to the farm-specific characteristics, and due to environmental 
factors; the third, fourth and last terms in the RHS of Equation 8 
respectively.  

These four terms are closely related to the form of the production 
frontier. If it is specified as non-neutral SPF, which is the most 
general formulation, all of these terms are relevant and should be 
taken into account. If instead a neutral SPF is assumed, the fourth 
term vanishes and then there are two alternatives. If technical 
efficiency is specified as a technical inefficiency effect model 
(Battese and Coelli, 1992), both the third and the fifth term should 
be considered, but if technical efficiency is modeled as a pure time-
varying process, following the specifications of Kumbhakar (1990) 
only the third term should be taken into account. To extend the 
above non-neutral parametric approach decomposition of TFP 
changes, to similar decomposition of the output growth, we include 
the input growth to Equation 8. Thus the output growth 
decomposition format will be given by: 

                                            (9) 
 
Where; the last term in Equation 9 refers to the size effect that 
captures the contribution of aggregate input growth (factor 
accumulation) to output growth. Output increases (decreases) are 
associated with increases (decreases) in the aggregate input, 
ceteris paribus. Also, the more essential an input is in the 
production process, the higher its contribution is on the size effect. 
Thus, within Equation 9, however, TECs are attributed not only to 
change components presented in Equation 8 but also to changes in 
input use. A very different relationship has been used in previous 
studies to decompose output growth, simply by focusing on rate 
change of output under constant RTS; namely: 

 

 (10) 

 
This approach is a step back from the TFP changes, but it might be 
easier to explain and is, perhaps, more intuitive; due to its restrictive 
version of Equation 9 in the sense that it implicitly assumes (i) a 
neutral SPF, (ii) a pure time-varying specification for the technical 
inefficiency model, and (iii) a constant RTS technology. Thus, 
Equation 9 and 10 would yield very different results concerning the 
sources of output growth. Specifically, the relative contribution of 
TFP to output growth is overestimated (underestimated) when 
Equation 10 is employed and decreasing (increasing) RTS prevail; 
whereas the opposite is true for the size effect. Based on Equation 
9, RTS and the rate of TC can be calculated as: 
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(11)  

 
Note that, the TC in Equation 11 consists of two parts; the 

pure/neutral TC: (t +ttT) and the non-neutral TC: ( jt lnXjit) parts. 
Pure TC refers to neutral shift of the production function due to time 
alone, non-neutral TC means input-biased TC. 

Lastly, following Wang and Schmidt (2002) the components of 
the TECs - Change due to passage of time (TECT), changes due to 
farm-characteristics (TECZ), changes due to environmental factors 
(TECW) and changes due to inputs (TECX) are computed 
respectively as: 

 

  (12) 

 
The above relationships, Equations 9 to 12 are used to implement 
the decomposition of TFP changes and output growth.

  
 
The empirical model and estimation approach 

 
For the estimation purpose, given the SPF in model (1), we 

approximate the underlying technology
 

);( itxf  using a translog 

(TL) functional form; a technology that commonly has been 
preferred as a more flexible form that allows for interaction of 
inputs. Thus; we estimate a SPF panel data model using 
specification:  
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                                   (13) 
 

where: itYln is the logarithm of output of farmer i, in time period t. 

itXln is a vector of logarithm of inputs. T is a time trend and βs 

are unknown parameters to be estimated. it , is a stochastic 

composite error term; that can be decomposed as:

).()( itiitiititit u 
 

To specify the determinants of transient inefficiencies we make 
the variance parameters of uit function of the determinants. In 
modeling uit, it is assumed that the mean of the pre-truncated 
distribution depends on both input use and farm-specific 
characteristics assuming a homoscedastic distribution for the 
variance parameter. For this, following Karagiannis and 
Tzouvelekas (2005), we implemented inefficiency effect model that 
corresponds to a non-neutral SPF model (Huang and Liu, 1994). 
Thus the inefficiency term uit  as explained in  Equation 1 is given 
as: 
 

   (14) 
 
Where:  uit refer to farmer’s transient inefficiency indices as 
estimated by SPF model; Z, E and X represent vectors of 
independent variables assumed to influence transient inefficiency. 
The variable Zit denotes a vector of (farmer as well as farm-specific 
characteristics); Eit is a vector of environmental factors; Xit denotes 
the vector of production inputs. The terms δ's are the inefficiency 
parameters to be estimated, and wit is the corresponding statistical 
noise. 

After substituting Equation 13 and (14) into Equation 1) the 
resulting model is estimated using fixed‐effect model which allows 
addressing the influences of omitted variables and provides 
consistent estimators (Baltagi, 2008). For estimation purpose we 
used multi-stage maximum likelihood estimation (MLE) method 
(Kumbhakar et al., 2015) to obtain estimate of efficiency 
components and compute marginal effects of the determinants of 
each type of inefficiency. Hence, in the one-stage approach, all 
parameters – frontier production in Equation 13 and inefficiency 
effects in Equation 14 are estimated simultaneously. It uses three 
steps to estimate the model, initially by rewriting the model in 

Equation 2
 itiitiitit uxy  0  as 

follows:  
 

  itiitxfy  );(0
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while αi and ε
*
it have zero mean and constant variance. Here, the 

newly rewritten model can be estimated in three steps as follows: 
The first step includes a standard random effect panel regression to 
estimate β and predict the values of αi and ε

*
it. In the second step, 

the time-varying technical efficiency is estimated using the 
predicted value of ε

*
it from previous step by assuming

),0(~
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 Nit and ),0(~
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uit Nu 
. This procedure 

predicts the residual (transient) technical inefficiency index following 
Jondrow et al. (1982) or residual technical efficiency (RTE) index 

and marginal effects (MEs) using Battese and Coelli (1988):
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In Step 3, following a similar procedure as in Step 2, η𝑖 is used to 
obtain the persistent technical efficiency (PTE) estimates and the 
corresponding inefficiency effects parameters simultaneously. For 

this, the best linear predictor of )( iiii E   is 

estimated by assuming ),0(~),0(~
22
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and applying standard half-normal SFM in a cross-sectional setting. 

The persistent technical inefficiency (i) is obtained through 
Jondrow’s estimator and PTE index and MEs can be estimated 

using the BC formula: ).ˆexp( iPTE   Finally the overall 

technical efficiency (OTE) is then obtained from the product of 

persistent and residual efficiencies, that is, 
itiit RTEPTEOTE  . 

 
 

DATA AND THE STUDY VARIABLES 
 
The data and description of variables of the study 
 
This study employed panel data from the Ethiopian Rural 
Household Survey (ERHS) data of 4-rounds in years 
1999, 2004, 2009 and 2015 collected from local Farmers 
Associations (FAs). The ERHS data were collected from 
randomly selected farm households in rural Ethiopia. It 
includes farm production and economic data collected 
from local FAs that were selected to represent the 
country’s diverse farming systems. Moreover, important 
weather data; monthly average observations of rainfall 
and maximum and minimum temperature were obtained 
from Ethiopian Meteorology Authority from years 1994–
2015 collected in stations close to the study villages. 
 
 

Study variables 
 

The output variable contains the value of cereal outputs, 
which combines aggregate cereal crops output measured 
in Ethiopian Birr (ETB) used as dependent variable for 
the frontier function. The input variables include 
conventional agricultural inputs: farm labor employed 
measured in Man-Day Units (MDUs); cereal sown 
farmland in hectares; amount of fertilizers used in 
kilograms; agricultural machinery implements in ETB; 
livestock ownership in Tropical Livestock Units (TLUs) as 
a proxy for wealth and livestock asset endowments; agro-
chemicals in ETB including pesticides, herbicides and 
insecticides; and oxen as animal draft power in number of 
the oxen owned as these are used during land 
preparation and harvesting periods; as the country’s 
farming is mainly traditional. All monetarily measured 
variables were transformed to fixed ETB prices. In 
addition, we also included sets  of  inefficiency  explaining
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Table 1. Summary statistics of continuous variables. 
 

Frontier 
variables 

Mean SD Min. Max. 
Inefficiency 
variables 

Mean SD Min. Max. 

Output 1.952 2.682 34.0 51.100 Aver. Rainfall (AMP) 82.1 26.9 47.5 145.9 

Fertilizers 116.1 138.9 0.1 1.400 Aver. Temp. (AMT) 18.5 3.5 13.2 23.9 

Agrochemicals 133.9 447.2 0.01 8.560 Rainfall Variation 0.02 0.01 0.01 0.03 

Labor  342.6 714.2 3.0 8.333.9 Temp. Variation 6.1 3.03 1.9 14. 

Machinery 336.7 1.776 0.5 36.540 Household’s size 5.8 2.7 1.0 18.0 

Livestock 6.5 5.9 0.01 58.8 Number of plots 3.6 2.5 1.0 16.0 

Oxen 1.8 1.3 0.01 9.0 Head’s age 51.2 15.4 18.0 103.0 

Farm-area  1.7 1.2 0.02 11.0      
 

Source: Author’s calculations. 

 
 
 

Table 2. Summary statistics for inefficiency effect dummy (1 = yes) variables. 
 

Variable Percentage Variable Percentage Variable Percentage 

Credit-access 52.25 Tertiary-schooling 1.03 Remittance 18.51 

Head’s-gender (female) 23.42 Soil-conservation 39.87 Irrigation 19.42 

Primary-schooling  40.17 Water-harvesting 26.58 Off/non-farm 31.25 

Secondary-schooling. 7.90 Agricultural-extension  38.29 If any ox 80.64 
 

Source: Author’s calculations. 

 
 
 
variables. Based on the existing literature source of 
technical inefficiency includes farmer-specific 
characteristics (e.g., education, age, gender, and farming 
experience); household physical endowments (e.g., farm-
size and family-size); and access to agricultural extension 
and credit use, adoption technologies and environmental 
(weather/ecological) factors. Besides the time trend 
variable is also included both in the production as well as 
the inefficiency functions. The time trend variable in the 
production function represents the rate of TC; while the 
time trend in the inefficiency function represents changes 
in technical inefficiency over time. 

The weather dataset contains Annual Mean 
Precipitation (AMP) measured in millimeters (mm) and 
Annual Maximum Temperature (AMT) in degree Celsius 
(°C) and their variability (measured by their coefficients of 
variation). AMT is based on two indicators: Monthly Mean 
Temperature (MMT) and the Diurnal Temperature Range 
(DTR). MMT is calculated as the median between the 
observed monthly maximum and minimum temperatures, 
whereas DTR is the difference between the monthly 
temperatures. Finally, AMT is calculated by adding half of 
DTR to MMT (Harris et al., 2014) and is used as a 
measure of extreme temperature because it captures 
temperatures at a time when evaporation is higher. In 
addition to the mean of the weather variables, following 
Barnwal and Kotani (2013), we used coefficient of 
variation, which is a measure of monthly deviation within 
a year to capture variability. Annual climatic  data  for  the 

weather variables in the study were calculated as the 12-
month average (Harris et al., 2014). The summary 
statistics of the data is provided in Tables 1 and 2. Table 
1 shows that the sampled farmers produced an average 
of 19.52quintals of cereal with the largest producer 
producing 511quintals of cereals. 

As evident from the table, there was relatively little use 
of cultivated farmland which is typical of smallholders, 
cereal farming and considerable variations in the amount 
of inorganic fertilizers, agro-chemicals, and machinery 
implements and farm-labor use patterns. For such 
production the farmers cultivated cereal on average of 
1.8 ha. The farmers used an average of 342 MDUs of 
labor, ranging from 3 to 8,334 MDUs; which may reflect 
the fact that cereal production is labor intensive in 
Ethiopia. Fertilizer application was minimal with an 
average of 116.1kg; while their average expense for 
agrochemicals and machinery use was 133.9 and 336.27 
ETB respectively. The livestock ownership was on 
average 6.5 TLUs while oxen ownership was around 
1.8meaning almost two oxen per farmer, ranging from no 
ox to 9 oxen. 

To describe some of farm-specific characteristics, as 
can be observed from tables, male-headed households 
constituted 76% of the total sample. Average farmers age 
was 51 years ranging from 18–103 years while 
household-size ranged up to 18members, with a mean of 
six members. Looking at the weather variables in the 
study   area,  we  find  that  average  annual  rainfall  was  



 
 
 
 
82.1 mm ranging from 47.5-145.6 mm while the average 
temperature was 18.48

o
C ranging from 13.16-23.96°C. In 

sum the climate/weather data show a significant declining 
trend in average rainfall and warming trends in the 
temperature variable annually during the study period. 

Extension participation was represented by extension 
visits per week/month in which the farmers reported 
contact with extension agents. Accordingly, about 38% of 
the farmers reported contacting with extension agents, 
seeking agricultural advisory services. Almost half of the 
sampled farmers had access to credit while 19% of them 
obtained remittances from different sources. Female-
headed households constitute about 24% of the total 
sample. About 40% of the sample farmers adopted soil 
conserving technologies while 26.6% of them were 
involved in water harvesting activities and 19% of them 
used irrigation for cropping. Moreover, 19% of them used 
irrigation for farming. The educational level of the 
household head also varied over the years with mean 
schooling of five years. About 43.44% of them had 
attended formal schooling ranging from primary level to 
tertiary level; out of which 40% had completed primary 
level; 7.9% secondary; and only 1% had completed 
tertiary schooling. 
 
 
ESTIMATION RESULTS AND DISCUSSION 
 
The SPF parameter estimates 
 
The estimated parameters of the SPF obtained from 
simultaneously estimating the TL-functional form and 
inefficiency models are presented in Tables 3 and 4 
respectively. Prior to estimation, we performed Hausman 
test (Wooldridge, 2002) to see if the unobserved-effects 
were best treated as fixed or random-effects. The result 
revealed that the fixed-effect provides a consistent 
estimation as compared to random-effect. Accordingly, 
we report fixed-effect estimation, with robust standard-
error to diminish the heteroscedasticity problem. 

As shown in Table 3, although the parameters from TL 
function do not have any direct economic interpretation, it 
is interesting to note that most of the estimated 
parameters are significantly different from zero at the 5% 
or lower significance level. This indicates the fit of the 
model is very good. Moreover, the estimated parameters 
could be used in conjunction with the estimated technical 
inefficiency to estimate additional measures of interest, 
such as TC, RTS, and TFP growth. Further, the 
estimated parameters satisfied all production economic 
theory regularity conditions which require the estimated 
first-order parameters to be non-negative and less than 
one, whereas the bordered Hessian matrix of the first and 
second-order partial derivatives was negative semi-
definite and so they are valid at the point of 
approximation.  

The goodness of fit measured either by  the  R-squared 
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or log likelihood function, is satisfactory in the models 
indicating that the proposed model is a good 
representation of the data-generation process. Moreover, 
the parameter γ associated with variances in SPF, is 
highly significant, revealing that a great percentage of the 
disturbance term is due to the presence of technical 
inefficiency. The results indicate that inefficiency effects 
did make a significant contribution to the level and 
variations in cereal production in the study area. Hence, 
differences in technical efficiency among farms are 
relevant for explaining output variability in cereal growing 
farmers. Concerning the other estimated parameters, the 
majority of coefficients in the SPF are significant at 
conventional levels. Indeed, some of the interaction and 
squared terms turned out to be insignificant, due to the 
nature TL estimation. However, it is widely recognized 
that in TL, there is high level of multicollinearity due to the 
interaction and squared term, which causes certain 
estimated coefficient to be insignificant. Estimates of the 
trend and its squared term were significantly positive at 
1% level showing that cereal farmers experienced a 
technical progress with an increasing rate over time.  
 
 
Technical inefficiency effects 
 
Empirical finding concerning the sources of efficiency 
differentials is presented in Table 4. The MLE’s results on 
inefficiency effects show that transient inefficiency was 
positively and significantly affected by the age, secondary 
schooling and extreme temperature variations. The age 
of the farmer, as a proxy of experience and learning-by-
doing, is one of the factors enhancing efficiency, while 
the negative sign of the squared term supports the notion 
of decreasing returns to experience. Schooling helps 
farmers to use information efficiently since a better 
educated farmer acquires more information and is able to 
produce more from a given input vector. However, 
inefficiency was negatively and significantly related to the 
gender, household-size and number of plots. It was 
negatively and significantly related to remittances, annual 
average rainfall and average extreme temperature levels. 
Hence, an increase in these factors, ceteris paribus, led 
to an increase in efficiency during the period. Similar 
results were found by Madau (2011) and Bamlaku et al. 
(2009). 

Interpreting the magnitude of the marginal effects of the 
MLE results, we find that the marginal effect of head’s 
gender on the technical inefficiency was negative, the 
mean being about 0.06. Thus inefficiency was reduced by 
6% for a 10-point increase in the household head’s 
gender. Similarly, an increase in the share of household 
size and number of plots by one percent reduced 
inefficiency by 0.011 and 0.019% respectively. On the 
other hand, a 1 year increase in the age of the household 
head and secondary educational level, on average, 
increased inefficiency by 0.015 and 0.095% respectively. 
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Table 3. Parameters from the TL production frontier. 
 

Parameter Estimate Rob. SE Parameter Estimate Rob. SE Parameter Estimate Rob. SE 

β0 5.002
***

 0.419 βFM -0.002 0.004 βWA 0.002 0.018 

F 0.024 0.050 βFW -0.010
**
 0.004 βOA 0.010 0.035 

βP 0.020 0.030 βFO 0.016
**
 0.009 βtF -0.013 0.010 

βL 0.369
***

 0.119 βFA 0.020
*
 0.013 βtP -0.003 0.006 

βM 0.280
***

 0.065 βPL 0.001 0.005 βtL -0.130
***

 0.021 

βW 0.057 0.070 βPM -0.006
*
 0.003 βtM -0.016 0.015 

βO 0.109 0.122 βPW 0.008
**
 0.004 βtW 0.002 0.013 

βA 0.456
**
 0.180 βPO -0.020

***
 0.006 βtO 0.020 0.022 

βFF -0.002 0.010 βPA 0.001 0.009 βtA 0.092
***

 0.032 

βPP 0.005 0.007 βLM 0.032
***

 0.008 βt 0.498
***

 0.164 

βLL -0.027 0.023 βLW 0.014 0.011 βtt 0.418
***

 0.053 

βMM 0.059
***

 0.013 βLO -0.020 0.020 
R

2
 

Within 0.761 

βWW 0.025
**
 0.010 βLA -0.045 0.029 Overall 0.704 

βOO 0.084
**
 0.046 βMW 0.002 0.006  ζu 0.613 

βAA -0.066 0.069 βMO -0.004 0.011  ζv 0.744 

βFP 0.001 0.002 βMA -0.009 0.016  γ 0.406 

βFL 0.006 0.008 βWO -0.012 0.013    
 

*P <0.05, **P <0.01 and ***P <0.001.  Subscripts on β coefficients refer to inputs: F = Fertilizers;  P = Agrochemicals; L = Labor; M = Machinery; 
W = Livestock; O = Number of oxen; A = Farm-area. 

 
 
 

Table 4. Technical inefficiency effects result. 
 

Variable Coef. SE MEs Variable Coef. SE MEs 

Farm-specific factors 

Head’s-gender -0.314* 0.18 -0.061 Secondary-schooling 0.485* 0.282 0.095 

Head’s-age 0.075** 0.031 0.015 Tertiary-schooling 0.396 0.7 0.077 

Age sq. -0.061** 0.029 -0.012 Credit-access 0.056 0.149 0.011 

Household-size -0.052* 0.033 -0.010 If any ox  -0.234 0.181 -0.046 

Primary-schooling  -0.006 0.162 -0.001 Remitances -0.387* 0.222 -0.075 

        

Adoption technologies 

Number of plots  -0.097* 0.054 -0.019 Irrigation -0.213 0.219 -0.042 

Soil-conservation -0.205 0.166 -0.04 Off/non-farm  0.113 0.165 0.022 

Water-harvesting -0.273 0.189 -0.053 Ext. services -0.237 0.159 -0.046 

        

Weather factors 

PRECIP -0.076** 0.03 -0.015 Rainfall variation -59.151 67.514 -11.54 

 AMT -1.806** 0.843 -0.352 Temp. variation 0.323*** 0.113 0.063 

Constant -1.29*** 0.068  Log LH -1512.15   
 

*: p<0.05; **: p<0.01; ***: p<0.001. 

 
 
 
Technical efficiency scores 
 
Estimates of technical efficiency scores in the form of 
percentage distributions are reported in Table 5. The 
persistent technical efficiency component is found to be 
about 80%, on average with a less dispersion. On the 
other hand, the transient technical  efficiency  component 

is found to be quite low, scoring mean of 71%. This 
variability between persistent and transient efficiency 
scores which is in line with the findings of Kumbhakar et 
al. (2014) and Filippini and Greene (2016) clearly 
demonstrates the existence of significant farm-
heterogeneity in the sample and should be considered in 
efficiency modeling and specifications. As the combination 
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Table 5. Distribution of technical efficiency scores. 
 

Parameter Mean Std. Dev. Min Max 

Transient Technical Efficiency 0.71 0.12 0.05 0.93 

Persistent Technical Efficiency 0.80 0.05 0.56 0.92 

Overall Technical Efficiency 0.57 0.10 0.03 0.80 
 

Source: Author’s computation. 

 
 
 
of the two efficiency components, estimate of the overall 
technical efficiency shows a mean score of 57% during 
the period, whilst most farms in the sample (65 to 81%) 
have achieved technical efficiency scores greater than 
75%. 

The overall implication of these results for overall or 
each year is that the cereal farmers were technically less 
efficient. Since technical efficiencies scores were 
calculated as an output-oriented measure, results 
indicate that there was room for improvement, and output 
could have increased substantially if inefficiency was 
eliminated. Meaning that, the farmers could be able to 
increase their output by about 43% using their resources 
more effectively. Expressing in other way, a 43% 
increase in total output could have been achieved during 
this period by decreasing proportionally the quantity of 
inputs used without altering the total volume of 
production.  
 
 
Output and TFP growth decomposition results 
 
The decomposed components of output growth and TFP 
changes of the cereal farmers over the period of 1999–
2015 are presented in Table 6, where the first two 
columns are based on Equation 9 and the last two on 
Equation 10. In each case, the average annual rate 
change during the period under consideration is reported 
first, followed by the relative contribution of each effect to 
the observed output growth and TFP changes. TFP is 
then decomposed into its three main components, 
namely, TC component which is dominated by the time 
trend effect, the TECs and the SE components. The first 
two components further decomposed into several sub-
components such as contributions from different 
technology shifters. In particular, the TC effect has 
decomposed into sub-components such as neutral and 
biased components. The TECs has decomposed into 
sub-components such as contributions from autonomous 
change; change due to inputs; change due to 
farmer/farm-specific characteristics and change due to 
environmental factors.  

From Table 6 it is clear that Equations 9 and 10 yield 
different results regarding the sources of output growth. 
This is to be expected, as the hypothesis of constant RTS 
has been rejected and the computation of the SE and the 
TEC  effects has been performed differently. As evidence 

of increasing RTS has been found, the relative 
contribution of TFP to output growth is underestimated 
when Equation 10 is employed, whereas the opposite is 
true for the SE, as long as the TECs and the SEs are 
measured in the same way. In this case, part of output 
growth would be falsely attributed to TFP changes 
whereas it is in fact associated with increases in input 
use. However, this is not reflected in the results when 
different measures of both the TECs and the SEs have 
been used. Besides these differences, it should be 
noticed that the portion of unexplained residual is greater 
when the decomposition of output growth is based on 
Equation 10. 

Given the rejected hypotheses of constant RTS and 
neutral production frontier, we precede the decomposition 
analysis of output growth and interpretations based on 
Equation 9. As can be seen from Table 6 during the 
period, average annual output growth was 1.29. A greater 
share of the observed output growth (71.13%) was due to 
the TFP growth and a smaller share (22.3%) to SE. 
Specifically, 0.29% of the observed output growth is 
attributed to the aggregate input growth mainly 
associated with farm-size and labor growth while the rest 
percentage of the output growth was attributed to the 
TFP changes. TC was found to be the most important 
source of TFP changes and thus to the output growth 
having a positive estimate. In particular, an average 
annual rate of TC is estimated at an average growth rate 
of 1.16 that accounts for 89.76% of the observed output 
growth. This rate of TC is indicating the cereal farming 
was technically progressed. Regarding the sources of 
TC, it can be seen from Table 6 that 1.82% was due to 
the neutral component and only 0.66% reduction was due 
to the biased component. The result is in accordance with 
previous empirical findings reported that TC is the main 
source of TFP growth (Karagiannis and Tzouvelekas, 
2005; Alexander et al., 2015). 

The empirical result also exhibits the SE has affected 
positively the TFP growth that compromises with the 
exhibited increasing RTS and aggregate increase in input 
usage results reported over time. However, the relative 
contribution of SE was small compared to that of TC. 
During the period 1999–2015, SE has contributed to the 
annual TFP growth by an average rate of 2.57%.This 
indicates that, the SE component and thus its effect is a 
significant figure that would have been ignored if constant 
RTS were falsely assumed. In such a  case,  TFP  growth
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Table 6. Decomposition of output growth and TFP changes. 
 

Decomposition 
Based on Equation 9 Based on Equation 10 

Mean Percentage Mean Percentage 

Output growth 1.29 100 1.29 100 

Size effect 0.29 22.30 0.25 19.36 

Fertilizers 0.01 0.57 0.01 0.60 

Agrochemicals 0.01 0.78 0.02 1.90 

Labor 0.04 2.82 0.05 3.64 

Machinery 0.01 0.78 0.004 0.28 

Livestock 0.05 4.08 0.03 2.55 

Oxen 0.05 3.52 0.04 3.49 

Farm-area 0.13 9.75 0.09 6.89 

Total Factor Productivity (TFP) Changes 1.003 71.13 1.12 86.67 

Technical Changes (TCs) 1.16 89.76 1.16 89.76 

Neutral 1.82 140.94 1.82 140.94 

Biased -0.66 -51.18 -0.66 -51.18 

Scale Effect (SE) 0.028 2.57 - - 

Technical Efficiency Changes (TECs)  -0.18 -15.12 -0.04 -3.09 

Change due to passage of time  -0.04 -3.09 
  

Change due to inputs 0.001 0.81 
  

Change due to environmental factors  -0.15 -11.40 
  

Changes due to farm-characteristics 0.002 0.17 
  

Unexplained Residuals 0.073 5.650 0.078 6.029 
 

Source: Author’s computation. 
 
 
 

would have been overestimated. Specifically, the 
estimated average annual rate of TFP growth would have 
been 86.67% instead of 71.13%. Consequently, the 
results demonstrate that, there would have been 
significant differences in TFP growth by not accounting 
simultaneously for the SE. Furthermore, not accounting 
for the SE can lead not only to errors but also to 
misconceptions concerning the potential sources of TFP 
and output growth, as noticed in similar studies 
(Karagiannis and Tzouvelekas, 2005). 

On the other hand, the TECs have affected negatively 
both TFP changes and hence the output growth. Its effect 
is unconstructive, as the pattern of changes in technical 
efficiency indicated movements contrary to the production 
frontier over time.  Hence, the empirical result exhibits the 
TEC was the main source for the reduction of TFP and 
output growth. In particular, it evinces an average 
reduction of 0.18 in TFP growth and hence a decline in 
15.12% of the observed growth was attributed to changes 
in TEC or changes in its components during the period 
1999-2015. This result  (the negative effect of TECs), is 
in line with the results from technical efficiency scores, as 
evidenced in Table 6 that technical efficiency estimates 
has dropped between 1999 and 2015 years. Moreover, to 
get more insights into the sources of TECs that 
contributed in reduction of TFP, we turn our attention to 
the components of TECs from Equation 9 to draw some 
analysis. 

Specifically, the empirical result indicates that  changes 

due to environmental factors were the most significant 
determinants as a main cause for deteriorating TECs; 
meanwhile only a small portion of this decline was due to 
pure autonomous changes. On the other hand, it is found 
that the changes due to the inputs factors and due to 
farm-characteristics were essential in minimizing the 
worst effect of TECs on the TFP growth, by positively 
contributing to the TECs. Meanwhile it is important to 
notice that the effect of the inputs factor on TEC over 
time has similar result as that of the size effect on the 
output growth. That is, a change due to the inputs factor 
improves the performance (increased TECs) similar to 
the positive effect of aggregate input use on the output 
growth. In general from the components of TECs; change 
due to inputs and changes due to farm-characteristics 
were the most important, both cancelling the negative 
impact of the environmental factors. Hence the empirical 
findings reveal that TFP changes and thus the output 
growth was largely due to adoption of improved 
technologies and scale effect rather than improvement in 
technical efficiency of the smallholders. It demonstrates 
that TFP has been increasing, driven primarily, by 
positive TC, changes due to SE and changes due to 
inputs. 
 
 
CONCLUSION AND POLICY IMPLICATIONS 
 
This paper provides a parametric decomposition of output 



 
 
 
 
growth and TFP changes extends production approach to 
the case of non-neutral stochastic frontier. The analysis is 
based on five-point unbalanced panel dataset from 
Ethiopian smallholder cereal farmers observed for the 
period of 1999–2015. The paper used recently developed 
SPF panel data model that decomposes technical 
efficiency into components and extends the model to 
include the output growth and TFP growth 
decompositions. Output growth was decomposed into 
two of its sources – factor accumulation and TFP 
changes, and each was further decomposed into 
components. Input growth itself was decomposed into 
individual inputs contribution while TFP growth was intern 
decomposed into rate of TC, SE and TEC components. 
Further TEC was also decomposed into components 
such as – autonomous changes, changes in inputs use, 
changes in the farm-specific characteristics and changes 
in weather/environmental factors. 

Efficiency estimation results show that the potential for 
improving the production efficiency of cereal farmers is 
immense, as some farmers are operating at as low as 
45% level of efficiency. Input elasticities were significantly 
positive and hence show an increase in the use of each 
input has contributed to enhance cereal production. 
Results from growth decomposition models evinced that 
a greater share of the observed output growth was due to 
the TFP changes compared to that of input growth. 
Specifically, aggregate input use increased at annual 
mean rate of 29 (22.3%) while the rest percentage was 
attributed to that of TFP changes. The findings further 
indicate TFP changes have been increased mainly driven 
by TCs, while SE contributed significantly over the period. 
This indicates that, there would have been significant 
differences in TFP growth by not accounting 
simultaneously for the SE. 

On the other hand, TECs was found to affect negatively 
the rate of TFP changes and hence on the output growth, 
though its effect was very little. Consequently, TEC was 
found to be the main source for the reduction of TFP 
changes and output growth. In particular, during the 
period 1999-2015 significant reductions in both TFP 
changes were attributed to the depressing changes in 
TEC streamed from changes in its components. In this 
regard the empirical results indicate that changes due to 
passage of time and due to environmental factors were 
found to affect negatively the rate of TFP while changes 
due to inputs and due to farm-characteristics were 
positive. Hence the effects of change due to inputs use 
and change due to farm-characteristics on TEC, is in line 
with that of size effect we found on the output growth 
over the period. In sum from the components of TECs, 
change due to inputs and changes due to farm-
characteristics were the most important, both cancelling 
the negative impact of the environmental factors. It 
should be noticed that change due to inputs was far more 
important in explaining changes in technical efficiency 
contributing 0.81%, in contrast  to  their  explanatory  role 
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for the size effect. 

In sum, the analysis undertaken in this paper 
demonstrated that the output growth was largely due to 
change arising from two components – the TFP change 
and the input growth over time. On the other hand, the 
TFP growth showed that TC and SE are the two most 
important determinants of TFP growth over the period. 
This demonstrates TFP has been increasing, driven 
primarily by change due to TC, and due to changes in 
SE, and also due to changes inputs and changes due to 
farm-characteristics. In connection to these, though the 
average level of technical efficiency of the cereal farmers 
is as high as 57%, yet the result suggests that technical 
efficiency does not play significant role on TFP changes 
and output growth as the technical efficiency did not 
improve overtime which might be attributable to TEC 
effect. This implies that TFP growth and thus the output 
growth was largely due to adoption of improved 
technologies and SE rather than improvement in 
technical efficiency of the smallholders. 

An important implication of these results is that the rate 
of TFP changes hence the output growth in cereal crops 
is mainly driven by technological progress, suggesting 
that policies aiming at enhancing the adoption of 
technological innovations and at increasing investments 
in agricultural extension services are significantly 
effective. Specifically, the increase of TFP in Ethiopian 
cereal production requires policies aiming at improving 
technological change, taking into account the farmer’s 
know-how, could be intensified to improve cereal farm 
productivity growth significantly. For instance public 
investment in agricultural extension service and 
technological innovations, such as escalating adoptions 
strategies, could be intensified to improve cereal farm 
productivity growth and output growth. Therefore, 
government policies directed toward enhancing 
investment for agricultural extension service that 
improves technological progress and enables farmers to 
benefit from optimal input operations and farms best 
practice should form an essential part of the 
recommendations drawn from the study. 
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