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Inflation tends to be a relatively persistent process, which means that current and past values should 
be helpful in forecasting future inflation. Applying this intuition, we construct a basic stochastic model 
which exploits information embedded in past values of Ghana’s inflation data. Therefore the aim of this 
study is not to identify the drivers of Ghana’s inflation, but to identify and forecast with the best 
predicting model for Ghana’s inflation, based on the stochastic mechanisms that governs Ghana’s 
inflation series. We then use this identified model to forecast one-year-ahead (that is, 2018) inflation 
using past lags, specifically, monthly inflation, from January 2010 to September 2017. Per our forecast, 
the Bank of Ghana’s aim of hitting a single digit for the year 2018 will not be realized, even though the 
year closes with a lower inflation than what it began with. 
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INTRODUCTION 
 
Inflation is defined as the increase in general price levels 
of goods and services within a period of time. Price 
stability, however, is a healthy monetary policy that 
promotes economic growth and prosperity. It is therefore 
not surprising that the primary objective of the Bank of 
Ghana (BOG) is to pursue sound monetary policies 
aimed at price stability and creating an enabling 
environment for sustainable economic growth. Price 
stability in this context, according to the BOG’s January 
2017 Monetary Policy Summary report, is defined as a 
medium-term inflation target of 8% with a symmetric band 
of -2% or +2% at which the economy is expected to grow 
at a full potential without excessive inflation pressures. 
However, it is important to note that  the  extent  to  which 

inflation is anticipated can help in its control and hence 
the importance of inflation forecasts. Inflation forecasts 
are very important for policy makers, industries, 
businesses and institutions, just to mention a few, since 
pictures of the future serves as a guide for planning. 
According to Bailey (1956), the cost associated with 
unanticipated inflation includes the distributive effects 
from creditors to debtors, and also increasing uncertainty, 
which affects consumption, savings, borrowing and 
investment decisions.  

The purpose of time series analysis is generally twofold: 
to understand or model the stochastic mechanism that 
has resulted in an observed series and to predict or 
forecast the future values of a series based on the history 
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of that series and, possibly, other related series or 
factors. The stochastic mechanisms that underlie a time 
series are helpful in explaining its evolutions; to be 
specific the autoregressive and moving average 
processes, and/or their composite forms. This paper sets 
out to empirically develop a linear dynamic stochastic 
model and apply it to forecast inflation for the year 2018. 
This model is based on the Box and Jenkins 
autoregressive integrated moving average (ARIMA) 
method. 

The use of the ARIMA method in forecasting is 
essentially agnostic and unlike other methods that require 
the principles underlying an econometric model or 
structural relationships; it operates on the assumption 
that past values of a series plus its previous error terms 
contain information which can help in forecasting. 
According to Brent and Mehmet (2010) inflation tends to 
be a relatively persistent process, which means that 
current and past values should be helpful in forecasting 
future inflation. 
 
 

Related works on Inflation using the ARIMA approach 
 
Meyler et al. (1998) used the ARIMA model to forecast 
Irish inflation and justified that ARIMA models are 
surprisingly robust with respect to alternative multivariate 
models. Indeed, Stockton and Glassman (1987), upon 
finding similar results for the United States’ inflation 
forecasts, commented that “it seems somewhat 
distressing that a simple ARIMA model of inflation should 
turn in such a respectable forecast performance relative 
to the theoretically based specifications”. Okafor and 
Shaibu (2013) modelled Nigeria’s inflation employing 
quarterly data which span from the year 1981 to 2010. 
They realized ARIMA (2, 2, 3) as the most appropriate 
and used it to provide forecasts. Okyere and Mensah 
(2014) made forecasts of Ghana’s inflation for the year 
2014 using the Box Jenkins approach. They employed 
monthly data from January 2009 to December 2013. 
They realized ARIMA (1, 2, 1) as the most appropriate for 
modelling inflation. Suleman and Sarpong (2012) used 
monthly inflation data covering the periods between 
January 1990 and January 2012, to model and forecast 
Ghana’s inflation. They realized ARIMA(3,1,3)(2,1,1) 
(Sinaj, 2014)  as the best model to define Ghana’s 
inflation evolutions.  
 
 
MATERIALS AND METHODS 
 
This study was carried out in Ghana in the year 2017 using monthly 
inflation data for the periods between January 2010 and September 
2017. The data were obtained from the Bank of Ghana’s website. 
The data were modelled using the ARIMA stochastic model.  
 
 
Autoregressive integrated moving average (ARIMA) model 
 

A time series  {Yt}  is  said  to  follow  the  ARIMA  model  if  the  dth  

 
 
 
 
difference Wt = ∇dYt   is a stationary ARMA process. If {Wt} follows 
the autoregressive moving average model, that is, the ARMA (p, q) 
model, we say that {Yt} is an ARIMA (p, d, q) process, where p  is 

the order of the autoregressive (AR) component, d  is the number 

of differences needed to arrive at a stationary ARMA (p, q)  
process, and q   is the order of the moving average (MA) 

component. The general form of the ARIMA model is represented 
by the backward shift operator, 

 

∅(B)(1 – B)dYt = θ (B)et,                                                                  (1) 
 
where 

∅(B) is the AR characteristic polynomial evaluated at B, and is 
expressed as: 
 

∅(B) = (1 - ∅1B - ∅2B
2  - --- -  ∅pB

p)                                                 (2) 
 
θ(B) is the MA characteristic polynomial evaluated at B and is also 
expressed as: 
 
θ(B) = (1 - θ1B - θ2B

2  - --- - θqB
q)                                                   (3) 

 
∅ is the parameter estimate of the AR component 
θ is the parameter estimate of the MA component 

∇ is the difference 
B is the back shift operator 

et is a purely random process with mean zero where var(et) = σ2
e

and 
 
(1 – B)dYt = ∇dYt                                                                              (4) 

 
 
Unit root test 
 

It is very important to ensure that a time series is stationary before 
making inferences about it. The basic idea of stationarity is that the 
probability laws that govern the behavior of a process do not 
change over time. The Augmented Dickey Fuller (ADF) test, 
proposed by Dickey and Fuller (1979) and the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test proposed by Kwiatkowski et al (1992) 
were employed to check for stationarity in this study.  The ADF test 
is based on the assumption that a time series data 

tY  follows a 

random walk:  
 

 
 

where   is the characteristic root of the AR polynomial and te   is 

a serially uncorrelated white noise. 
The ADF test is based on the following hypotheses: 
 

0H  : the  series has unit root 

1H  : the  series is stationary 

The KPSS test on the other hand investigates the order of 

integration of a series tY  by testing the hypothesis that the data 

generating process is stationary (
0H : 

tY (𝟎)) against the 

alternative that it is non-stationary ( 1H : tY (𝟏)). The test 

assumes that if there is no linear trend term, the point of departure 
is a data generating process of the form: 

 

 

tY  = 1t tY e    ; 

 tY   = tX   + t   
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Figure 1. Time series plot of the transformed inflation data at levels.  
 
 
 

Table 1. Unit root tests results (of log of first diff). 
 

Test Oder of difference Test statistic P-value 

ADF 0 -1.0559 0.92 

 1 -4.4878 0.01 

KPSS 0 2.1012 0.01 

 1 0.4273 0.07 
 
 
 

where 
tY   is a random walk, 

tX  = 
1tX 
 + 𝑣𝑡, 𝑣𝑡 ~ iid (0, 2

v ) and
 

t  is a white noise sequence. 

Thus the KPSS tests to see if stationarity can be rejected, which 
is the reverse of the ADF test. 
 
 
Model building 
 
Finding the appropriate model for a time series involves a multistep 
model-building strategy as espoused by Box and Jenkins. There 
are three main steps in the process, each of which may be used 
several times: 
 
(i) Model specification (or identification) 
(ii) Model fitting, and 
(iii) Model diagnostics 
 
 
Model specification  
 
This is the stage where models that may be appropriate for an 
observed series are selected. The model at this stage is only 
tentative and subject to revision later on in the analysis. Bad 
choices of parameters for any ARIMA (p,d,q) model leads to bad 
forecasts. But it is also worthy of notice that a good model does not 
necessarily produce a good forecast. We employed three selection 
criteria in this study to provide guidance for selection of possible 
models: The Akaike Information Criterion (AIC), the modified Akaike 
Information Criterion (AICc), and the Bayesian Information Criterion 
(BIC). The (AIC) was proposed by Akaike (1974). For any of these 
criteria, the model which has a lower score receives 
recommendation for consideration.  

 
 
Model fitting 

 
Model   fitting  consists  of  finding  the  best  possible  estimates  of  

 
unknown parameters within the specified ARIMA models. The 
maximum likelihood procedure is used to estimate the model 
parameters. The maximum likelihood procedure is a flexible way of 
estimating models. Most econometric data are observational and 
that can complicate analysis since observationally identical 
individuals can respond differently to a similar situation, and vice 
versa. Given the specified model, the maximum likelihood 
procedure among others, addresses such problems by producing 
the best possible measurements, using all information provided in 
the data.    

 
 
Diagnostic checking 

 
The fit of the ARIMA (p,d,q) model with the estimated coefficients is 
checked at this stage. This involves the scrutinization of the 
estimated residuals to ensure that they behave approximately like 
the realizations of a white noise process. For a good model, the 
residuals must be white noise. Statistical tools such as the Ljung-
Box test, proposed by Ljung and Box (1978) and also the ACF plots 
of the residuals were used to check model adequacy in this study. 
 
 
RESULTS AND DISCUSSION 
 
Stationarity  
 

Figure 1 shows time series plot of the data from January 
2010 to September 2017. Clearly the data are not 
stationary at levels. The ADF and KPSS tests results in 
Table 1 confirm the non-stationarity of the series at 
levels. The data however attained stationarity at first 
difference as seen in Table 1 and Figure 2. In Table 1 it 
can be seen that the p-value associated with the ADF 
test  at  levels  (that  is,  at  order  of difference 0) is more  
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Figure 2. Time series plot of transformed inflation data after first difference. 

 
 
 

Table 2. ARIMA (p, 1, q) models fitted. 
 

Model AIC AICc BIC 

ARIMA (0,1,0) 152.67 152.71 155.19 

ARIMA (0,1,1) 150.30 150.43 155.34 

ARIMA (1,1,0) 148.70 148.84 153.75 

ARIMA (1,1,1) 142.20 142.48* 149.77* 

ARIMA (1,1,2) 143.56 144.02 153.65 

ARIMA (1,1,3) 146.34 147.04 158.95 

ARIMA (2,1,1) 143.70 144.16 153.78 

ARIMA (3,1,1) 144.45 145.15 157.06 

ARIMA (2,1,2) 145.46 146.16 158.07 

ARIMA (3,1,3) 141.91* 143.24 159.56 

ARIMA (2,1,0) 146.74 147.01 154.30 

ARIMA (3,1,0) 142.64 143.10 152.72 

ARIMA (0,1,2) 150.19 150.46 157.76 

ARIMA (0,1,3) 144.96 145.42 155.05 
 

*Best, based on the model selection criterion. 
 
 
 

than 0.05. It can also be seen that the KPSS test at levels 
has an associated p-value of less than 0.05, and in all 
cases, this is an indication of non-stationarity. When the 
associated p-value of an ADF test is less than 0.05 as 
seen for the first order of difference in Table 1, it is an 
indication of stationarity, but for the KPSS test, a p-value 
of more than 0.05 is rather an indication of stationarity.   
Before taking the first difference, we did a logarithm 
transformation of the data so as to eliminate any possible 
distortions of heteroscedasticity. 
 
 
Model identification 
 
Literature   suggests   several   ways  of  determining  the  

number of lags to include in a model. The drawback is 
that, for the same data, a different method can yield a 
different order. Considering this disadvantage, we used 
trial and error approach to model fourteen proposed 
models as shown in Table 2. A rough idea of 
parsimonious upper bounds can however be provided by 
the ACF and PACF plots of the stationary series. As 
mentioned earlier we used the AIC, AICc, and the BIC 
selection criteria to guide our selection of possible 
candidates among these proposed models. ARIMA 
(1,1,1) was recommended by both AICc and BIC, but the 
AIC criterion suggested  ARIMA (3,1,3). Therefore 
ARIMA (1,1,1) and ARIMA (3,1,3) were tentatively 
selected at this stage to undergo model estimation and 
diagnostic tests.   
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Figure 3. Diagnostic plot of residuals of ARIMA (1,1,1). 

 
 
 

Table 3. Parameter Estimates for ARIMA (1,1,1). 
 

Component Coefficient Standard error Test statistic P-value 

AR(1) 0.92427 0.07522 12.2875 0.00 

MA(1) -0.74134 0.11560 -6.4127 0.00 

 
 
 
Model diagnostics 
 
We decided to carry out the diagnostics before we 
estimate the parameters since in our case more than one 
model received recommendations and the idea was to 
carry out the diagnostics first, so that we do not waste 
any time estimating the parameters of a model which fails 
the diagnostic test.  And so diagnostics were carried out 
to confirm the proposed ARIMA (1,1,1) and ARIMA 
(3,1,3) models.  

It can be seen from the ACF plots of the residuals in 
Figure 3 that the ARIMA (1,1,1) residuals are white noise 
although there is a significant spike at lag 0. Furthermore, 
the graphical and numerical p-values of the Ljung-Box 
Test respectively displayed in Figure 3 and Table 3 
confirms the model adequacy of the ARIMA(1,1,1). The 
ACF plots of the residuals in Figure 4 and the Ljung-Box 
results in Table 4 below shows that there were no serial 
correlations for ARIMA (3,1,3) as well, which proves that 
the ARIMA (3,1,3) is also adequate for analyses. 

Model estimation 
 

The maximum likelihood procedure was used to estimate 
the model parameters of ARIMA (1,1,1) and ARIMA 
(3,1,3) and the results is as shown in Tables 5 and 6. As 
seen from Table 3, all parameters are significant for the 
ARIMA (1,1,1), but for the ARIMA (3,1,3) model, the MA 
(2) parameter is not significant as shown in Table 4. 
 
 

Forecast performance for the two candidates 
 

Both models, the ARIMA (1,1,1) and the ARIMA (3,1,3) 
passed the necessary diagnostic tests but the aim of this 
research is to find the best predictor model for Ghana’s  
inflation.  The Root Mean Squared Error (RMSE) 
procedure was employed for the both models, to find out 
which has the least deviation. By definition, the 

2

1

1 ( )
n

i
t tRMSE

n
 



 
, where n  is the  number  
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Figure 4. Diagnostic plot of residuals of ARIMA (3,1,3). 

 
 
 

Table 4. Ljung-Box Test for ARIMA (1,1,1) and ARIMA 
(3,1,3) residuals up to 10 lags. 
 

Model Statistic P-Value 

ARIMA(1,1,1) 9.0667 0.5258 

ARIMA(3,1,3) 6.6563 0.7574 

 
 
 

Table 5. Parameter Estimates for ARIMA (3,1,3). 
 

Component Coefficient Standard error Test statistic P-value 

AR(1) -0.497276 0.084980 -5.8517 0.00 

AR(2) 0.330923 0.116051 2.8515 0.01 

AR(3) 0.885904 0.079597 11.1299 0.00 

MA(1) 0.787992 0.129842 6.0689 0.00 

MA(2) -0.077482 0.189193 -0.4095 0.68 

MA(3) -0.716280 0.129397 -5.5355 0.00 

 

 
 

of observations, t  is the forecasted inflation for time 

period t , and t , the actual inflation. Data from January 

2010 to November 2016 were set aside to do an in-
sample forecast for the period between December 2016 
to   September,  2017.  This   helped   in   estimating   the 

forecast performance of the two models as shown in 
Table 7 using the RMSE procedure.   
 
 

Conclusion   
 

Both  models  passed  all  the necessary diagnostic tests,  
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Table 6. Forecast performance of ARIMA (1,1,1). 
 

Period Forecast Actual Error Squared error  

Dec 2016 15.2 15.4 -0.2 0.04 

Jan 2017 14.9 13.3 1.6 2.56 

Feb 2017 14.6 13.2 1.4 1.96 

Mar 2017 14.3 12.8 1.5 2.25 

Apr 2017 14.1 13.0 1.1 1.21 

May 2017 13.9 12.6 1.3 1.69 

Jun 2017 13.7 12.1 1.6 2.56 

Jul 2017 13.5 11.9 1.6 2.56 

Aug 2017 13.3 12.3 1.0 1.00 

Sep 2017 13.1 12.2 0.6 0.36 
 

 
 
 
 
 

Table 7. Forecast performance of ARIMA (3,1,3). 
 

PERIOD Forecast Actual Error Squared error  

Dec 2016 15.2 15.4 -0.20 0.04 

Jan 2017 14.7 13.3 1.40 1.96 

Feb 2017 14.6 13.2 1.40 1.96 

Mar 2017 14.2 12.8 1.40 1.96 

Apr 2017 13.9 13.0 0.90 0.81 

May 2017 13.9 12.6 1.30 1.69 

Jun 2017 13.4 12.1 1.30 1.69 

Jul 2017 13.4 11.9 1.50 2.25 

Aug 2017 13.2 12.3 0.90 0.81 

Sep 2017 12.8 12.2 0.60 0.36 
 

 
 
 
 

and even though the ARIMA (1,1,1) had two recom-
mendations, it was outperformed in the forecasts by the 
ARIMA (3,1,3) which had only one recommendation. 
Since the aim of this study is to find out the best predictor 
model, we settle for the ARIMA (3,1,3). This establishes 
that the evolution of Ghana’s inflation is a weighted sum 
of its past three values plus its past three error terms. 
Lubowa et al (2014) modelled and forecast Uganda’s 
inflation and  also  realized  ARIMA  (3,1,3)  as  the  most 

appropriate model. Valentina (2014) also realized ARIMA 
(3,1,3) as the best model in her work “models to forecast 
in Albania”.  In her work, she used the ARIMA model to 
forecast inflation, whilst she used the multivariate vector 
autoregressive (VAR) model to identify the drivers of 
inflation in Albania. She employed only the AIC in the 
determination of the best ARIMA model. The equation of 
an ARIMA (3,1,3) model is of the form: 

 

1 1 2 1 2 3 2 3 3 4 1 1 2 2 3 3( 1) ( ) ( )t tt t t t t t tY Y Y Y Y e e e e                           

 
Therefore our estimated equation is: 

 

 

 

(1,1,1)

1
(16.9)

10
RMSE    

                  = 1.27 

 

(3,1,3)

1
(13.53)

10
RMSE     

                   = 1.163 

  

 

(1,1,1)

1
(16.9)

10
RMSE    

                  = 1.27 

 

(3,1,3)

1
(13.53)

10
RMSE     

                   = 1.163 

 



22          J. Econ. Int. Finance 
 
 
 

1 2 3 4 1 2 30.503 0.828 0.555 0.886 0.788 0.077 0.716t tt t t t t t tY Y Y Y Y e e e e             
 

 
We suggest that in order to do any meaningful analyses 
for inflation for any particular month, the Bank of Ghana 
needs to consider inflation values within the immediate 
past three months and also the error terms of those past 
three months. It can also be seen from the estimated 
equation for ARIMA (3,1,3) above that the past two 
values of inflation has more explanations than that of any 
other month. As per our forecast (Appendix Table 1), 
even though inflation is expected to reduce, the Bank of 
Ghana’s aim of hitting a single digit inflation cannot be 
realized in the year 2018. In view of this, the bank of 
Ghana should review their economic policy.   
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APPENDIX 
 

Appendix Table 1. Monthly forecasts for the year 2018 using ARIMA (3,1,3). 
 

PERIOD Forecast Actual Lower bound Upper bound  

Jan 2018 12.30 10.3 9.80 14.80 

Feb 2018 12.91 10.6 9.01 15.01 

Mar 2018 12.11  8.64 15.58 

Apr 2018 12.13  8.16 16.10 

May 2018 11.90  7.45 16.35 

Jun 2018 12.11  7.19 17.03 

July 2018 11.95  6.53 17.36 

Aug 2018 11.89  6.02 17.77 

Sept 2018 12.05  5.71 18.40 

Oct 2018 11.81  4.50 18.62 

Nov 2018 11.93  4.68 19.19 

Dec 2018 11.93  4.22 19.65 

 


