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Accurate diamond price prediction is critical for stakeholders in the jewelry industry. This study 
presents a comprehensive approach to predicting diamond prices using various regression models. 
Based on the diamond dataset sourced from diamond market data, an exhaustive analysis was 
conducted, including data normalization, evaluation of multiple regression models, and optimization of 
the Random Forest model. The methods applied in this research involve detailed preprocessing steps 
to handle missing values and normalize features, ensuring the robustness of the models. The results 
show that the Random Forest model, after optimization, outperforms other regression models in terms 
of prediction accuracy. This approach demonstrates how advanced machine learning techniques can 
be effectively utilized to estimate the value of diamonds, providing a practical tool for professionals in 
the sector. The findings underscore the potential of machine learning to enhance decision-making 
processes in the jewelry market. 
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INTRODUCTION 
 
Recent studies have shown the effectiveness of machine 
learning models in various predictive tasks, particularly in 
finance and pricing (Smith et al., 2020; Johnson and Lee, 
2021; Brown, 2022). These studies highlight the potential 
for improved accuracy and efficiency in price estimation 
through the use of advanced algorithms. The integration 
of these techniques in diamond pricing can provide 
significant benefits, given the complex nature of diamond 
valuation, which depends on multiple factors such as 
carat weight, cut, color, and clarity. Furthermore, machine 
learning models  can  adapt  to  market  changes  in  real-

time, offering more dynamic and responsive pricing 
strategies compared to traditional methods. 

In the jewelry industry, especially for diamonds, 
determining the price is crucial since various factors such 
as carat weight, cut, color, and clarity significantly impact 
their valuation. Traditional methods often rely on expert 
judgment and static price guides, which may not capture 
market dynamics effectively (Breiman and Friedman, 
1985; Hastie et al., 2009). With advancements in 
machine learning, it is now possible to develop predictive 
models that enhance the accuracy and efficiency of  price  
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estimation (Bishop, 2006). This study employs a diamond 
dataset from diamond market data to evaluate various 
regression models and optimize the best model for 
accurate predictions. Previous studies have demonstrated 
the effectiveness of machine learning models in various 
prediction tasks (McKinney, 2010; Pedregosa et al., 
2011), suggesting their potential applicability in diamond 
price prediction. 

Three main hypotheses are tested: (1) Machine learning 
models can outperform traditional methods in predicting 
diamond prices; (2) Data normalization significantly 
improves the performance of these models; and (3) 
Combining multiple regression models and selecting the 
optimized one yield more accurate and reliable 
predictions. The objectives of this research are to 
evaluate the effectiveness of different regression models 
for diamond price prediction and to optimize the best-
performing model using grid search techniques. By 
achieving these goals, the study aims to provide a 
practical and effective tool for professionals in the jewelry 
industry, demonstrating the potential of machine learning 
to improve diamond price predictions. 

Machine learning has been shown to be effective in 
various domains, providing robust solutions for complex 
problems (Kuhn and Johnson, 2013). For instance, 
Random Forest and Gradient Boosting models have 
been widely adopted due to their ability to handle large 
datasets and capture non-linear relationships (Friedman, 
2001). Additionally, techniques such as Lasso and Elastic 
Net have proven useful for regression tasks by 
performing feature selection and regularization 
(Tibshirani, 1996; Zou and Hastie, 2005). These methods 
offer a powerful toolkit for tackling the multifaceted 
problem of diamond price prediction, where the interplay 
of various features can significantly impact the valuation 
process. 
 
 
MATERIALS AND METHODS 
 

In this study, a rigorous methodology was employed to ensure the 
reliability and accuracy of diamond price predictions.  
 
 
Data collection and preprocessing 
 

The sampling period for this study spanned from January 2021 to 
December 2021, capturing a full year of diamond market data to 
ensure comprehensive coverage of market trends and seasonal 
variations. The dataset utilized in this study was sourced from the 
Seaborn library, which provides a comprehensive collection of 
diamond characteristics (Seaborn Documentation, 2023). The 
original dataset comprises 53,940 entries, each detailing various 
attributes such as carat, cut, color, clarity, depth, table, and price. 
These attributes significantly influence the valuation of diamonds. 
To enhance computational efficiency and manage resources 
effectively, a random sample of 5% of the entire dataset was used, 
resulting in approximately 2,697 diamond records. This subset was 
selected to maintain a manageable data size while preserving the 
variability and distribution of the original dataset. Several data 
preprocessing steps were implemented  to  ensure  the  quality  and  

Sanchez          29 
 
 
 
integrity of the dataset: 
 
1) Handling missing values: Any rows containing NA or NaN values 
were removed to prevent issues during model training and 
evaluation. 
2) Encoding categorical variables: Categorical features such as cut, 
color, and clarity were converted into numerical values using one-
hot encoding. This process creates binary columns for each 
category level, facilitating the models' ability to interpret these 
features effectively. 
 
 
Data normalization1 and splitting 
 
Data is normalized to ensure all features are on the same scale. 
This is done using StandardScaler from scikit-learn which 
transforms the data to have a mean of 0 and a standard deviation 
of 1. Figure 1 shows the enhanced clarity of diamond features after 
normalization. 

The process begins with creating histograms for each feature in 
the training set to visualize their distribution before normalization. 
Then, the StandardScaler from scikit-learn normalizes the data, 
ensuring all features have a mean of 0 and a standard deviation of 
1, which is essential for algorithms sensitive to data scale, such as 
those based on distance metrics (McKinney, 2010).  The 
normalized data is converted back to a DataFrame for easy plotting. 
After normalization, histograms are again created for each feature 
to visualize the changes in distribution. The cleaned and 
transformed dataset was then split into training and test sets, with 
80% of the data used for training the models and 20% for 
validation. The split was performed using a random seed to ensure 
reproducibility (Pedregosa et al., 2011). Specifically, the target 
variable was the diamond price, and the predictor variables 
included the transformed and scaled features. To ensure the split 
maintains the original price distribution, histograms are created to 
visualize the price distribution across the original dataset, training 
set, and test set. Figure 2 shows the price distribution across 
original, training, and test sets. 

Additionally, summary tables provide statistical descriptions of the 
original, training, and test datasets, offering a clear and detailed 
view of the features and data distribution in each set. This 
comprehensive approach ensures that the training and test sets 
reflect the same distribution as the original dataset. The original 
dataset contains the summary statistics in Table 1. The training set, 
which is 80% of the original data, has the summary statistics in 
Table 2. The test set, which is 20% of the original data, has the 
summary statistics in Table 3. Figure 1 shows the enhanced clarity 
of diamond features after normalization while Figure 2 shows the 
price distribution across original, training, and test sets. 
 
 
Categorical features 
 
To conduct the analysis, the following relevant features were 
selected from the dataset: 
 
Carat: Weight of the diamond. 
Cut: Quality of the diamond's cut affecting its brilliance. 
Color: Color grade of the diamond, ranging from D (colorless) to J 
(near colorless). 
Clarity: Clarity grade indicating inclusions or blemishes. 
Depth: Depth percentage of the diamond. 
Table: Width of the diamond's top facet. 

 
1Data normalization is a common preprocessing step that scales the features to 

have a mean of zero and a standard deviation of one, making them comparable 

and improving the performance of distance-based algorithms (Jain et al., 2000) 
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Table 1. Summary statistics of the original dataset. 
 

Feature Count Mean Std. Dev. Min. 25% 50% 75% Max. 

Carat 53940 0.798 0.474 0.20 0.40 0.70 1.04 5.01 

Depth 53940 61.75 1.433 43.0 61.0 61.8 62.5 79.0 

Table 53940 57.46 2.234 43.0 56.0 57.0 59.0 95.0 

Price 53940 3989.8 3989.4 326 950 2401 5324.3 18823 
 
 
 

 
 

Figure 1. Enhanced clarity of diamond features after normalization. 
 
 
 

 
 

Figure 2. Price distribution across original, training, and test sets. 
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Table 2. Summary statistics of training dataset. 
 

Feature Count Mean Std dev Min 25% 50% 75% Max 

Carat 43152 0.797 0.475 0.20 0.40 0.70 1.04 5.01 

Depth 43152 61.75 1.431 43.0 61.0 61.8 62.5 79.0 

Table 43152 57.46 2.234 43.0 56.0 57.0 59.0 95.0 

 
 
 

Table 3. Summary statistics of test set. 
 

Feature Count Mean Std dev Min 25% 50% 75% Max 

Carat 10788 0.800 0.472 0.20 0.40 0.71 1.04 4.13 

Depth 10788 61.76 1.439 43.0 61.0 61.8 62.5 79.0 

Table 10788 57.44 2.200 49.0 56.0 57.0 59.0 73.0 

 
 
 

Table 4. Sample of diamond data with one-hot encoded 'cut' feature. 
 

Carat Depth Table Price Cut-premium Cut-very-good Cut- good Cut-fair 

0.23 61.5 55.0 326 0 0 0 0 

0.21 59.8 61.0 326 1 0 0 0 

0.23 56.9 65.0 327 0 0 1 0 

0.29 62.4 58.0 334 1 0 0 0 

0.31 63.3 58.0 335 0 0 1 0 
 
 
 

Price: Target variable, representing the price of the diamond. 
 
Categorical features such as cut, color, and clarity were converted 
into numerical values using one-hot encoding. This process created  
binary columns for each category level, facilitating the models' 
ability to interpret these features effectively. For instance, the 'cut' 
feature was converted into multiple binary columns shown in Table 
4. 
 
 

Correlation analysis  
 
Correlation analysis was conducted to examine the relationships 
between features. Features with high correlation with the target 
variable (price) and low inter-correlation were selected to avoid 
multicollinearity, which can distort the model's performance. The 
correlation matrix is displayed using a heatmap. Figure 3 shows the 
correlation matrix of diamond features. 

The correlation matrix generated by the script illustrates the 
pairwise correlation coefficients between the features of the 
diamond dataset, ranging from -1 to 1. A correlation value closer to 
1 indicates a strong positive correlation, while a value closer to -1 
indicates a strong negative correlation. Values near 0 suggest no 
significant correlation. The key observations from the correlation 
matrix are as follows: "Carat" shows a strong positive correlation 
with "price" (coefficient close to 1), indicating that as the carat size 
increases, and the price also significantly increases, aligning with 
the industry fact that larger diamonds are more valuable. In 
contrast, features such as cut, color, and clarity exhibit weaker 
correlations with price compared to carat, suggesting they influence 
price but to a lesser extent. Some features, like depth and table, 
show moderate correlations, indicating that as the depth of a 
diamond increases, the table size also tends to increase to some 
extent.  Lastly,   many  feature  pair’s  exhibit  low  or  no  significant 

correlation, suggesting these features vary independently, providing 
diverse information to the model. 

 
 
Model selection 

 
Traditional diamond pricing methods often rely on expert judgment 
and static price guides. These methods, while valuable, can be 
subjective and may not fully capture dynamic market conditions. By 
contrast, machine learning models offer a data-driven approach that 
can adapt to changing market trends and provide more consistent 
and accurate price predictions. Various regression models were 
selected for evaluation. The mathematical foundations of the 
models used in the study are as follows: 

 
(1) Linear regression is a statistical model that assumes a linear 
relationship between the independent variables (predictors) and the 
dependent variable (response). The model is represented as: 

 
𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜖                                             (1) 

 
where 𝑦 is the dependent variable, 𝛽0 is the intercept term,  𝛽𝑖 are 
the regression coefficients, 𝑥𝑖 are the independent variables, and 𝜖  
is the residual error (James et al., 2013; Hastie et al., 2009).  
(2) Lasso (Least Absolute Shrinkage and Selection Operator) is a 
variant of linear regression that includes a 𝐿1 penalty term on the 
regression coefficients (Tibshirani, 1996). The objective function is:  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 )

2
+ 𝜆 ∑ |𝛽𝑗|𝑝

𝑗=1
𝑛
𝑖=1                          (2) 

 
where 𝜆 is the regularization parameter that controls the strength of 
the penalty. 
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Figure 3. Correlation matrix of diamond features. 

 
 
 
(3) ElasticNet combines the penalties of Lasso (𝐿1norm) and Ridge 
Regression (𝐿2norm). The objective function is (Zou and Hastie, 
2005): 
 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 )

2
+ 𝜆1 ∑ |𝛽𝑗|𝑝

𝑗=1
𝑛
𝑖=1 + 𝜆2 ∑ 𝛽𝑗

2𝑝
𝑗=1    

 
(4) K-Nearest Neighbors (KNN) is a non-parametric model that 
predicts the value of a new data point based on the 𝑘 closest 
training examples in the feature space. The predicted value  𝑦̂ is:   
 

 𝑦̂ =
1

𝑘
∑ 𝑦𝑖

𝑘
𝑖=1                                                                                    (3) 

 
where  𝑦𝑖 are the values of the 𝑘  nearest neighbors (Cover and 
Hart, 1967; Altman, 1992).  
(5) Decision Tree Regressor is a predictive model that splits the 
feature space into rectangular regions and fits a simple model in 
each one. The tree is constructed by splitting the data at each node 
using the feature that minimizes the mean squared error (MSE). For 
each split, the information gain is evaluated using: 
 

 ∆𝐶 = 𝐶(𝑡) − (
𝑁𝑡𝐿

𝑁𝑡
𝐶(𝑡𝐿) +

𝑁𝑡𝑅

𝑁𝑡
𝐶(𝑡𝑅))                                               (4) 

 
where 𝐶(𝑡)  is the impurity at node 𝑡  and 𝑁𝑡𝐿

 and  𝑁𝑡𝑅
  are the 

examples in the child nodes  𝑡𝐿 and  𝑡𝑅. The optimal split is the  one 

that maximizes ∆𝐶. The prediction for a new instance is made by 
passing the instance through the tree to a leaf node and assigning it 
the mean value of the labels in that node (Quinlan 1986). In 
summary, the Decision Tree Regressor creates splits that minimize 
the MSE and predicts using the mean values of the resulting 
regions.  
(6) Support Vector Regressor (SVR) uses the principles of Support 
Vector Machines (SVM) for regression. It attempts to fit the best line 
within a threshold margin 𝜖, minimizing the error outside this margin 
(Smola and Schölkopf, 2004; Drucker et al., 1997). The objective 
function is:  

  

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
‖𝑤‖2                                                                           (5) 

 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑦𝑖 − (𝑤 ∙ 𝑥𝑖 + 𝑏) ≤ 𝜖 , (𝑤 ∙ 𝑥𝑖 + 𝑏) −  𝑦𝑖 ≤ 𝜖                  (6) 

 
(7) AdaBoost Regressor builds a series of weak learners (usually 
decision trees) in a sequential manner. Each new learner focuses 
on the mistakes made by the previous ones. The model combines 
the predictions of all the weak learners to make the final prediction 

(Freund and Schapire, 1997). Equal weights  𝑤𝑖 =
1

𝑁
  are assigned 

to each training sample. Then, weak learners are trained for 𝑚 =
1 𝑡𝑜 𝑀. In each iteration, a weak learner   ℎ𝑚(𝑥) is trained on the 
weighted data. Following this, the weighted error is computed using 
the formula: 

 



 
 
 
 
 𝜖𝑚 = ∑ 𝑤𝑖 ∙ 𝕝((𝑦𝑖 ≠ ℎ𝑚(𝑥𝑖))𝑁

𝑖=1                                                       (7) 

 
where 𝕝  is the indicator function. Next, the learner's weight is 
calculated with  
 

 𝛼𝑚 =
1

2
𝑙𝑛 (

1−𝜖𝑚

𝜖𝑚
)                                                                           (8) 

 
Subsequently, we update the weights for each sample using the 
equation:                                                       
 

 𝑤𝑖
∗ = 𝑤𝑖 ∙ 𝑒𝑥𝑝 (𝛼𝑚 ∙ 𝕝((𝑦𝑖 ≠ ℎ𝑚(𝑥𝑖)))                                            (9) 

 
and normalize the weights. Finally, the overall prediction 𝐻(𝑥) is 
obtained as a weighted sum of the predictions from all weak 
learners, given by:  
 

𝐻(𝑥) = ∑ 𝛼𝑚 ∙𝑀
𝑚=1 ℎ𝑚(𝑥𝑖)                                                              (10)               

 
This iterative process enhances the model by concentrating on 
misclassified samples, resulting in a robust combined predictor.  
(8) Gradient Boosting Regressor (GBR) builds an ensemble of trees 
in a sequential manner, where each new tree corrects the errors of 
the combined ensemble of all previous trees. The model initializes 
with a constant value, which is given by:  

 
𝐹0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐 ∑ 𝐿(𝑦𝑖 , 𝑐)𝑁

𝐼=1                                                        (11) 
 
where 𝐿 is the loss function and 𝑦𝑖 are the true values. Next, for 
each iteration 𝑚 = 1  to 𝑀, we perform several steps. We start by 
computing the pseudo – residuals, which are calculated as: 

 

𝑟𝑖𝑚 = − [
𝜕𝐿(𝑦𝑖𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
]

𝐹(𝑥)=𝐹𝑚−1(𝑥)
.                                                      (12) 

 
These pseudo-residuals indicate the direction and magnitude of the 
errors. After calculating the pseudo residuals, we fit a base learner 
ℎ𝑚(𝑥), such as a decision tree, to these pseudo-residuals. This is 
done by solving: 

 
 ℎ𝑚(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ ∑ (𝑟𝑖𝑚 − ℎ(𝑥𝑖))2𝑁

𝐼=1                                           (13) 

 
Once the base learner is fit, the step size 𝛾𝑚 that minimizes the loss 
function is computed using: 

  
 𝛾𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + 𝛾ℎ𝑚(𝑥𝑖))𝑁

𝑖=1                              (14)   

 
With the step size determined, the model is updated as follows: 

 
𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾ℎ𝑚(𝑥)                                                           (15)   

 
Finally, after 𝑀 iterations, the model's prediction is given by:   

  
  𝐹𝑀(𝑥) = 𝐹0(𝑥) + ∑ 𝛾ℎ𝑚(𝑥)𝑀

𝑚=1                                                     (16)   

 
In summary, the Gradient Boosting Regressor iteratively improves 
the model by adding new trees that correct the errors of the 
previous ensemble, guided by gradient descent to minimize the 
objective function (Friedman, 2001). 
9) Random Forest Regressor builds multiple decision trees and 
merges them together to get a more accurate and stable prediction. 
Each tree is trained on a random subset of the data, and the final 
prediction is the average (for regression) of all the trees (Breiman, 
2001). Mathematically, this involves creating 𝐵 bootstrapped 

datasets from the original dataset, denotes as 𝒟𝑏 = {(𝑥𝑖 , 𝑦𝑖)}
𝑖=1
𝑛𝑏   for  

𝑏 = 1,2, … 𝐵.      Each    decision   tree 𝑇𝑏  is   then   trained    on   its  
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corresponding bootstrapped dataset 𝒟𝑏 selecting a random subset 
of features ℱ at each split. The financial prediction 𝑦̂ is obtained by 
averaging the predicitions from all the trees, expressed as:  
 

 𝑦̂ =
1

𝐵
∑ 𝑇𝑏(𝑥)𝐵

𝑏=1                                                                            (17) 

 
10) Extra Trees Regressor is similar to Random Forest but 
introduces more randomness by splitting nodes based on randomly 
selected cut points and using the whole original sample rather than 
bootstrapped samples (Geurts et al., 2006). The final prediction is 
also an average of all the trees. In this method the entire dataset 

𝒟 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁  is used to train each tree. For each split in the tree, 

a random subset of features ℱ and a random cut point 𝑡 for each 

feature are selected, where 𝑅1(𝑗, 𝑡) = {(𝑥, 𝑦)|𝑥𝑗 ≤ 𝑡}  and  𝑅2(𝑗, 𝑡) =

{(𝑥, 𝑦)|𝑥𝑗 > 𝑡}. The decision tree 𝑇𝑏 is then trained on the dataset𝒟, 

using these random splits. The final prediction 𝑦̂ is obtained by 
averaging the predictions form all trees, expressed as: 
 

 𝑦̂ =
1

𝐵
∑ 𝑇𝑏(𝑥)𝐵

𝑏=1                                                                          (18) 

 
 
Hyperparameter tuning and model evaluation 

 
Hyperparameter tuning was conducted using grid search and cross-
validation techniques. Grid search involves systematically searching 
through a specified parameter grid to find the optimal 
hyperparameters for the models. Cross-validation, specifically 3-fold 
cross-validation, was used to evaluate model performance and 
ensure robustness by splitting the training data into subsets and 
validating the model on each subset (Kuhn and Johnson, 2013). 
The performance of each model was evaluated using the coefficient 
of determination 𝑅2 and Mean Squared Error (MSE). These metrics 
provide insights into how well the models predict diamond prices 
and the accuracy of the predictions. After training and evaluating 
the models, their performances were compared. A summary table 
was created to highlight the differences in model performances, 
providing a clear comparison and aiding in the selection of the best 
model for predicting diamond prices. 
 
 
Optimization with random forest regressor 
 
Given the strong performance of the Random Forest Regressor in 
initial evaluations, the focus shifted to optimizing this model to 
further enhance its predictive accuracy. The optimization process 
involved the following steps. A grid search was conducted to 
explore various hyperparameters of the Random Forest model, 
particularly the number of estimators (trees in the forest). The 
parameter grid included options for the number of estimators set at 
10, 20, 30, 50, and 100. 

This systematic approach allowed for the determination of the 
optimal number of trees for the model. Three-fold cross-validation 
was employed within the grid search to ensure that the model's 
performance was robust and not overly dependent on a specific 
subset of the data. This involved splitting the training data into three 
subsets, training the model on two subsets, and validating it on the 
third. This process was repeated three times, with each subset 
used exactly once as the validation data. The grid search identified 
the Random Forest model with 100 estimators as having the best 
performance. The optimized Random Forest model was then 
evaluated on the validation set to assess its predictive accuracy. 
The evaluation metrics included Mean Squared Error (MSE) and 
the coefficient of determination R². In summary, the optimization of 
the Random Forest Regressor through grid search and cross-
validation enhanced the model's predictive accuracy, making it a 
highly reliable tool for diamond price prediction. 
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Table 5. Model performance comparison. 
 

Model  R2 mean R2 standard deviation MSE mean MSE standard deviation 

Linear regression (LR) 0.9162 0.0009 1.338.376.64 5.931.46 

Lasso  0.9162 0.0009 1.338.608.23 6.716.02 

Elasticnet (EN) 0.7756 0.0033 3.584.389.35 102.792.19 

K-nearest neighbors (KNN) 0.9157 0.0018 1.346.083.43 14.602.34 

Decision tree(CART) 0.9110 0.0007 1.420.765.93 25.718.00 

Support vector regression (SVR) -1.7024 0.0459 43.153.154.75 295.246.23 

Ada boost regressor (ABR) 0.8729 0.0060 1.975.268.25 134.886.78 

Gradient boosting (GBR) 0.7792 0.0029 3.527.589.44 94.622.02 

Random forest (RFR) 0.9778 0.0013 355.735.74 5.402.43 

Extra tres (ETR) 0.9764 0.0011 379.600.06 14.729.83 

 
 
 
RESULTS 
 
Performance evaluation 
  
The results of this study align with previous research that 
highlights the superiority of ensemble methods like 
Random Forest and Gradient Boosting for predictive 
tasks. Studies such as Breiman (2001) and Friedman 
(2001) have demonstrated the effectiveness of these 
models in various domains, and our findings corroborate 
their applicability in diamond price prediction. In this 
analysis, the results of evaluating various regression 
models were presented using a diamond dataset. The 
models were assessed using cross-validation to 
determine their predictive capabilities. Based on Table 5, 
the following is a detailed analysis of the results obtained. 

Table 5 presents the performance metrics for various 
models applied to diamond data. Linear Regression (LR) 
and Lasso both have an R² mean of 0.9162, indicating 
they explain about 91.62% of the variance in the data. 
Their R² standard deviations are very low (0.0009), 
suggesting high consistency. The MSE means for LR and 
Lasso are 1,338,376.64 and 1,338,608.23, respectively, 
with standard deviations of 5,931.46 and 6,716.02, 
indicating relatively low and consistent errors.  

ElasticNet (EN) has an R² mean of 0.7756, which is 
significantly lower than LR and Lasso. The R² standard 
deviation is 0.0033, indicating less consistency. The MSE 
mean is quite high at 3,584,389.35 with a standard 
deviation of 102,792.19, suggesting the model is less 
accurate. K-Nearest Neighbors (KNN) has an R² mean of 
0.9157, similar to LR and Lasso. The R² standard 
deviation is slightly higher at 0.0018 but still indicates 
good consistency. The MSE mean is 1,346,083.43 with a 
standard deviation of 14,602.34, showing solid and 
consistent performance. Decision Tree (CART) has an R² 
mean of 0.9110, close to the top-performing models. The 
R² standard deviation is low at 0.0007, indicating high 
consistency. The MSE mean is 1,420,765.93 with a 
standard deviation of 25,718.00, indicating good 
performance but with  greater  variability.  Support  Vector 

Regression (SVR) has a negative R² mean of -1.7024, 
indicating poor fit. The R² standard deviation is 0.0459, 
quite high. The MSE mean is extremely high at 
43,153,154.75 with a standard deviation of 295,246.23, 
suggesting this model is not suitable for this data set. 
AdaBoost Regressor (ABR) has an R² mean of 0.8729. 
The R² standard deviation is 0.0060. The MSE mean is 
1,975,268.25 with a standard deviation of 134,886.78, 
indicating higher errors and less consistency compared to 
other models. Gradient Boosting (GBR) has an R² mean 
of 0.7792. The R² standard deviation is 0.0029. The MSE 
mean is 3,527,589.44 with a standard deviation of 
94,622.02, suggesting there are better models for this 
data set. Random Forest (RFR) has the highest R² mean 
at 0.9778. The R² standard deviation is 0.0013, indicating 
high consistency. The MSE mean is the lowest at 
355,735.74 with a standard deviation of 5,402.43, 
suggesting high accuracy. Extra Trees (ETR) has an R² 
mean of 0.9764, also very high. The R² standard 
deviation is 0.0011. The MSE mean is 379,600.06 with a 
standard deviation of 14,729.83, indicating excellent and 
consistent performance.  

In conclusion, the Random Forest (RFR) and Extra 
Trees (ETR) models demonstrate the best performance 
in terms of R² and MSE, indicating high accuracy and 
consistency in predicting diamond prices. In contrast, the 
Support Vector Regression (SVR) model showed poor 
performance with a negative R² and extremely high MSE, 
indicating it is not suitable for this data set.  
 
 
Random forest regressor optimization 
 
Given the strong performance of the Random Forest 
Regressor, further optimization of this model was pursued 
using grid search techniques to find the best 
hyperparameters. The focus was on adjusting the number 
of estimators, testing values of 10, 20, 30, 50, and 100. 

Table 6 shows the performance of the Random Forest 
Regressor with different numbers of estimators. With 10 
estimators,  the  Mean  R²  Score  was   0.97758   with   a  
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Table 6. Performance of random forest regressor with different numbers of estimators. 
 

Number of estimators Mean R2 score Standard deviation 

10 0.977585 0.000638 

20 0.978448 0.000934 

30 0.978844 0.000812 

50 0.979053 0.000625 

100 0.979190 0.000783 

 
 
 

Table 7. Model performance metrics. 
 

Metric  Value 

Mean squared error (MSE) 321.693.0095092485 

Coefficient of determination (R2) 0.9794916404931184 
 
 
 

 
 

Figure 4. Random forest regressor performance with different numbers of estimators. 
 
 
 

Standard Deviation of 0.000638. As the number of 
estimators increased to 20, the Mean R² Score improved 
to 0.978448 with a Standard Deviation of 0.000934. With 
30 estimators, the Mean R² Score further increased to 
0.978844, and the Standard Deviation was 0.000812. 
Using 50 estimators, the Mean R² Score reached 
0.979053 with a Standard Deviation of 0.000625. The 
best performance was observed with 100 estimators, 
achieving a Mean R² Score of 0.97919 and a Standard 
Deviation of 0.00078. The optimized model, with 100 
estimators, achieved the highest R² Score of 0.97919. 
These results indicate that increasing the number of 
estimators generally improves the model's performance. 
The best model with 100 estimators provides the highest 
accuracy and consistency, as indicated by its R² Score 
and low Standard  Deviation.  Additionally,  the  low  MSE 

value suggests high precision in predicting diamond 
prices. This demonstrates the effectiveness and reliability 
of the Random Forest model with 100 estimators for 
diamond price prediction. Figure 4 shows the random 
forest regressor performance with different numbers of 
estimators. 

MSE measures the average of the squares of the 
errors—that is, the average squared difference between 
the estimated values and the actual values. A lower MSE 
indicates that the model's predictions are closer to the 
actual values. When evaluated on the test set, the Mean 
Squared Error (MSE) is 321,693.00950 indicating that the 
model has a low average squared error, suggesting high 
accuracy in its predictions. Table 7 shows the model 
performance metrics.  

The  Coefficient  of  Determination  (R²)  represents  the
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Figure 5. Feature importance of random forest regressor. 
 
 
 

proportion of the variance in the dependent variable that 
is predictable from the independent variables. An R² 
value of 0.97949 means that approximately 97.95% of 
the variance in diamond prices is explained by the model. 
This high R² value indicates a strong correlation between 
the model's predictions and the actual diamond prices, 
signifying the model's effectiveness and reliability. These 
metrics demonstrate that the optimized Random Forest 
Regressor performs exceptionally well in predicting 
diamond prices, with high accuracy and consistency. 
 
 
Feature importance analysis 
 
The feature importance analysis revealed that: Carat was 
the most significant predictor, with an importance value 
exceeding 0.8. Other features, such as cut, color, clarity, 
depth, and table, had much lower importance values. 
This analysis underscores the predominant role of carat 
weight in determining diamond prices, while other 
features, although less influential; still contribute valuable 
information for prediction. Figure 5 shows the feature 
importance of random forest regressor. 
 
 
Comprehensive analysis and industry implications 
 
The results of this study indicate that machine learning 
techniques, particularly ensemble methods like Random 
Forest and Extra Trees Regressor, offer substantial 
improvements over traditional methods for predicting 
diamond prices (Breiman, 2001; Geurts et al., 2006). The 
results support the first hypothesis: machine learning 
models can indeed outperform traditional methods in 
predicting diamond prices. The Random Forest Regressor 
achieved the highest R² score, followed closely by the 
Extra Trees Regressor. These models leverage the power 

of multiple decision trees to capture complex non-linear 
relationships between the features and the target variable 
(price), thereby providing more accurate predictions. 

The second hypothesis, that data normalization 
significantly improves model performance, is also 
validated. Normalization ensured that all features 
contributed equally to the model training process, 
preventing any single feature from disproportionately 
influencing the results due to differences in scale. This 
preprocessing step was crucial for models sensitive to 
the scale of input data, such as K-Nearest Neighbors and 
Support Vector Regressor (Altman, 1992; Smola and 
Schölkopf, 2004). 

The third hypothesis suggested that combining multiple 
regression models and selecting the best-optimized 
model would yield the most accurate and reliable 
predictions. This was confirmed through the grid search 
optimization of the Random Forest model, which 
improved its performance. The optimized model's R² 
score on the validation set highlights the effectiveness of 
hyperparameter tuning in enhancing model accuracy. 

The feature importance analysis revealed that carat 
weight is the most significant predictor of diamond price, 
which aligns with industry knowledge. However, other 
features like cut, color, and clarity, although less 
influential individually, contribute valuable information 
when combined. This insight is critical for stakeholders 
aiming to develop more sophisticated pricing models that 
consider multiple facets of a diamond's characteristics 
(Venables and Ripley, 2002). 

In summary, this study demonstrates the significant 
advantages of using ensemble machine learning 
methods for diamond price prediction. The careful 
preprocessing of data, including normalization and one-
hot encoding, along with the optimization of model 
parameters, has proven essential in achieving high 
accuracy. 

 



 
 
 
 

Implications for model building 
 
The strong correlation between "carat" and "price" 
highlights carat as a crucial feature for predicting 
diamond prices, necessitating its inclusion in the model. 
However, to avoid multicollinearity, caution is required 
when incorporating multiple correlated features. Weak 
correlations among several other features suggest that 
their inclusion could add unnecessary complexity without 
significantly enhancing predictive power. Thus, feature 
selection techniques or dimensionality reduction methods 
might be beneficial (Hastie et al., 2009). Understanding 
correlations also aids in preprocessing steps like 
normalization and scaling, ensuring that features with 
varying scales do not disproportionately influence the 
model. Additionally, correlation analysis improves model 
interpretability by identifying the most relevant features 
for predicting price, providing valuable transparency for 
stakeholders in understanding the factors driving 
diamond prices. 
 
 
Implications for the jewelry industry 
 
The application of advanced machine learning techniques 
in the jewelry industry has practical implications. Accurate 
price prediction models can help jewelers, appraisers, 
and consumers make more informed decisions. For 
jewelers and appraisers, these models provide a reliable 
tool for setting prices that reflect current market trends 
and diamond attributes. For consumers, these models 
offer transparency and confidence in the valuation 
process (Kuhn and Johnson, 2013). 
 
 

Conclusions 
 

This study demonstrates the effectiveness of machine 
learning techniques in predicting diamond prices, 
providing a robust alternative to traditional valuation 
methods. By employing a comprehensive dataset from 
diamond market data and implementing rigorous 
preprocessing steps, the quality and reliability of the input 
data were ensured. The evaluation of various regression 
models highlighted the superiority of ensemble methods, 
particularly the extra trees regressor and random forest 
regressor, in achieving high prediction accuracy. The 
optimized Random Forest model, through an extended 
grid search and cross-validation process, achieved an R² 
score of approximately 98% of the variability in diamond 
prices. This result underscores the potential of machine 
learning to significantly enhance price estimation in the 
jewelry industry, offering a practical tool for professionals 
such as jewelers, appraisers, and consumers. 

Therefore, this study highlights the potential of machine 
learning techniques to revolutionize diamond price 
prediction. By meticulously preprocessing data and 
leveraging advanced regression models,  highly  accurate  
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predictions were achieved. The findings emphasize the 
importance of ensemble methods and model optimization 
in capturing the complexities of diamond pricing. Given 
the proven effectiveness of machine learning models in 
predicting diamond prices, several avenues for future 
research remain. Exploring the integration of additional 
features, such as market demand and historical price 
trends, could further enhance model accuracy. 
Additionally, employing more advanced machine learning 
techniques, such as deep learning, might uncover even 
more complex patterns in the data (Marsland, 2015). 
Furthermore, incorporating real-time data streams could 
enable dynamic pricing models that adapt to market 
changes instantaneously (Torgo, 2011). In summary, this 
study underscores the potential of machine learning 
techniques to revolutionize diamond price prediction. The 
successful application of these methods not only 
demonstrates their current utility but also sets a 
precedent for further innovation and refinement in 

predictive modeling within the gemstone industry. 
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