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The efficient market hypothesis asserts that financial markets are always efficient and therefore cannot 
be predicted in order to make abnormal returns. This paper investigates the predictability of stock 
prices in more efficient and developed markets (U.S and U.K) using two econometric methods namely, 
the random walk and the non-parametric methods. Based on the out-of-sample predicted mean square 
error, and the resampled confidence interval and volatility we found that both U.S and U.K stock prices 
are predictable with more accuracy when a nonparametric method is used. 
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INTRODUCTION 
 
Predictability of future behaviour of stock price has been 
a challenging puzzle that many financial economists 
attempted to solve during the past decade. Wu and Hu 
(1997) argue that "a long standing puzzle to financial 
economists is their difficulty to out-perform the 
benchmark random walk model in out-of-sample 
contests". In this paper, data from U.S and U.K stock 
markets (assumed to be efficient markets) are used in 
order to assess the out-of-sample performance of the 
kernel regression method over the traditional random 
walk model. Results indicate that by relaxing normality 
assumption on stock price distribution; it is possible to 
outperform the random walk model based on the 
predicted mean square error (the widely used criterion for 
comparison of two econometric models) and the 
bootstrapped mean. These results contribute towards 
improving predictability of stock price behaviour in 
financial market as discussed in the past by many 
researchers (Campbell and Shiller, 1988; Greene and 
Hodges, 2002; Zitzewitz, 2003; Chalmers et al., 2001) 
who have found that future stock price movements can 
be predictable in order to generate scenarios for buy and 
sell signals. 

Predictability of future stock price behaviour has 
become an increasingly attractive area of research in 
financial econometrics for both academics and practitioners 
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as the need for adequate and precise market timing 
increases. Traders in stock markets need to know exactly 
when to buy and/or sell in order to generate profit for their 
companies. It is in this regard that the random walk 
model which is considered as being consistent with the 
weak form of efficient market hypothesis (Anderson and 
lauvsnes, 2007) has been used for decades now by 
academics and professionals to model the behaviour of 
stock price. This method assumes that tomorrow’s stock 
price is equal to today’s price plus some random error. It 
also assumes that the price generating process is of the 
Gaussian family and can be modelled by a linear model. 
Such assumptions should only be drawn if imbalances 
between stock buyers and sellers are temporary, and 
occur in an efficient market where price reflects all known 
and unknown information. Linear models such as the 
random walk, autoregressive moving average (Box and 
Jenkins, 1994) and nonlinear econometric models are 
used to predict future behaviour of stock prices. As noted 
by Fan and Huang (2001), such models present 
significant drawbacks, the major one being the normality 
assumption on which they are built. This strong 
assumption may neglect the occurrence of extreme 
events during market crashes. Moreover, Adya and 
Collopy (1998), Chatfield (1995), and Tkacz (2001) found 
no clear evidence on whether nonlinear models might 
provide better forecasts than linear and random walk 
models when applied to financial time series data. 

This paper uses a different approach in modelling stock 
price behaviour namely the nonparametric kernel regression 



 
 
 
 
method which overcomes some of limitations of 
parametric models.  
  The paper deals specifically with predictability of stock 
price behaviour using univariate nonparametric kernel 
method. In this method, the normality assumption for 
example, is relaxed to let the data speak for itself about 
the distribution that it follows. Nonparametric kernel 
method has been used in the past by Skabar (2008) to 
estimate density distributions of returns in order to 
generate out-of sample forecasts. He found that the 
method can predict future direction of change in stock 
price and reduce the risk of under or overfitting the time 
series. His performance results in the out-of-sample 
period are consistent with those obtained in this paper. 

Niglio and Perna (2003) applied the Kernel method with 
the corrected version of generalized cross validation for 
optimal bandwidth selection to two climatic time series 
data collected from South Italy (Scafari) from January 
1960 to December 2000.  

They showed that improving the bandwidth selection in 
Kernel method can overcome undersmoothing of climatic 
data and hence predict accurately the future behaviour of 
temperature in Scafari. Other works on univariate 
nonparametric kernel regression include Auestad and 
Tjostheim (1990), and Hardle and Vieu (1991) who used 
the kernel estimator proposed by Nadaraya (1964) to 
estimate the conditional mean and conditional variance of 
time series. Hardle and Tsybakov (1992) estimated both 
the conditional mean and variance of a time series using 
local linear estimates.  
 
 
METHODOLOGY  

 
In this paper a non-linear autoregressive kernel model for a 
univariate time series was built in five steps, namely, the estimation 
of the density function (kernel function), the search for an optimal 
bandwidth for the kernel function, the determination of the exact 
number of lags to be included in the regression equation, and the 
estimation of the conditional mean and volatility.  

A specification test was lastly used in order to assess the 
correctness of the model. These steps are now discussed as 
follows.  
 
 
Density estimation  

 
The smooth density function that is dealt with in this paper is known 

as the Kernel density function estimator )(ˆ xf  given by the 

following expression:  
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where h represents the smoothing parameter known as the 

bandwidth, and (.)K  the Kernel function satisfying the following 

properties: 
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Usually (.)K is chosen to be a unimodal probability density 

function that is symmetric about zero. This ensures that )(ˆ xf  is 

itself also a density. In this case notice that (.)K  is simply the 

),0(
2hN  density so that h  plays the role of a scaling factor 

which determines the spread of the kernel.  
 
The Kernel estimator is thus constructed by centering a scaled 
kernel at each observation. The value of the kernel estimator at a 

point, x  for instance; is simply the average of the n  kernel 

ordinates at that point. One can think of the kernel as spreading a 

“probability mass” of size ni /  associated with each data point 

about its neighbourhood. The list of kernel functions used in 
practice includes the Epanechnikov; Gaussian, triangular, biweight; 
rectangular kernel, and so on. Practically, the choice of the shape 
of the Kernel function is less important than the choice of the 
optimal bandwidth. 
 
 
Optimal bandwidth selection 

 
The integrated mean square error of the kernel 

estimator )(ˆ( xfimse ) is used to obtain the optimal bandwidth. 

Hall et al. (2004) demonstrated that: 
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The optimal bandwidth ( )opth  can now be obtained by minimizing 

the )(ˆ xfimse aforestated with respect to the bandwidth h : 
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The optimal kernel density estimator corresponding to the 
aforestated optimal bandwidth has been suggested by 
Epanechnikov (1969), and is known as the Epanechnikov kernel, 
and is given by: 
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Lag selection 
 
The exact number of lags to include in a non-linear autoregressive 
kernel regression equation is obtained using the estimated final 
predictor error (FPE) criterion (Auestad and Tjostheim, 1990). 
 
 
Estimation of conditional mean and volatility 
 

Let 
t

Y  be the stock price value at time t , and 

ltttt
yyyy −−−− ;.......;;

321
 the stock price in previous periods. It 

is assumed that there is a non-parametric and non-linear 
relationship between the current and the previous stock prices. This 
relationship is modelled by a non-linear autoregressive 
heteroskedastic process of the form: 
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In Equation (4) ),...,,(
21 lttt

yyym −−−  represents the conditional 

mean whereas 
t

σ  represents the conditional volatility of the stock 

price. In order to plot the conditional mean and volatility functions in 
a three-dimensional space, it is assumed in this paper that two lags 
only have been selected using the final prediction error during the 
lag selection stage. The kernel regression in (4) can also be 
rewritten in terms of the conditional mean and the conditional 
volatility as follows: 
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This model is different from the classical autoregressive (AR) in two 
ways. Firstly, the AR model assumes linear dependence on past 
stock prices, whereas the aforestated model assumes a non-linear 
dependence on past stock prices. Secondly, the classical GARCH 
models of volatility assume normality and symmetrical behaviour of 
volatility.  
  In the model presented earlier, no such assumption is made about 
the distribution of the stock price and error terms. The estimation of 
the conditional mean and volatility is now presented as follows. Let 

p  be the degree of the polynomial being fit to the stock price data 

set, and opth the optimal bandwidth selected. The estimator of the 

conditional mean denoted by ),,(ˆ
optt hpxm is obtained by fitting 

a polynomial of the form 
p

pp xxxx ).(...).( 110 −++−+ βββ to the stock price 

series using the least square cross-validation method in which the 
kernel estimator is considered as the weight function: 
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where tX is a square matrix containing one in the first column, 

1−tY in the second column, and 
2−tY in the last column. The 

Nadaraya-Watson conditional mean estimator (Nadaraya and 
Watson, 1964) is obtained when the degree of the polynomial being 

 
 
 
 

fitted to the stock price data is zero )0( =p : 
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The local linear estimator of the conditional mean is obtained when 
the degree of the polynomial being fit to the stock price series is 

one )1( =p : 
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The conditional volatility is specified the same way as earlier. First 
the form of the estimator for the conditional mean must be specified 
(Nadaraya-Watson or the local linear estimator).  

Assume that the Nadaraya-Watson estimator of the conditional 
mean is specified; then the stock price behaviour is modelled by the 

following expression; topttt hxmY ε+= ),0,(ˆ  residual squared 

are then computed: 
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Using the least square cross-validation method with 

(.)K considered as weight function, the Nadaraya-Watson 

estimator of the conditional volatility is then obtained: 
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where tX ,σ is a square matrix whose first column entries are equal 

to one, the second column entries are
2

1−tε , and the last column 

entries are equal to 
2

lt−ε (with l  representing the largest lag). The 

Nadaraya-Watson estimator for the conditional volatility is obtained 
when the degree of the polynomial being fitted to the stock price 

conditional volatility is zero )0( =p : 
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Specification tests  
 

The error terms te in (5) need to be estimated in order to check 

whether the fitted conditional volatility is appropriate. 
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Note that if the conditional mean ),0,(ˆ
optt hxm and the 
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Figure 1. Historical prices. 

 
 
 

conditional volatility ),0,( ,

2

optt hxσσ are correctly specified, then 

the estimates 
t

ê would result in white noise random variables. 

 
 
EMPIRICAL RESULTS  
 

Daily stock prices of S&P 500, DOWJONES (DJIA), and 
FTSE 100, have been collected from Yahoo finance, 
these markets are more efficient than emerging markets; 
our aims is to investigate whether these efficient markets 
can be predictable. The dataset encompasses 02 
January 2001 to 31 December 2010. Figure 1 shows that 
the U.K and U.S equity markets commove together 
during both bull and bear market periods. In order to 
compare the forecasting power of the kernel and the 
random walk model, the root mean square error criterion 
as well the bootstrap confidence interval and the volatility 
are used. Firstly, the sample period is divided into two 
consecutive periods, namely the in-sample period (from 4 
January 2000 to 06 January 2008, representing 86% of 
the sample data) and the out-of-sample period (from 7 
January 2008 to 27 April 2009). The Epanechnikov kernel 
has been used as the estimator of the univariate density 
function corresponding to individual distribution of all the 
major stock indices used in this paper (S&P 500, DJIA 

and the FTSE 100). An automated optimal bandwidth 
selection using jmulti software (www.jmulti.com) has 
been used for lag selection as well as for the estimation 
of conditional mean and volatility for each one of the 
aforementioned stock indices.  

Two lags only are considered for the non-linear 
autoregressive kernel regression using the corrected 
asymptotic final prediction error suggested by Tschernig 
and Yang (2000). Firstly, local linear estimators of 
conditional mean for DJIA and S&P 500 (using lag one 
and three) and for FTSE 100 (using lag one and five) are 
found. Previous stock price (lag one) is found to have a 
significant impact on the current price for both the U.S 
and U.K stocks, whereas lag three and five were found to 
have a significant impact on U.S and U.K stocks 
respectively. Secondly, the conditional volatility of S&P 
500, DJIA, and the FTSE 100 respectively was modelled 
using lag one and lag five. Both lag one and five were 
found to be having a significant impact on U.S and U.K 
stocks respectively. Forecasts are generated using the 
kernel regression and the random walk models. In this 
paper, two parametric forecasts are employed using the 
random walk model. The first is the dynamic random 
forecasting, which is a multi-stage forecasting method 
(from the start of the out-of-sample forecast); forecasts 
are computed recursively using the  lagged  value  of  the  
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Table 1. Predicted mean square errors and volatilities. 
 

 Kernel model Dynamic random walk Static random walk 

DJIA  
207.4939 2378.1900 208.3989 

(1804) (461.966) (1801.396) 

    

S&P 500 
23.9196 300.3200 24.9600 

(218.473) (40.108) (216.7371) 

    

FTSE 100 
96.7723 1044.7910 96.9913 

(746.7752) (183.7762) (745.2531) 

 
 
 

Table 2. Decision rules and probabilities (in bold) of F-test two-sample for variance. 

 

Method DJIA S&P 500 FTSE 100 

Non-parametric Kernel 
Do not reject Do not reject Do not reject 

(0.4876) (0.4407) (0.4756) 

    

Dynamic Random Walk 
Reject Reject Reject 

0 0 0 

    

Static Random walk 
Do not reject Do not reject Do not reject 

(0.4996) (0.499) (0.4944) 

 
 
 
dependent variable. The second is the static random walk 
forecasting model which performs a series of one-step 
ahead of the dependent variable. Table 1 contains the 
predicted mean square error and volatility (in bold) of 
forecasts generated from the kernel model, the dynamic, 
and the static random walk methods.  

Table 1 reveals that the pmse alone cannot be used to 
assess the performance of these forecasting methods. It 
can be seen in Table 1, that non-parametric kernel 
method has the lowest pmse; however its volatility is not 
minimal. An investment analyst would be confused 
depending on his risk aversion, whether he should use 
the kernel method or the random walk models (dynamic 
or statistic) in order to generate scenarios for potential 
buy or sell signals in short term. To further assess the 
performance of the kernel method; another statistical 
criterion - the F-test of out-of-sample volatility is used. 
The underlying idea here is that, if the null hypothesis of 

an F-test (
2

2

2

10
: σσ =H ; according to which the 

variance of the actuals is the same as the variance of the 
forecasts) is not rejected, then the method used to 
generate these forecasts is an empirically good model to 
generate future scenarios for long or short positions in 
the stock indices aforementioned.  

Table 2 presents decision rule about the null 

hypothesis (
2

2

2

10 : σσ =H ) as well as the probability of 

one tail F-test (two-sample for variances) for the three 

methods, namely the non-parametric kernel, the dynamic 
random walk, and the static random walk models. 

The rejection of the null hypothesis as well as the 
higher pmse provides enough strong evidence to discard 
the dynamic forecasting method in this study. From Table 
2 one can realize that forecasts generated from dynamic 
random walk model are not close to the actual values, 
this is consistent with what has been found with the 
higher pmse in Table 1. 

 Further investigation is needed to assess the 
performance of the kernel model over the static random 
walk model. Both forecasts (non-parametric kernel and 
the statistic random walk) are bootstrapped in order to 
create ten thousand samples without replacement for 
each of the earlier mentioned stock indices.  

Table 3 presents the confidence interval (C.I) of the ten 
thousand sample means, average volatility and the mean 
of the ten thousand sample means of the bootstrapped 
samples. Table 3 shows that the kernel method provides 
forecasts with higher mean returns and a slightly high 
volatility.  

A slight difference in terms of confidence interval is 
noted.  

The kernel method seems to possess a slightly larger 
confidence interval for the ten thousand sample means 
than the random walk one; however, based on the 
predicted mean square error criterion and the 
bootstrapped mean, the kernel model outperforms the 
random walk model.  
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Table 3. Bootstrapping results of static random walk and kernel method (in bold). 
 

 C.I of 10000 means 
Average volatility 

of 10000 samples 

Mean of 

10000 samples 

DJIA 
[9449.1 - 9831.3] 1797.8 9640.2 

(9450.3 – 9833.3) (1801.2) (9641.8) 

    

S&P 500 
[1012.9 – 1058.9] 216.3681 1035.9 

(1013.9 – 1060.3) (218.1315) (1037.1 

    

FTSE 100 
[4651.0 – 4809.2] 743.9685 4730.1 

(4651.9 – 4810.3) (745.4792) (4731.1) 

 
 
 
Conclusion 
 
This paper has investigated the predictability of stock 
price behaviour using parametric (random walk) and 
nonparametric (kernel) models. The study was limited 
only to stock price indices (S&P 500, DJIA, and FTSE 
100). A sample of two thousand and eighty five data 
points has been divided into two periods; the in-sample 
and out-sample periods respectively. Preliminary analysis 
of these stock indices showed that volatility in U.S and 
U.K stock market was significantly influenced by the price 
of previous trading (lag one) day and that of the trading 
from the past fifth day (lag five).  

Based on the predicted mean square error, the results 
suggest that forecasts generated from nonparametric 
method are closer to actual or observed prices than those 
generated from the parametric model. Parametric models 
assume normality and (non-)linearity in the underlying 
stock price; by relaxing these assumptions we can 
improve predictability of stock price and be able to make 
decisions that can help traders to generate scenarios for 
buy and sell signals in short term.  
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