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Learning by doing (or learning curves) is a well-known law in economics and psychology, but no 
consensus has been achieved on the “qualified” models for more than a century. This article explores 
the expression of learning by doing in a way where the expression is not involved with changing the 
prime factors of a learning process. If one prime factor changes dramatically during the course of a 
learning process, the result of the regression is actually an approach to link two different learning 
curves. If the two curves are distinguishable, they each obey the law of learning by doing, which will 
progress rapidly at the initial phase and gradually slow down to a flat end. This article presents two 
functions as the law of learning by doing: The general exponential model is 0.79:0.21 better than the 
exponential delay model, whereas the later has the ability to investigate the change of loading factors. 
This ability makes the models a powerful tool for entrepreneurs and managers in investment and 
production planning.  
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INTRODUCTION 
 
The law of the learning curves has become ubiquitous 
since its introduction in an 1885 study of individuals in 
psychology, and has been found in the manufacturing 
process of industrial organizations, called ―learning by 
doing‖ or ―organizational learning‖ in the field of 
economics and management (Wright, 1936). Empirical 
evidence of more than thousands of industries such as 
aircraft assembly, ship building by big firms, as well as 
cigar making by small firms have shown this law being 
used in industries broadly (Yelle, 1979; Thompson, 2010; 
Anzanello and Fogliatto, 2011; Jaber, 2016). The core 
idea of the law of the learning curves is negative 
acceleration: as one practices and learns more in a 
specific domain, the amount of unknown material 
decreases and, thus, the amount of newly learned 
information declines. Therefore, it is natural  to  anticipate 

progress being essentially null at the end of the learning 
process, which Bryan and Harter (1897, 1899) termed the 
―plateau.‖  

However, this explanation is assumed to be insufficient, 
as the learning process has long been reported as 
continuing infinitely with no convincing evidence of an 
end in progress  (Wright, 1936; Jaber, 2016; Hirschmann, 
1964; Dar-El et al., 1995; Asher, 1956). For example, 
Arrow (1962) seminal work was based on the log-linear 
function y = px

r

 
of Wright (1936), who found that when the 

output doubled, the cost of airplane declined along the 
power sequence infinitely to 0. Although this finding was 
and is counterintuitive, that the cost of airplane should be 
much higher than 0, a vast body of empirical evidence 
supports that the end of learning process is ambiguous. 
Recently,  this  phenomenon  was  partly  attributed to the
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Table 1. Models. 
 

Name Function expression Value range of parameter Monotonicity 

Exp-Gen
1
 1xy k pr    0, 0,0 1k p r     Decrease 

Exp-Delay ( 1) / ( )xry k p t t e     0, 0, 0, 0k p t r      Decrease 

Stanford-B ( )ry p x t   0, 0, 1 0p t r      Decrease 

S-curve 1[ (1 )( ) ]ry c M M x t     
1 0,0 1, 0, 1 0c m t r        Decrease 

Log-Linear 
ry px  0, 1 0p r     Decrease 

DeJong 1[ (1 ) ]ry c M M x    
1 0,0 1, 1 0c m r        Decrease 

Power-Delay ( 1) / ( )ry k p t t x     0, 0, 0, 0k p t r     Decrease 

Power-Gen 
ry k px   

0, 0, 1 0k p r      Decrease 

Hyp2 [ / ( )]y k x x r   0, 0k r   Increase 

Exp2 /(1 )x ry k e   0, 0k r   Increase 

Exp3 ( )/(1 )x p ry k e    0, 0, 0k p r    Increase 

Hyp3 ( ) / ( )y k x p x p r     0, 0, 0k p r    Increase 
 
1
 The originators of models are listed as follows: Exp-Gen (Pegels, 1969; Towill, 1990); Exp-Delay (Evans et al. 2018); Stanford-B 

(Asher, 1956); S-curve (Carr, 1946); Log-liner (Wright 1936); DeJong (De Jong, 1957); Power-Delay (Evans et al., 2018); Power-Gen 
(Newell and Rosenbloom 1981); the rest four models Hyp2, Exp2, Hyp3, Exp3 originated by Mazur and Hastie (1978) and Nembhard 
and Uzumeri (2000). 

 
 
 
―leaps‖ (Gray, 2017; Gray and Lindstedt, 2017). Slow 
progress followed by rapid learning in the initial phase 
has also been long discussed, and was termed as ―initial 
delay‖ (Carr, 1946; Evans et al., 2018). To achieve a 
better fit with all of the divergent empirical datasets, 
scholars have introduced more than a dozen learning 
curve models (Table 1), and constant efforts have been 
made to determine which is best (Crossman, 1959; 
Nembhard and Uzumeri, 2000; Newell and Rosenbloom, 
1981; Badiru, 1992; Heathcote et al., 2000; Anzanello 
and Fogliatto, 2011; Evans et al., 2018). However, 
different models better fit different datasets, and no 
consensus has been achieved on ―qualified‖ models. 

This study aims to identify reasonable and qualified 
models of ―learning by doing‖ by illuminating the 
mechanism of the learning process. The key idea in this 
study is that the process of learning is compounded by 
different factors and that performance improvement is 
actually the improvement of loading factors, meaning 
there are two methods for learning to progress: improve 
the performance of loading factors and reload more 
efficient factors. A learning model can be applied only 
under the condition that the prime factors of a learning 
process do not change dramatically. The law of the 
learning curve should be discussed apart from how to 
significantly change the prime factors of current 
manufacturing processes. If one prime factor changes 
dramatically during the course of a learning process, the 
result of the regression is actually an approach to link two 
different learning curves. If the two curves are 
distinguishable, they  each  obey  the  law of  learning  by 

doing, which will progress rapidly at the initial phase and 
gradually slow down to achieve plateau (Bryan and 
Harter, 1897, 1899). The plateau indicates a time when 
the prime factors of a learning process have approached 
their limits until a change of prime factors occurs. 

To illustrate this idea, this article uses empirical 
evidence of organizational learning in railway industry, 
which also illustrates that the controversial phenomena of 
the ―leap‖ (Teplitz, 2014; Gray, 2017; Gray and Lindstedt, 
2017) and ―initial delay‖ (Evans et al., 2018) are both the 
result of the change in prime factors. 

For any theory, nothing is more important than 
determining the accurate function expression because it 
not only articulates the relationship between variables but 
also unveils the mechanism behind this relationship, and 
thus, explains that why a microeconomic law can be used 
in macroeconomics. For the empirical evidence of the 
Shenzhen railway industry, the general exponential 
model (presented by Pegels 1969; Towill 1990 in different 
forms

1
) is the best, at 0.79:0.21; it performs better than 

the exponential delay model (Evans et al., 2018), 
although the exponential delay model has some ability to 
detect  changes  in loading factors. The two functions can 

                                                 

1  According to Towill (1990), 
/y (1 )x t

c fy y e   
/y ( ) x t

c f fy y y e    , denote ( )c fk y y  , 

1/t

fp y e   , 
1/tr e , then, 

1xy k pr   . 
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not only predict the future performance of an organization 
but also distinguish eligible datasets from ineligible ones. 
This ability makes the models a powerful tool for 
entrepreneurs and managers in investment and 
production planning, as well as researchers. 
 
 
Background and models 
 
When an individual learns a skill, he or she usually 
experiences a period of rapid improvement in 
performance followed by a period without obvious 
progress and then more improvement. This period with 
no obvious progress is called a plateau on the learning 
curve. Bryan and Harter (1897, 1899) were the first to 
describe the limit of learning as a ―plateau‖ after studying 
individuals’ skills in receiving Morse code and finding a 
steady state without obvious progress between one rapid 
period of improvement and another period of 
improvement. They believed this plateau was because 
learning involves a hierarchy of habits, in which (using 
Morse code as an example) letters must be learned first, 
followed by the sequences of letters forming syllables 
and words, and finally phrases and sentences. A plateau 
is a point of transition, when lower-order habits are not 
sufficiently learned to advance to the next level of habits 
in the hierarchy; thus, the pace of progress slows until 
this lower-order learning is completed. This notion 
prevailed until the Second World War. Half a century after 
Bryan and Harter, the speed of sending and receiving 
Morse code improved greatly and researchers found little 
difference between receiving sentences, unrelated words, 
nonsense material, and random letters—unexpected from 
the hypothesis of a hierarchy of habits. Most importantly, 
the anticipated plateaus did not appear (Keller, 1958). 

Wright's (1936) log-linear model is another example of 
the ―phantom‖ plateau. Asher (1956) assumed this was 
because the period of observation was not long enough 
and, thus, presented the Stanford-B model. In this model, 
despite that cost of aircraft declining significantly toward 0 
with no observable signs of plateau, Asher insisted that 
the learning progress would slow down in the long run 
while it remains infinite and ends ambiguously. De Jong 
(1957) is perhaps the only writer to outline why the 
learning curve should have a limit, explaining that 
because learning was a characteristic of human beings 
and machines could not learn, manufacturing had an 
―incompressibility‖ factor. Soon after, Crossman (1959) 
provided cases demonstrating these incompressibility 
factors, most notably the cycle time of a cigar-making 
firm. During the startup phase, cycle time declined along 
the Log-Linear curve, but two years later, the Log-Linear 
curve bent to a lower limit. Crossman (1959) believed this 
lower limit demonstrated the machinery’s 
incompressibility factor. However, subsequent studies 
(Hirschmann, 1964) implied the ―machine factor‖ should 
not  lead  to a  plateau  because  if  the  machine   is   the 

 
 
 
 
incompressibility factor, then operations paced by people 
should have steeper slopes than those paced by 
machines-that is, the less human involvement, the less 
capacity for learning. As an example, the petroleum 
industry was characterized by large investments in heavy 
equipment and so highly automated that learning was 
thought to be either non-existent or of insignificant value. 
However, the empirical evidence found the progress ratio 
in cost per barrel of capacity from 1942 to 1958 was 
almost the same as many other industries fitting the 
assumption that the limit is 0, as well as the average 
direct person-hours per barrel from 1888 to 1962, and 
that this also held true in the electric power and steel 
industries, and so on. Dar-El et al. (1995) stated frankly 
that even in the long run, there is no scientific work 
supporting the assumption of DeJong and Crossman. 

The mainstream of contemporary studies on the law of 
learning curve is to test the hierarchy hypothesis (Gray, 
2017; Gray and Lindstedt, 2017; Evans et al., 2018). 
However, as Jaber (2016) states, there is no tangible 
consensus among researchers as to what causes a 
plateau in the learning curve. 

This article investigates 12 models that are most often 
cited in the literature (Table 1). Some letters of the 
variables differ from the original literature, they are unified 
here according to the meaning of the variables. For all 
models listed in Table 1, parameter k is the asymptote for 
performance after an infinite amount of practice without 
random impact by external variables, p concerns the 
working group’s experience before manufacturing, (which 
is usually defined as the person-hours needed for the first 
product), and r is the learning rate in functions. Although 
parameters k, p, and r roughly mean the same thing in all 
models, they are different in their range of value. 

These 12 models can be divided into two types: the first 
involves y decreasing continuously with the increase of x 
(eight models), and the second involves y increasing with 
the increase of x (four models), and actually, they mean 
the same. For example, in the general exponential model 
(Towill, 1990; Pegels, 1969), y is the person-hours 
needed to produce a product, which declines with the 
increase in production number; that is, more products x 
being produced means fewer person-hours are needed 
for the x-th unit. By contrast, in the Hyp2 model (Mazur 
and Hastie, 1978; Nembhard and Uzumeri, 2000), y is 
the number of products produced in one unit of time, 
which increases with the increase in time x spent on 
production. 

The essential divergence among these models lies in 
two questions: First, which does it assume, plateau or 
leap? Second, does it allow for a slow start-up phase? As 
a reflection of the controversy, the most popular models 
among scholars (Log-Linear, Stanford-B) simply do not 
have asymptote because they sometimes fit even better. 
Moreover, asymptote is allowed to be 0 in decreasing 
models or can be quite large in the increasing models. To 
provide   a   reasonable  explanation  of  the  plateau,  the  



 

 

 
 
 
 
special parameter M (DeJong, S-curve) was created to 
incorporate the influence of machinery. In terms of the 
start-up phrase, four models (Exp-Delay, Power-Delay, 
Stanford-B, S-curve) indicate the degree of delay for the 
start-up phrase with parameter t; in the initial delay 
models, the learning process is not rapid at the beginning 
but progress is instead rapid after a period of learning 
initiation, when t does not equal 0. K, p, r and M, t are the 
parameters employed in this study. 
 
 
Theory 
 
When we observe organizational learning in 
manufacturing, we can easily divide the production 
process into numerous small factors. For example, Asher 
(1956) divided the total person-hours in aircraft assembly 
into 10 major procedures (e.g., final assembly, fuselage 
major assembly, and miscellaneous sub-assembly); the 
cost of these procedures could be improved 
independently or further divided, with the total cost of the 
product being the sum of the costs of its factors. Along 
with the improvement of every loading factor, this 
presents another method to accelerate the learning 
curve: load more efficient factors by replacing, or without 
replacing, the original factors. For example, when the 
numerically controlled machines in a flat-screen television 
manufacturing procedure were replaced by a ―smarter‖ 
computer numerically controlled machine, the product 
cost per unit reduced considerably, which is a ―leap‖ 
(Teplitz, 2014; Gray, 2017; Gray and Lindstedt, 2017). 
Thus, academics have intuitively accepted these two 
methods for the learning curve to progress. 

The key difference that separates this study from 
previous ones is that the studies allowed for these two 
progression methods to converge and did not distinguish 
between them. By contrast, this study emphasizes that a 
learning model should be used strictly under the condition 
that all factors remain unchanged in theory or, in practice, 
the prime factor(s) should at least not change 
dramatically. The reason to hold all factors of a learning 
process unchanged is that when factors change, they 
could also turn the learning process into an entirely 
different procedure, thus making the regression 
meaningless. For example, one feature of the pre-2012 
railway industry in Shenzhen was that it mainly used 
traditional diesel locomotives; however, in January 2012, 
the new high-speed railway came into service with 
electric locomotives. Using the industry transition of two 
learning processes would be unsuitable, as it involves 
two types of trains belonging to many different railway 
companies on two types of railways using two different 
techniques. 

However, if this requirement of factors remaining 
unchanged is followed strictly, no eligible datasets would 
be found as factors constantly change in every learning 
process. Furthermore, the train system is an  aggregation 
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of all trains and stations; train service using one electric 
locomotive between two stations does not change the 
prime factor of the large system, and it is hard to draw a 
rigid theoretical line as to how many added electric 
locomotives and stations exactly brings about the change 
in prime factors. Arguing that prime factors should not 
change dramatically is a compromise, but that does not 
mean ―dramatically‖ is ambiguous. In this case, a 
dramatic change means heavy investment in new 
infrastructure and facilities in comparison to previous 
investments, as well as hard work that differs from 
previous efforts by entrepreneurs and managers. It 
should not be hard for entrepreneurs and managers to 
distinguish the prime factors because they cause a 
dramatic change of prime factors to occur. 

The process of forgetting (Benkard, 2000; Jaber, 2006) 
should be excluded for the same reason, as it is a 
process of constantly losing loading factors and not of 
―learning.‖ The desired condition of a learning process is 
that one should deliberately practice (Ericsson et al., 
1993) to improve ability with the exclusion of dramatic 
changes to prime loading factors. 

The general exponential model (Pegels, 1969; Towill, 
1990) and the exponential delay model (Evans et al., 
2018) fit the data well and predict the plateau in 
performance, and the fact that they fit so well in difficult 
conditions means the need for a new model is not urgent. 
The two models are presented together because they 
substantively have the same meaning when t=0: 
 

'y ' '( 1) / ( )xrk p t t e    =
'' ' xrk p e , 

Denote 'k k ,
1'p p r  , ' lnr r  , 

 

Then 
 

1xy k pr    
 

The relative learning rates (RLR) of the two are 

theoretically equal as well because ' lnr r  . 
 

( 1)
exp

exp

( ) ( )
ln ( )

x
gen

gen

y k pr
r y k

x x






  
   

 
, 0<r<1; 

 

'
exp

exp

[ ] [ ' '( 1) / ( )]
'( ')

xr
delay

delay

y k p t t e
r y k

x x





    
   

 
, ' 0r  . 

 

Thus, for a given dataset with t=0, the general 
exponential model and the exponential delay model 
should theoretically progress at a constant RLR ratio 
along the regression curves. 
 

 
METHODOLOGY  
 

To refine the qualified models, the factor analysis method was 
applied to distinguish eligible datasets from ineligible ones in the 
Shenzhen railway industry database; then, nonlinear regression 
method  was employed (Bates and Watts, 1988) to obtain the value 
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of parameters (k, p, r, t, M), the determination coefficient (R

2
), and 

the residual sum of squares (RSS). This was followed by an 
estimation of the reasonable limits of plateaus for the datasets; 
each was compared with the regressed result of asymptotes 
(parameter k), and only two models (Exp-Delay, Power-Delay) do 
not have unreasonable asymptotes across all datasets. Finally, the 
two models were compared using the Akaike Information Criterion 
Test (AIC, Akaike 1974), the Bayesian Information Criterion Test 
(BIC, Schwarz, 1978), and F-test. For calculation, the software 
Origin 9.1 by OriginLab was used. 

The most important task, which missed in previous literature, was 
to find datasets in the Shenzhen railway transportation industry that 
met the requirement of prime factors not changing dramatically with 
the knowledge that factors in transportation change rapidly. On the 
demand side, every trip is an individual decision triggered by 
different reasons (an accident in a distant hometown, for example, 
could necessitate an emergency trip); the most significant regular 
reason for changes in demand side are the Spring Festival of the 
Chinese New Year and the peak summer season. The Spring 
Festival sometimes comes in January and sometimes in February, 
and it causes a surge in passenger volume before this number 
drops dramatically; the summer peak comes in June, July, and 
August as the result of summer vacations. On the supply side, a 
train can add or cancel a stop without explanation, and arbitrary 
decisions on the frequency of trains at stations make the data of 
many stations change substantially. Competition from other modes 
of transportation (that is by airplane or by automobile) is one of the 
external factors that significantly influence the number of railway 
trips, as well as the number and type of residents in Shenzhen. 
Thus, regression on the railway system is set to be in difficult 
conditions because different kinds of factors cannot be controlled 
simultaneously. 

Factor analysis focuses on using the supply side to identify 
different prime factors in a learning process. For example, the two 
modes of railway transportation (the traditional diesel railway 
system and the high-speed electric railway system) should be 
regressed separately; one can also apply regression together 
beginning with the day the two modes were both in service but not 
from the beginning of the traditional railway system and over the 
change to the two modes together. For data involving no change in 
the railway system type, I observed the yearly increasing rate of 
trips in every month to identify the prime factors to avoid the 
seasonal influence on the demand side. The yearly increasing rate 
in number of trips is assumed to be high at the start-up phase and 
gradually approach 0, and a significant increase would indicate that 
a new prime factor has been loaded.  

The criterion between eligible and ineligible datasets in this study 
depends on four requirements, and if one of them was not met, the 
dataset is ineligible. First, the station or a group of stations should 
be in service in December 2018. Second, they should have 
remained in service for at least 12 successive months from the first 
month of operation to December 2018, and null datum during this 
period was not allowed. Third, the data demonstrates general 
growth and not decline. Finally, if the Exp-Delay model fits, the 
delay parameter t should equal 0. It must be noted that as long as t 
did not equal 0, the dataset was excluded despite the goodness of 
fit because it indicated a change in prime factors (which the next 
section explains; also see Evans et al. (2018), for the connotation of 
t). 

The work of nonlinear curve fitting follows the doctrine articulated 
by Bates and Watts (1988). According to the Gauss-Newton 

method, for equation ,( )y f x    , the aim is to find the 

expectation value 

^

 of  with the minimum least square value in

2 2

1 1

( ) [ ( , )]
n n

i i i

i i

S y f x  
 

    .  With  the  expansion  in a  

 
 
 
 

first-order Taylor series about  , an iterative equation can be 

deduced, and the convergence of 

^

  can be obtained until the 

increment of θ is small to the point there is no useful change in the 
elements of the parameter vector. The convergence criterion in this 
study is less than 1E-9. 

The idea behind plateau estimation is that a given amount of 
investment in railway system cannot achieve infinite passenger 
handling capability. The criterion of current plateau presented in this 
study is less than three times that of the passenger departure 
volume (PDV) in the highest month of 2018, the regressed 
asymptote of a model higher than this volume will be unreasonable. 
Because, the triple PDV by train in a month will be much higher 
than the number of residents in Shenzhen. The reason for holding 
the same plateau criterion as Shenzhen’s total volume for the 
remainder of the eligible datasets is that these datasets are subsets 
of the total volume and their volume distribution reflects a balanced 
response to all types of demand for different destinations. No more 
or less models can be presented in spite of the change of plateau 
criterion. 

To compare the goodness of fit of the two models, I used the AIC 
(Akaike, 1974), BIC (Schwarz, 1978), and F-test, with the results 
being the same for the three methods. The reason that only the AIC 
result is presented is that it tells not only which model is better but 
also how much the better as a percentage with the information of 
Akaike’s weight. 

 
 
Datasets 

 
Railway system data were deliberately selected for this article for 
two key reasons: They quantify factors and sub-factors in the 
learning process, and there are two obvious types of learning 
processes. The data were extracted from two financial settlement 
system databases of a listed company on the Hong Kong Stock 
Exchange and the New York Stock Exchange covering January 
2007 to December 2018 (so, no data in 2019 are used). They 
exclude the ticket price and only concern the PDV of railway 
stations in Shenzhen, a city located in South China that is adjacent 
to Hong Kong that has the country’s highest per capita gross 
domestic product. The search found 21 datasets, two being 
ineligible but illustrated for the phenomenon of leap and initial delay 
and the remaining 19 being eligible to find the most suitable 
models. Table 2 provides information from the datasets and the 
regressed result of mean R

2
 of the 12 models for every eligible 

datasets. 
The most notable characteristic of the datasets is that the prime 

factors of learning processes can be precisely divided and 
evaluated, meaning it is essential to know the relationships among 
the datasets. This is evident from their names, dataset which 
comprise two or three parts: the first part is an abbreviation of a 
company and the final part is the initial month of the duration of the 
dataset, which indicates the PDV of railway station(s) this company 
charges for in the period under review. For example, China Railway 
Guangzhou Group (CRGG) is the parent company of all railway 
station companies in Shenzhen, so the dataset name ―CRGG2007‖ 
means the PDV of all stations in Shenzhen from January 2007 to 
December 2018. GuangShen Railway (GSR) is the largest 
traditional railway company, and ―GSR2007‖ means the monthly 
PDV from January 2007 to December 2018 in traditional service. 
―PH2016oct‖ means the PDV of PH station (a small traditional 
railway station) from October 2016 to December 2018. 

Shenzhen North Station (SNS) is one of the high-speed railway 
stations and the largest station of CRGG. To investigate the 
learning phenomenon for the high-speed railway service in detail, 
an  abbreviation of destination station is added as the middle part of 
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Table 2. Datasets and the result of determinant coefficient. 
 

Datasets N Unit Mean Variance R
2
 

CRGG2007 144 Million 3.4602 3.5560 --- 

SNS2012 84 Million 2.2478 1.6232 --- 

GSR2007 144 Million 1.7509 0.0870 0.3368 

CRGG2014 60 Million 6.3425 1.0862 0.5408 

SNS2014 60 Million 2.9107 0.6174 0.7785 

PH2016oct 27 10 thousand 7.2059 1.4739 0.5331 

SNS-north-2012 84 Million 1.3092 0.3840 0.8207 

SNS-east-2014 60 Million 1.3141 0.1356 0.7899 

SNS-FJ-2014 60 100 thousand 5.4646 1.3233 0.4506 

SNS-GX-2014dec 49 100 thousand 1.0725 0.1720 0.6791 

SNS-HN-2012sep 76 10 thousand 3.3337 2.1454 0.7182 

SNS-east-GD-2014 60 100 thousand 11.9838 43.0249 0.8819 

SNS-qs-2012 84 Thousand 10.6594 49.0885 0.6126 

SNS-ydx-2012apr 81 Thousand 4.8709 4.3452 0.6236 

SNS-cs-2014 60 10 thousand 14.3862 19.3061 0.7597 

SNS-cy-2014 60 10 thousand 5.3060 3.2241 0.7831 

SNS-hm-2014 60 Thousand 9.0724 22.3320 0.8582 

SNS-hd-2014 60 Thousand 20.3145 123.9908 0.6770 

SNS-hzn-2014 60 10 thousand 9.4233 23.1925 0.7377 

SNS-pn-2014 60 10 thousand 9.8543 10.6039 0.7927 

SNS-sw-2014 60 10 thousand 6.2335 5.4849 0.8972 

 
 
 
the name beginning with SNS concern the monthly PDV from SNS 
to different destinations. That is, the -north- and -east- means the 
two high-speed railway systems respectively, the uppercase letters 
mean a group of stations in a province out of Guangdong, the 
lowercase letters mean a certain station inside Guangdong 
province, the province Shenzhen located in. 

Data were deleted in these 21 datasets under two conditions: the 
deleted datum must be the first number of a dataset’s sequence, 
and it must be significantly smaller than the second month. When 
the two conditions were met, I checked the first operational day of 
this railway line and found, without exception, that the PDV in that 
month was in the trial operation stage and not fully operational for 
the entire month. In all, 12 numbers in the 21 datasets (1493 
numbers in total) are deleted. 

 
 
RESULTS AND DISCUSSION 
 
The influence of newly added factors: Leap and initial 
delay 

 
Findings show that the change of prime factors causes a 
systematic leap in the learning process, the intuitive 
impression that the learning process can go infinitely 
without plateau overlooks the significant changes in 
prime factors; this can be illustrated either intuitively by 
figure or numerically by quantity. 

Seeing the PDV of CRGG in Figure 1, an intuitive 
impression is drawn where CRGG increases from 2007 
to 2018 infinitely with no sign of plateau, which is a very 
similar pattern to the findings of  Wright  (1936)  or  Keller 

(1958). However, when examining the prime factors 
(GSR, SNS), the curves show that GSR had plateaued 
before 2012, whereas SNS, which came into service in 
2012, increases infinitely and has a similar pattern like 
Wright (1936) or Keller (1958) as well. When 
investigating the prime factors of SNS using the north 
and east railway lines both came into service for different 
provinces in 2012 and 2014 respectively the curves show 
that these two factors also plateaued. As Figure 1 
demonstrates, the three railway lines (GSR2007, SNS-
north-2012, SNS-east-2014) plateau at a similar volume 
under the premise that their respective prime factors will 
not change further. In other words, every learning 
process will plateau, and the aggregation of the different 
prime factors that came into service at different times 
makes the curve rise infinitely. 

The conclusion also can be drawn in a numerical way. 
The asymptote regression results of all models to 
CRGG2007 are infinite, and the asymptote of SNS2012 
is either non-existent or extremely huge (Table 3), which 
indicates the need to proceed carefully to the existence of 
a plateau. 

However, in the Shenzhen railway system, it is clear 
that the irregular addition of new prime factors causes the 
continual leap of PDV as old prime factors plateaued one 
by one. First of all, for the solo prime factor of CRGG 
before 2012 (with the market share at 82.7%), GSR has a 
limited asymptote value in all models, except the two 
without asymptote (Table 3). Also, the high-speed railway
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Figure 1. Leaps versus plateaus. 

 
 
 
is the factor for the leap of CRGG, for two reasons: first, 
the increment quantity of CRGG is roughly equal to the 
PDV of high-speed railway (2.50 million trips versus 2.55 
million trips in monthly average); second, the two are 
highly correlated with a correlation coefficient of 98.1%. 
As a result, the high-speed railway became a new prime 
factor of CRGG and of its market share, which rose from 
0 to 75.3% along with the decline of GSR from 82.7 to 
22.5% from December 2011 to December 2018. 

Similar situation is found with the high-speed railway 
when it is divided into two railway systems. SNS-north-
2012 and SNS-east-2014 connect Shenzhen with 
different provinces by different rail tracks and trains, and 
are like two lines intersecting at a point, and the two 
railway lines played an almost equal role in mean PDV 
from 2014 to 2018 (0.45: 0.55). It can be seen that the 
majority of models with asymptotes have limited value for 
the two lines (Table 3). 

Changing prime factors causes not only the leap 
phenomenon but also the initial delay phenomenon 
simultaneously. When the factor of the high-speed 
railway was added to GSR in 2012, CRGG2007 
experienced a leap; this brought about an initial delay 
effect (Evans et al., 2018), and the delay parameter (t) in 
the Exp-Delay model is greater than 0 (t=1.4416). When 
the factor of the east-direction railway was added to 
north-direction of SNS in January 2014, there must have 
been a delay effect for SNS2012 as well, and t=0.2697 is 
seen. From these figures, it is deduced that when the 
initial delay parameter t>0, the prime factors must have 
changed, and thus the dataset is ineligible (Evans  et  al., 
2018). 

It should be highlighted that the Exp-Delay model does 
not have the ability  to  investigate  the  change  of  prime 

factor at the end of a learning curve. For example, when 
a new destination (Hong Kong station) came into service 
in September 2018 with PDV up to 1.29 million trips, the 
increasing rate of CRGG deviated from a declining 
trajectory and leaped higher than 20% for the last four 
months. Hence, it is a better approach to treat the 
monthly PDV to Hong Kong as a new prime factor for the 
significant change of learning rate, in spite of t=0. As a 
result, the mean value R

2
 of CRGG2014 for the twelve 

models improved from 0.4620 to 0.5408. 
 
 
The results of eligible datasets 
 
Eligible data require the prime factors of a learning 
process to remain unchanged and the initial delay 
parameter (t) to equal 0. Under this requirement, datasets 
such as CRGG2014 are eligible because beginning 
January 2014; the three prime factors (GSR2007, SNS-
north-2012, SNS-east-2014) remained unchanged. The 
dataset SNS2014 is also eligible because the main 
factors of the two high-speed railways remained 
unchanged. Conducting analysis in this way, 19 eligible 
datasets are found along with a mean value R

2
=0.6985, 

which is a fair result (Table 2), particularly considering the 
difficult conditions of regression. The best fitting dataset 
is SNS-east-GD-2014 with mean value of R

2
=0.8819 for 

12 models; and R
2
 of the two best-fitting models both 

equaled 0.913. The worst dataset is GSR2007 (mean 
value of R

2
=0.3368), which is expected as the PDV of 

GSR is nearly horizontal. In fact, it is the only dataset that 
fit not so good. The mean value of R

2
 of remaining 18 

datasets is 0.7186, which is pretty good considering that 
this   is    not   an   experiment   and   so   many   arbitrary
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Table 3. The predicted asymptote of 2 ineligible datasets and 19 eligible datasets comparing with their plateau (ov: over parameterized). 
 

Data sets MAX*3 Unit(trips) Exp-Gen Exp-Delay Stanford-B S-curve Log-Linear DeJong Power-Delay Power-Gen Hyp2 Exp2 Exp3 Hyp3 

CRGG2007 - Million +∝ +∝ - +∝ - +∝ +∝ +∝ OV OV OV OV 

SNS2012 - Million 5.009 4.604 - +∝ - +∝ +∝ +∝ 19.598 10.546 10.546 14.806 

GSR2007 7.408 Million 1.822 1.828 - 1.950 - 13.031 1.950 13.045 1.860 1.786 1.879 1.998 

CRGG2014 24.952 Million 7.645 7.597 - +∝ - 5.88E+14 22.321 +∝ 6.455 5.836 30.242 27.507 

SNS2014 14.204 Million 3.625 3.618 - 5.634 - 2.29E+16 5.633 +∝ 4.194 3.543 4.686 6.202 

PH2016oct 27.326 10 thousand 8.195 8.181 - 32.015 - 9.67E+14 11.989 +∝ 8.200 7.583 10.085 10.688 

SNS-north-2012 7.945 Million 2.141 2.132 - +∝ - 7.04E+15 +∝ +∝ 4.775 2.996 4.423 7.794 

sns-east-2014 6.603 Million 1.638 1.631 - 5.299 - +∝ 2.684 +∝ 1.955 1.644 2.437 3.478 

SNS-FJ-2014 26.085 100 thousand 5.828 5.811 - 7.560 - 20.969 6.913 20.969 6.192 5.721 6.658 7.387 

SNS-GX-2014dec 6.220 100 thousand 1.575 1.579 - +∝ - +∝ +∝ +∝ 2.465 1.819 OV OV 

SNS-HN-2012sep 23.450 10 thousand 3.124 3.133 - 3.718 - 5.315 4.203 3.561 4.727 3.977 4.051 4.727 

SNS-east-GD-2014 28.592 100 thousand 7.249 7.248 - 16.744 - 2.91E+16 16.750 +∝ 12.000 8.922 17.500 28.267 

SNS-qs-2012 101.049 Thousand 41.545 41.254 - +∝ - +∝ +∝ +∝ OV OV 2.81E+12 OV 

SNS-ydx-2012apr 27.495 Thousand 7.915 7.935 - +∝ - +∝ +∝ +∝ 11.281 8.008 10.071 16.225 

SNS-cs-2014 79.508 10 thousand 16.554 16.554 - 23.675 - +∝ 22.002 +∝ 20.902 17.547 21.783 27.330 

SNS-cy-2014 26.006 10 thousand 6.628 6.648 - 13.958 - +∝ 12.858 +∝ 9.187 7.237 8.681 11.882 

SNS-hm-2014 49.374 10 thousand 12.992 12.974 - +∝ - +∝ +∝ +∝ 73.195 40.523 63.080 121.190 

SNS-hd-2014 136.977 Thousand 24.091 24.033 - +∝ - +∝ OV +∝ 315.511 170.066 OV OV 

SNS-hzn-2014 54.197 10 thousand 13.358 13.277 - +∝ - +∝ +∝ +∝ 84.470 47.607 OV OV 

SNS-pn-2014 50.832 10 thousand 11.593 11.569 - +∝ - +∝ 19.231 +∝ 17.058 13.671 45.947 73.672 

SNS-sw-2014 30.615 10 thousand 7.752 7.751 - 17.661 - +∝ 17.668 +∝ 13.888 10.145 15.571 24.083 

 
 
 
factors are not controlled, and so many different 
models. 

Table 4 provides the regression results of 
parameters of the general exponential model (k, 
p, r) and the exponential delay model (k’, p’, t, r’) 
to all datasets. It can be seen that lnr is roughly 
equal to–r' in every dataset. The two models have 
the best R

2
 as well, which is only lower than that 

of Stanford-B (0.7754 and 0.7704 respectively in 
average of 19 datasets). 

Two  notes  are  needed  on   eligible   datasets: 

First, concepts like (the efficiency of) a production, 
or (the performance of) a company or a 
workgroup does not guarantee a dataset’s 
eligibility. Every learning process can be further 
divided endlessly, even beyond the individual 
human. This was first noticed by Thorndike and 
Woodworth (1901), who found that even the factor 
of an individual’s ―attention‖ was a vast group of 
sub-factors, and that even a slight variation in the 
nature of the data would affect the efficiency of 
the  group.    Second,   despite   the   difficulty   of 

developing a strict definition of ―prime factor‖ or 
―dramatic change,‖ it is not difficult to distinguish 
them in practice. GSR was the sole primary 
company in Shenzhen before 2012, a fact that the 
residents in this city should know; they also 
should be aware of the change of prime factors 
with the two high-speed railways. 

Comparing to the residents, entrepreneurs and 
managers would be much easier to identify the 
prime factors, who propel the learning curve 
processing. 
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Table 4. Regression results for parameters in exp-gen and exp-delay. 
 

Dataset k p r k' p' t r' 

CRGG2007 0.0000 0.7665 0.9889 0.0000 0.7245 1.4416 0.0173 

SNS2012 0.1996 3.1095 0.9425 0.2172 3.1940 0.2697 0.0665 

GSR2007 0.5488 0.2687 0.9508 0.5469 0.2871 0 0.0423 

CRGG2014 0.1308 0.1567 0.9658 0.1316 0.1618 0 0.0352 

SNS2014 0.2726 0.4677 0.9250 0.2732 0.5066 0 0.0785 

PH2016oct 0.1220 0.0746 0.8720 0.1222 0.0858 0 0.1386 

SNS-north-2012 0.4603 2.6675 0.9477 0.4623 2.8179 0 0.0539 

SNS-east-2014 0.6106 1.0554 0.9227 0.6131 1.1482 0 0.0815 

SNS-FJ-2014 0.1716 0.1422 0.8844 0.1721 0.1632 0 0.1269 

SNS-GX-2014dec 0.6348 1.6859 0.9275 0.6334 1.8272 0 0.0740 

SNS-HN-2012sep 0.3201 4.1819 0.5233 0.3192 8.2326 0 0.6179 

SNS-east-GD-2014 0.1380 0.4347 0.9044 0.1380 0.4837 0 0.0998 

SNS-qs-2012 0.0241 0.3688 0.9661 0.0242 0.3818 0 0.0346 

SNS-ydx-2012apr 0.1264 0.4804 0.9580 0.1260 0.5016 0 0.0427 

SNS-cs-2014 0.0604 0.1187 0.8864 0.0604 0.1346 0 0.1195 

SNS-cy-2014 0.1509 0.4300 0.8999 0.1504 0.4810 0 0.1028 

SNS-hm-2014 0.0770 0.6964 0.8874 0.0771 0.7852 0 0.1196 

SNS-hd-2014 0.0415 0.4450 0.8331 0.0416 0.5354 0 0.1832 

SNS-hzn-2014 0.0749 0.4404 0.9072 0.0753 0.4869 0 0.0980 

SNS-pn-2014 0.0863 0.2238 0.8812 0.0864 0.2548 0 0.1275 

SNS-sw-2014 0.1290 0.4832 0.8837 0.1290 0.5491 0 0.1228 

 
 
 
The plateau 
 
The criterion of capability limit is set as triple the PDV of 
the highest month in 2018 of every dataset, and higher 
volume of asymptote of a model is unreasonable. Despite 
being the best-fitting model among the 19 eligible 
datasets according to R

2
, the Stanford-B model had to be 

excluded because it assumes infinite growth. It is 
impossible that current prime factors will allow a station 
or a group of stations to achieve infinite capability, and 
there are other limits to external variables, such as the 
city’s population and competition from other modes of 
transportation. Only two models are free from this 
unreasonable plateau across the 19 datasets: the general 
exponential model and the exponential delay model 
(Table 3). 

To avoid the subjectivity and inaccuracy of the triple 
criterion, four additional criteria were tested. Additionally, 
several managers in Shenzhen railway industry consulted 
during the preparation of this study, asserted that a strict 
criterion that is higher than the maximum and lower than 
double PDV of the highest month in 2018 would be more  
accurate because of the clear shortage of transportation 
capability in Shenzhen’s railway industry. When a more 
rigorous criterion, double the PDV of the highest month, 
was employed, the two models remained the only ones to 

qualify; only when the capability limit was reduced to the 
maximum PDV in 2018 did the result change to the point 
that no model could be suggested. This is unsurprising as 
the two models have 34 of the 38 lowest two asymptotes 
for the 19 datasets (the Exp2 model has three of the 38 
lowest, and Hyp2 has one of the 38 lowest). Hence, 
these two models could not be outperformed when using 
a significantly more rigorous criterion across the 19 
datasets. 

However, could more models be presented as qualified 
models when a less restrictive criterion is employed? The 
answer is no. When the capability limit is enlarged to 
quadruple or quintuple the PDV, the two models 
remained the only ones to qualify; however, even so, five 
times the maximum PVD in 2018 is nearly double 
Shenzhen’s population, a figure going too far. 

Due to the lack of knowledge on the mechanism of the 
plateau, previous studies reveal no asymptote for eligible 
datasets however, the regression result is analogous. For 
example, Mazur and Hastie (1978) compared four 
models (Exp2, Exp3, Hyp2, and Hyp3) and confirmed 
that the asymptotes of exponential models were much 
lower than the hyperbolic models in every case as well 
(for 89 datasets in 23 experiments). Newell and 
Rosenbloom (1981) fit three models (Exp-Gen, Power-
Gen, and Hyp2) to 18 datasets in 15 experiments, finding
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Table 5. Akaike’s information criterion (aic) test weight. 
 

AIC weight Exp-Gen Exp-Delay 

GSR2007 0.8951 0.1049 

CRGG2014 0.7672 0.2328 

SNS2014 0.767 0.233 

PH2016oct 0.8204 0.1796 

SNS-north-2012 0.756 0.244 

SNS-east-2014 0.7667 0.2333 

SNS-FJ-2014 0.7667 0.2333 

SNS-GX-2014dec 0.7852 0.2148 

SNS-HN-2012sep 0.9871 0.0129 

SNS-east-GD-2014 0.7744 0.2256 

SNS-qs-2012 0.7562 0.2439 

SNS-ydx-2012apr 0.7571 0.2429 

SNS-cs-2014 0.7722 0.2278 

SNS-cy-2014 0.7849 0.2151 

SNS-hm-2014 0.7671 0.2329 

SNS-hd-2014 0.767 0.233 

SNS-hzn-2014 0.767 0.233 

SNS-pn-2014 0.7668 0.2332 

SNS-sw-2014 0.7737 0.2263 

Mean 0.7894 0.2106 

Variance 0.0033 0.0033 
 
 
 

that Exp-Gen was the most conservative prediction 
model in 16 datasets and ranked second in the remaining 
two, the same conclusion. 

Heathcote et al. (2000) compared four models (Exp-
Gen, Power-Gen, and two other models) across 17 
datasets, furthermore, they even set a criterion of plateau, 
as in this study, and found that the Exp-Gen had the least 
implausible rate (18.3% on average, ranging from 1.4 to 
45.8% among all datasets, while their presented model 
ranked second at a rate of 30.7% on average and the 
Power-Gen model had an implausible rate of 65.4%). 
Their dataset contained ineligible data; thus, the Exp-Gen 
would have been the only remaining model if only eligible 
datasets had been included. 

Furthermore, Mazur and Hastie (1978), Newell and 
Rosenbloom (1981), and et al. (2000) demonstrate that 
hyperbolic functions imply a process in which incorrect 
response factors are replaced with correct ones, as well 
as that power functions imply a learning process in which 
some mechanism slows the rate of learning, whereas the 
exponential functions imply a constant learning rate 
relative to the amount remaining to be learned. Thus, we 
can see that many scholars intuitively hold that as one 
practice and learn more in a specific domain; the amount 
of unknown material decreases and the progress is 
essentially null at the end of the learning process. 
 
 

Comparing the two presented models 
 

The general exponential model  is  0.79:0.21  better  than 

the exponential delay model in average across the 19 
eligible datasets, with a variance of 0.003 in the AIC 
weight criterion (Table 5). The models’ difference in AIC 
weight criterion is fairly significant, primarily because that 
the general exponential model only has three parameters 
whereas the exponential delay model has four and the 
RSS of the general exponential model is even smaller 
than the exponential delay model in seven datasets (the 
same in eight datasets and larger in four). 

The AIC weight criterion balances the number of 
parameters and goodness of fit with the RSS value: if the 
same number of parameters is employed, the smaller 
RSS value is better; if the RSS value is the same, fewer 
parameters is better. Considering that a description of a 
learning curve should have at least three parameters (the 
asymptote, prior experience, and learning rate

2
), and the 

Exp-Gen model fit the data fairly well in difficult conditions, 
the ability to find a better model is likely minimal. Thus, 
the Exp-Gen model by Pegels (1969) and Towill (1990) 
and the exponential delay model by Evans et al. (2018) 
are presented in this study without any suggested 
modifications. The fitted lines of the two models 
concerning the two most divergent datasets in AIC weight 
(SNS-HN-2012sep and SNS-north-2012) are shown in 
Figures 2 and 3. The difference between the  two  models

                                                 
2For any learning process of firms, the prior experience is supposed not to be 

null. 
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Figure 2. SNS-NORTH-2012. 
 

 
 

 
 

Figure 3. SNS-HN-2012. 

 

 

 



 

 

 
 
 
 
is small and difficult to distinguish as the RSS value of 
them is almost identical. 
 
 
Conclusion 
 
This study describes the mechanism of the plateau and 
the reason why previous studies could not locate a 
plateau. Two exponential models are presented as the 
function expressions of the law of learning by doing, both 
of which can provide entrepreneurs and managers with a 
powerful tool to predict future performance of their 
investment. This study also specifies that the law of 
learning by doing can be applied not only in individual 
learning but also in organizational learning. 
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