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This paper examines an eco-epidemiological mathematical model with treatment and disease infection 
in both prey and predator population. A system of differential equations for the problem is proposed 
and analyzed qualitatively using the stability theory of the differential equations. A local and global 
study of the model is performed around the disease-free equilibrium and the endemic equilibrium to 
estimate the effect of incorporated parameters that control disease eradication and species 
coexistence. Numerical simulations are carried out to justify analytical results. The model with and 
without infected predator together with treatment classes are finally compared. 
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INTRODUCTION 
 
Ecological populations suffer from the various infectious 
diseases and these diseases have a significant role in 
regulating population size. Thus, it is worthwhile to study 
the combined effect of epidemiological and demographic 
features on the real ecological populations. Mathematical 
study of such eco-epidemiological model has explored 
various unknown aspects of ecological population 
(Mukhopadhyay and Bhattacharyya, 2009). However, in 
ecosystem, the interaction between the predator and prey 
is a nonlinear and complex process. This complexity has 
attracted the attention of both theoretical and 
mathematical ecologists to have extensive investigation 
concerning the interaction which calls for development of 
mathematical models that are essential tools in under-
standing the interaction mechanisms for persistence or 
extinction of species in natural systems. 

Eco-epidemiology studies the direct and indirect effects 
that diseases have on interacting populations (Venturino, 
2002). Infectious diseases have been known to be an 
important regulating factor for human and animal 
population sizes (Hsieh and  Hsiao,  2008).  In  particular, 
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for predator–prey ecosystems, infectious diseases 
coupled with predator–prey interaction to produce a 
complex combined effect as regulators of predator and 
prey sizes. In many ecological studies of predator–prey 
systems with disease, it is reported that the predators 
take a disproportionately high number of parasite of 
infected prey. 

There has been a growing interest in the study of 
diseases in a prey-predator system. In recent decades, 
theoretical ecologists as well as epidemiologists became 
increasingly interested in so-called eco-epidemiology. 
Eco-epidemic models describe ecosystems of interacting 
populations among which a disease spreads (Arino et al., 
2004; Beltrami and Carroll, 1994; Venturino, 1994).  It 
has been established that invading diseases tend to 
destabilize the predator-prey communities (Anderson and 
May, 1986; Dobson, 1988; Hadeler and Freedman, 
1989). However, Hilker and Schmitz (2008) showed that 
the predator infection can also have a stabilizing effect. 
Most of the existing models in eco-epidemiology consider 
a disease in prey population (Arino et al., 2004; 
Chattopadhyay and Arino, 1999). Venturino (2002) 
considered epidemic aspects in predator-prey models 
with disease in the predator. Hsieh and Hsiao (2008) 
considered a predator–prey model with disease  infection 



 
 
 
 
in both populations to account for the possibility of a 
contagious disease crossing species barrier from prey to 
predator. A similar idea was also exploited in Venturino 
(2006) on disease in interacting species models. The 
work of Venturino (1995) tries to merge the epidemic 
models with some demographic issues, to take into 
account the important effects of transmissible diseases in 
ecological relationships between species. 

In the present paper, we study an eco-epidemiological 
mathematical model with treatment and disease infection 
in both Prey and Predator population. This is an 
extension of the study of the basic eco-epidemiological 
model which was studied by Mukhopadhyay and 
Bhattacharyya (2009) by incorporating infected predator 
group together and treatment. 
 
 
MODEL FORMULATION  
 
A mathematical model is proposed and analyzed to study the 
functional response of the predator toward a susceptible as well as 
infected prey. This dynamics is assumed to follow Michaelis-Menten 
kinetics Holling type predation function (Mukhopadhyay and 
Bhattacharyya, 2009). The model consists of three populations: (i) 

the prey population density denoted by ( ) ( ) ( )1  = S  + IN t t t , (ii) 

the predator population density denoted by ( ) ( ) ( )2  = Y  + ZN t t t  

and (iii) population of infected prey and predator under treatment is 
denoted by ( )T t . 

In formulating the model, the following assumptions are taken into 
consideration: 
 
(i) In the absence of the disease, the prey population grows 

logistically with intrinsic growth rate r  and environmental carrying 

capacity k . 

(ii) In the presence of the disease, the prey and predator 
populations consist of two subclasses, namely, the susceptible prey 

( )S t  and the infected prey ( )I t ; susceptible predator ( )Y t  and 

infected predator ( )Z t . 

(iii) Only the susceptible prey can reproduce. Logistic law is used to 
model the birth process with the assumption that births should 
always be positive. The infected prey is removed with the positive 

death rate 
2

e  or by predation before the possibility of reproducing. 

However, the infected population I  contributes with S  to 

population growth towards the carrying capacity k . 

(iv) It is assumed that the disease spreads among the prey 
population and can be transmitted to predator population during the 

predation leading ( )Z t  predator population. Moreover, the disease 

is not genetically inherited. The infected   population can  only   
recover through treatment. 
(v) Susceptible prey becomes infected when it comes in contact 
with the infected prey and this contact process is assumed to follow 

the simple mass action kinetics with β  as the rate of conversion. 

 
The predator populations suffers loss due to the death at constant 

rates of 
3

e
 

and 
4

e . The predation functional response of the 

predator towards susceptible as well as infected prey are assumed 
to follow Michaelis-Menten kinetics and is modelled using a Holling 

type-II functional form with predation coefficients 1 2 3,  ,  p p p  and 

half-saturation   constant  m .   Consumed  prey  is  converted  into  
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predator with efficiency q . The infected prey and predator are 

treated at the rates 1a  and 2
a  and removed without immunity at 

the rates 
1

λ  and 
2

λ
, 

while 
1e is the death of infected prey and 

predator under treatment. 
Taking into account the aforementioned considerations, we then 

have the schematic flow diagram shown in Figure 1. From the flow 
chart (Figure 1), the model will be governed by the following 
equations: 
 

31
1

1 ,
p SZp SYdS S I

rS SI T
dt k m S m S

β λ
+ 

= − − − − + 
+ + 

 

 

2

1 2
( ) ,

p IYdI
SI a e I

d t m I
β= − + −

+
 

 

1

3 2
,

p SYdY
q e Y T

dt m S
λ= − +

+
                                           (1)

         

32

2 4
( ) ,

p SZp IYdZ
q q a e Z

dt m I m S
= + − +

+ +
 

 

1 2 1 2 1
( ) ,

dT
a I a Z e T

dt
λ λ= + − + +  

 
with the initial conditions 

,0)0( 0 >= SS
 

,0)0(
0

>= II
 

,0)0( 0 >= YY
 

,0)0(
0

>= ZZ
 

,0)0( 0 >= TT
1 2 3,  ,   0p p p >  and 0  1q< ≤ . 

 
 

MODEL ANALYSIS 
 

The model (Equation 1) will be analyzed qualitatively to 
get insights into its dynamical features which will give 
better understanding of the effect of treatment of an 
infected prey and predator population.  
 
 

Boundedness of the model 
 

In the theoretical eco-epidemiology, the boundedness of 
the system implies that the system is biologically valid 
and well behaved. Then, we first show the biological 
validity of the model by providing the boundedness of the 
solution of the model (Equation 1) by the following 
theorem (Mukhopadhyay and Bhattacharyya, 2009): 
 
 

Theorem 1 
 

All solutions of the system (1) are uniformly bounded. 
 

Proof: Let W S I Y Z T= + + + +  
 

Then, we have 
 

dt

dT

dt

dZ

dt

dY

dt

dI

dt

dS

dt

dW
++++=

                       
(2)  
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Figure 1. Model flowchart. 

 
 
 
By substituting the model equations (1) in (2) one gets: 
  

( ) ( ) ( )TeZaIaZeaYeTIeaT
k

S
rS

dt

dW
1212142322111 ++−+++−+++−+








−≤ λλλλ  

 
or 
 

2 3 4 1

dW
rS e I e Y e Z eT

dt
≤ − − − − )()1( 1432 TeZeYeIeSSr ++++−+≤ hWrk −+≤

∧

)1(  

 

where { }max (0),  k S k
∧

=  and 

{ }43211 min eeeeh ++++=
. 

 

The equation )1( +≤+
∧

rkhW
dt

dW
  

 

has a solution ( )( )ht
er

h

k
W

−

∧

−+≤ 11                            (3) 

 

As ∞→t , we have ( )1+≤

∧

r
h

k
W , implying that the 

solution is bounded for ( )10 +≤≤

∧

r
h

k
W

 
 

Therefore,   all   solutions   of   the  model (1)  in  5
+�   are  

confined in the region: 

 

( )5
( , ,  ,  ,  )  :  1

k
S I Y Z T W r

h
ε

∧

+

 
 

Γ = ∈ ≤ + + 
 
 

�
 for all 

0ε >  and t → ∞ . 

 
 
Positivity of solutions 

 
For model (Equation 1) to be epidemiologically 
meaningful and well posed, it is necessary to prove that 
all solutions of system with positive initial data will remain 

positive for all times 0t > . This will be established by 

the following theorem: 

  SIβr S 1
S I

k

+
−

 
 
 

 

1
p S Y

m S+

1
p S Y

q
m S+
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Tλ  

2
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2
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3
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e Z  

3
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3
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1

e T  

    

Z

  

2
e I

 

Z

  S   I 

 

  Y 

 T  

 Z 



 
 
 
 
Theorem 2 

 
Let (0) 0S > , (0) 0I > , (0) 0Y > , (0) 0Z > , (0) 0T > . Then the 

solutions ( )S t , ( )I t , ( )Y t , ( )Z t , ( )T t  of system (1) are 

positive 0t∀ ≥ . 

 
Proof: To prove theorem 1, we use all equations of the 
model (1). From the 1st equation, we obtain the inequality 
expression 
 









−≤

k

S
rS

dt

dS
1

  

 

which gives

 

 

( ) )0()0(

)0(

SSke

kS
S

rt +−
≤

−
 

 
As t → ∞ , we obtain 0 .S k≤ ≤  Hence all feasible 

solution of system (1) enter region ( ){ },  ,  ,  ,  S I Y Z TΓ = .  
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Similar proofs can be established for the positivity of the 
other solutions. 
 
 

Disease free equilibrium points 
 
The disease free equilibrium point of the system (1) is 
obtained by setting 
  

0
dS dI dY dZ dT

dt dt dt dt dt
= = = = = . 

 
System (1) possesses the following equilibrium points: 
 

(i) The trivial equilibrium point ( )0,0,0,0,0
T

E  

(ii) The axial equilibrium point ( ),0,0,0,0
A

E k   

(iii) The boundary equilibrium points 

( )1 ,  0,  ,  0,  0BE S Y=
) )

  and ( )2 ,  ,  0,   0,  BE S I T∗ ∗ ∗=   

 
where 
 

3

1 3

me
S

qp e
=

−

)
,     3

1 3 1 3

mer mq
Y k

k qp e qp e

  
= −  

− −  

)
,   * 1 2a e

S
β

+
=  

 

( ) ( ){ }( )

( )( ) ( ) ( ){ }

2
  

1 1 2 1 2 1 2 1
*

1 2 1 2 1 1 2 1 1 2 1 2 1

a r k a e a e e

I
r a e e k a a e e e

β λ λ

β λ λ β λ λ λ

+ − + + +

=
+ + + + + + + +

, 

 

( ) ( ){ }( )

( ) ( ) ( ) ( ){ }

2
  

1 1 2 1 2 1 2 1
*

1 2 1 2 1 1 2 1 1 2 1 2 1

a r k a e a e e

T
r a e e k a a e e e

β λ λ

β λ λ β λ λ λ

+ − + + +

=
+ + + + + + + +

 
 

(iv) The equilibrium point of co-existence ( )*
,  ,  ,   ,  E S I Y Z T∗ ∗ ∗ ∗ ∗=  where 

 

( )1 2

2

( )
m I

Y S a e
p

β
∗

∗ ∗  +
= − +  

        

( ) ( )
( )( )

1 2

2 4 3

qI S a e m S
Z

m S a e qp S

β∗ ∗ ∗

∗

∗ ∗

− − +
=

+ + −
, 

 
 

where  
∗S is the positive root of      1

3 2
0

p S Y
q e Y T

m S
λ

∗ ∗
∗ ∗

∗
− + =

+
. 

 
Stability analysis of the equilibrium points 
 

Here, we study the existence criteria of the different 
equilibrium     points.     The    trivial     equilibrium     point  

( )0,0,0,0,0TE  of the system (1) will always exist and be 

unstable. The local stability is established by using the 
Jacobian matrix of the system (1), that is: 

( ) ( ){ } ( ) ( )
( )( )

1 2 4 3 2 1 2

1 2 1 2 4 3
( )( )

a I m S a e qp S a qI S a e m S
T

e m S a e qp S

β

λ λ

∗ ∗ ∗ ∗ ∗ ∗

∗

∗ ∗

+ + − + − − +
=

+ + + + −
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f f f f f
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 
 
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
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



            

(4) 

 
By linearizing the system at the point TE  we obtain:  

 

1

1 2

3 2

2 4

2 1 2 1

0 0 0

0 ( ) 0 0 0

0 0 0

0 0 0 ( ) 0

0 1 0 ( )

ET

r

a e

J e

a e

a a e

λ

λ

λ λ

 
 

− + 
 = −
 

− + 
 − + + 

   (5)        

 
The corresponding Eigen values are: 

 
3

1 2

2 4

1 2 1

r

e

a e

a e

eλ λ

 
 − 
 − −
 

− − 
 − − − 

 

 

Four of the Eigen values are negative and one is 
negative. So the trivial equilibrium point 

TE  is unstable. 

With linearization of the system at the point 
A

E ,
 we 

obtain the Eigen values: 



 
 
 
 

3 2 4

1 2 1

1 2

( )
1 3

( )( )

r

e

k a e

qp k e m k

m k

qp k a e m k

m k

λ λ

β

− 
 − − − 
 − −
 
 − +
 

+ 
 − + +
 
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                                                 (6) 

        

Therefore the axial equilibrium point AE  will have stable 

manifold in the direction I  , if: 

 

(i) 
( ) < 0

1 2
k a eβ − + , 

 

(ii) 

( )
1 3  < 0

qp k e m k

m k

− +

+
, 

 

(iii) 

3 2 4
( )( )qp k a e m k

m k

− + +

+
. 

 

Next, we investigate the boundary equilibrium points 1BE

and 2BE . 

 

To determine the stability of 1BE , we substitute the point 

1BE  into Equation 4 to obtain 

 

1 2 3 1

4

1
5 2

6 7

1 2 1 2 1

3

0 0 0 0

0 0 0

0 0 0

0 0 ( )
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e
b b b

q
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                        (7) 

 
 
where 
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1 1 3

kqp m k e mqp
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2
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7

3 3 ( )
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The corresponding Eigen values are:  
 

7
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1 2 1

2 2
3

1

2 2
3

1
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where 

 

( )
( )

( )( )3 2
4 1 2 1 32

1 3 1 3

me qp r
b a e kqp e k m

qp e k qp e

β
= − − − − +

− −
 

 

( )3 3
7 2 4

1

p e
b a e

p
= − +

 

 

1BE  will be stable in the direction of  Y  if 7  < 0b  that is

( )
3 3

1 2 4

1
e p

p a e
<

+
 and it will exist if 2 2

31 4 5  q b qb e> .
 The ratio 

( )
3 3

1 2 4

e p

p a e+
 can be considered as reproduction number 

0R

. 
Next, we investigate the disease free equilibrium point 

2B
E . We substitute 

2B
E  into Equation 4 and obtain 

 

1 2 3 4
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1
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2
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1
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1
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4
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7
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1

8 3
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2

9

I
b
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To obtain the Eigen values of Equation 8, we evaluate 
the determinant: 
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1 2 3 4
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8
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5 4 3 2

0x Ax Bx Cx Dx E+ + + + + =  
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      ( )
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λ

λ
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Using Hurwitz criteria, 2BE  will be locally asymptotically 

stable, if: 

 
1. 0A >  

2. 0AB C− >  

3. 
2 2

  0ABC AE A D C+ − − >  

4. ( ) ( ) ( )
2

0CD BE AB C AD E− − − − >  

5. 
( ) ( ) ( )

2
* 0D CD BE AB C AD E − − − − >
 

 

 

and unstable otherwise. 
The stability analysis around the coexistence 

equilibrium point is determined as follows. We consider 
the Jacobian matrix: 
 

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

a a a a a

a a a a a

J a a a a a

a a a a a

a a a a a

 
 
 
 =
 
 
  

  (9) 

 
Where 

1 3

11 2

( )2
1 ,  

( )

m p Y p ZS I
a r I

k m S
β

∗ ∗∗ ∗
∗

∗

  ++
= − − − 

+ 

 

 

12
 

r k
a S

k

β ∗+ 
= −  

  , 1
13

,
p S

a
m S

∗

∗
= −

+

3

14 ,
p S

a
m S

∗

∗
= −

+  
 

15 1
 a λ= , 21

,a Iβ ∗=
,

2

22 1 2 2
( ) ,

( )

p Y
a S a e

m I
β

∗
∗

∗
= − + −

+  

 

1
23

,
p I

a
m I

∗

∗
= −

+  
24 0,a =  25 0a =

,  
1

31 2
,

( )

mp Y
a

m S

∗

∗
=

+  

 

32 0,a =
 

1

33 3
,

qp S
a e

m S

∗

∗
= −

+
 34 0,a = 35 2a λ=

,  

 

3 2

41 2
,

( ) ( )

qp Z qp Y I
a

m I m S

∗ ∗ ∗

∗ ∗
= −

+ +
32

42 2
,

( ) ( )

qp S Zqp Y
a

m S m I

∗ ∗∗

∗ ∗
= −

+ +
 

 

2

43
,

qp I
a

m S

∗

∗
=

+
  3

44 2 4
( ),

( )

qp S
a a e

m I

∗

∗
= − +

+
 

( ) ( )

( )
8 10 1 8 6 10 1 1 10 1 8 6 10 2B b b b b b b b b b b b bλ λ= − + + + + − + + +

− + + + + + + + +
 

( )1 8 6 10 1 6 10 1 8 2 5 1 6 6 8           b b b b b b b b b b ,b b b b e− + + + + + + + +

 

     

 ( )

(
1 8 6 10 1 10 6 8 2 5 1 5 8 10 1 6 1C b b b b b b b b b b a b b b b b λ= + + + + + + + ( )

( )
1 10 1 8 6 8 2 5 8 10 6 10 1 6 2 9 2         b b b b b b b b b b b b b b a b λ+ + + + + + + −

( )

( )
1 10 1 8 6 8 6 10 2 5 1 6 8 10 1         b b b b b b b b b b b b b b e+ + + + + + + ( )6 8 10 1 8 10 2 5 8 10 1 6 8 1 6 10         ,b b b b b b b b b b b b b b b b− + + + +



 
 
 
 

45 0a =
, 51 0,a = 52 1,a a= 53 0,a =

54 2
,a a=
 

55 1 2 1( )a eλ λ= − + +  

 
We then evaluate the determinant: 
 

 

11 12 13 14 15

21 22 23 24 25

031 32 33 34 35

41 42 43 44 45

5551 52 53 54

a a a a a

a a a a a

a a a a a

a a a a a

a a a a a

λ

λ

λ

λ

λ

−

−

− =

−

−

 

 

to get 5 4 3 2
0A B C D Eλ λ λ λ λ+ + + + + = .  (10) 

 
 
Using the Hurwitz criteria, the coexistence equilibrium 
point will be stable, if: 

 

1. 0A >
, 

2. 0AB C− >
, 

3.
2 2

 0ABC AE A D C+ − − > , 

4.
( )( ) ( )

2
4 > 0H CD BE AB C AD E= − − − − , 

5.
( )( ) ( )2

*  > 0D CD BE AB C AD E 
  

− − − − , 

 
and unstable otherwise. 
 
 
Global stability analysis 
 
We now perform a global stability analysis of the system  
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(Equation 1) around the positive equilibrium point 

( ),  ,  ,  ,   E S I Y Z T∗ ∗ ∗ ∗ ∗ of the coexistence. We 

consider the following theorem on the Lyapunov function

U . 

 
 
Theorem 3 

 
Let 
 

( )
( ) ( ) ( ) ( )

2

2 2 2 2
31 2 4

2 2 2 2 2

S S
U I I Y Y Z Z T T

δδ δ δ
∗

∗ ∗ ∗ ∗
−

= + − + − + − + −
 

 

where 1 2 3 4
,  , ,   > 0δ δ δ δ  are to be chosen properly 

such that ( ) 0U E′ =   

 

where ( ),  ,  ,  ,   E S I Y Z T∗ ∗ ∗ ∗ ∗ and  

( ),  ,  ,  ,  0U S I Y Z T= >  , , ,  ,  { }S I Y Z T E∀  

 

The time derivative of U  is 0
dU

dt
≤  

, ,  ,  ,  S I Y Z T
+∀ ∈Γ .  

 

It then follows that 0
dU

dt
= , ,  ,  ,  ,  S I Y Z T∗ ∗ ∗ ∗ ∗ +∀ ∈Γ  

implies that E∗
 of the system is Lyapunov stable and 

0,    , ,  ,  ,  T
dU

S I Y Z
dt

+< ∀ ∈Γ  near 
∗

E  implies that 

∗E  is globally stable. 

Proof: 
 

( ) ( ) ( ) ( ) ( )1 2 3 4

dU dS dI dY dZ dT
S S I I Y Y Z Z T T

dt dt dt dt dt dt
δ δ δ δ

∗ ∗ ∗ ∗ ∗
= − + − + − + − + −  

 
Now by substituting equations of the model (Equation 1), we get: 
 

( ) ( ) 
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dU 2
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31 )(1 βδλβ  
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
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+
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SZp
q
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IYp
qZZTYe

Sm

SYp
qYY )(

42

32

323

1

2
δλδ

( )[ ]TeZaIaTT )( 121214 ++−+−+ ∗ λλδ            (11) 

 
Then Equation 11 becomes: 
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( ) { }31 11
p Zp Y TdU S I

S S r I S S
dt k m S m S S

λ
β∗ ∗  + 

= − − − − − + −   
+ +    

( ) { }2
1 1 2( )

p Y
I I S a e I I

m I
δ β∗ ∗  

+ − − + − −  
+  

 

( ) { }1 2
2 3

p S T
Y Y q e Y Y

m S Y

λ
δ ∗ ∗  

+ − − + −  
+  

 ( ) { }32
3 2 4( )

( )

p Sp IY
Z Z q q a e Z Z

Z m I m S
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






−







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+
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TTe

T
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TT )( 121
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4 λλδ  

 
By rearranging, we obtain: 
 

( )
2

31 11
p Zp Y TdU S I

S S r I
dt k m S m S S

λ
β∗  + 

= − − − + + + + −  
+ +  

( )
2

2
1 1 2( )

p Y
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m I
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2

1 2
2 3
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m S Y

λ
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 ( )

2
32

3 2 4( )
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( ) 





+++
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−− ∗

)( 121
21

2

4 e
T
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TT λλδ  

 

Thus, it is possible to set 1 2 3 4,  ,  ,  δ δ δ δ  such that

0U ′ ≤  and endemic equilibrium point is globally stable. 

It is noted that the parameters k , m  and q  play 

important roles in controlling the stability aspects of the 
system. 
 
 

Numerical simulation 
 
In order to illustrate some of the analytical results of the 
study, numerical simulations of the model (1) are carried 
out using Rung-Kutta iteration scheme with a set of 
reasonable parameter values given in Table 1. These 
parameter values are mainly hypothetical. They are 
chosen following realistic ecological observations. 

In order to verify the theoretical predictions of the 
model, we present numerical simulation of some 
solutions of the systems by comparing the numerical 
simulation figures of the model with infected predator and 
treatment group (left panel) and without infected predator 
and treatment. The basic eco-epidemiological model is 
achieved by setting the following parameter values of the 
present model to zero: 

1 2 1 2 3 1 4 0a a p e eλ λ= = = = = = =
.
 

Figure 2a shows that the variation of the susceptible 
prey population oscillates at high to low amplitude due to 
the treatment until a steady state is attained, while Figure 
2b oscillates with high amplitude then changes to low 
amplitude, and abruptly oscillations increase with high 
amplitude until the steady state reached. Figure 3a 
shows that the infected prey population increases and 
then decreases due to the effect of treatment. The 
population oscillates at high amplitude  at 

 
 
Figure 2a. Prey population around disease free parameter 

values in Table 1. 
 
 
 

 
 
Figure 2b.  Prey population around disease free parameter 
values in Table 1 except 

1 2 1 2 3 1 4
0a a p e eλ λ= = = = = = =

.
 

Time  

S
u

sc
e

p
ti

b
le

 p
re

y
 

Time  

S
u

sc
e

p
ti

b
le

 p
re

y
 



Hugo et al.          275 
 
 
 

Table 1. Parameter value used in numerical simulation. 
 

Symbol Value Source Symbol Value Source 

r 11.2 Mukhopadhyay and Bhattacharyya (2009) Λ2 0.002 Estimated 

k 30 Mukhopadhyay and Bhattacharyya (2009) a1 0.01 Estimated 

β
 

1.2 Mukhopadhyay and Bhattacharyya (2009) a2 0.03 Estimated 

p1
 

0.4 Mukhopadhyay and Bhattacharyya (2009) e1 0.05 Estimated 

p2
 

0.6 Mukhopadhyay and Bhattacharyya (2009) e2 0.4 Mukhopadhyay and Bhattacharyya (2009) 

p3
 

0.2 Estimated e3
 0.08 Mukhopadhyay and Bhattacharyya (2009) 

m 0.5 Mukhopadhyay and Bhattacharyya (2009) e4 0.01 Estimated 

λ1 0.001 Estimated q 0.25 Mukhopadhyay and Bhattacharyya (2009) 
 
 
 

 
 
Figure 3a. Infected prey population around disease 
free, parameter   values in Table 1. 

 
 
 

 
 
Figure 3b.  Infected prey population around disease free, 

parameter values in Table 1 except 

1 2 1 2 3 1 4 0a a p e eλ λ= = = = = = = . 

 
 
 

the beginning and then oscillates at low amplitude until 

the steady state is attained. The recovery rates 1λ  and 

2λ  increase the up oscillations of the susceptible as the 

result of the treatment. Figure 3b shows high variations of 
the  oscillations   and   then   the   oscillations   are  

highly increased with high amplitude until the steady 
state is attained. 

Figure 4a shows how the predator population varying 
with time depend on the interaction with prey population. 

The sharply decrease of the population in Figure 4a 
occurs as the result of high number of infected prey that 
are easily captured by the predator. The high death rate 
of the predator also contributes in the decline of the 

population, although the recovery rate 2λ  leads the 

population to reach its steady state. Figure 4b shows that 
untreated population decreases to its optimal point then 
slowly oscillates with low amplitude to its steady state. 

Figure 5a shows the sharp increase of the infected 
predator populations up to its equilibrium point as the 
result of the disease increase and then lowered by the 
treatment to a steady state. 

Figure 5b shows that the treated group decreases 
sharply as the number of infected population is lowered. 
As the number of infected increases, the graph increases 
with high amplitude until the equilibrium point is reached. 
Thereafter, it decline by low oscillation amplitude and 
eventually reached the steady state. 

Figure 6a shows the sharp decrease of population as 
the death rate of the predator increases. The population 
oscillates from high to low amplitudes reaching its steady 
state, while Figure 6b shows the decline of the oscilla-
tions to the equilibrium point and then slowly oscillates up 
and down with high and low amplitudes, respectively. 

Figure 7a shows how the infected prey population start 
to oscillate from high amplitude to low amplitude attaining 
its steady state, while in Figure 7b the population 
declines with the oscillation from high to low amplitudes 
and reaches a temporary steady state, then increases 
and starts to oscillate with high and low amplitudes due 
to the disease. 

Figure 8a shows low oscillations amplitude compared 
to high amplitudes in Figure 8b of the population, as the 
result of the interaction with the infected prey population 
becomes high. Figure 8a did not give good results, since 
the purpose is to control the disease. Then modified 
parameters values are used to obtain susceptible 
predator population above the infected predator 
population as seen in Figure 8c. 
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Figure 4a. Predator population around disease free, parameter 
values in Table 1. 

 
 
 

 
 
Figure 5a. Infected predator population around disease free, 
parameter values in Table 1. 

 
 
 

 
 
Figure 6a.  Prey population parameter values in Table 1 

with for 
3

0.2e ≥
. 

 
 
 
 

 
 
Figure 4b.  Predator population around disease free, parameter 

values in Table 1 except 
1 2 1 2 3 1 4

0a a p e eλ λ= = = = = = =
.
 

 
 
 

 
 
Figure 5b. Treated population for the model (1) with the 
parameter values in Table 1. 

 
 
 

 
 
Figure 6b.  Infected prey population parameter values in Table 1 

except 1 2 1 2 3 1 4 0a a p e eλ λ= = = = = = = and 
3

0.17e =
.
 

 

 

Time (days) 

 

 

Time (days) 

Time (days) 

S
u

sc
e

p
ti

b
le

 p
re

y
 

 

 

Time (days) 

 

 

Time (days) 

 

Time (days) 



 
 
 
 

 
 
Figure 7a. Variation in the infected prey population for the model 

(1) with the parameter values in the Table 1 with 
3

0.2e ≥
. 

 
 
 

 
 
Figure 8a. Variation in the susceptible predator population for 
the model (1) with the parameter values in Table 1 except 

3
0.2e ≥

.
 

 
 
 

 
 
Figure 8c. Susceptible predator population for the model (1) 
with the parameter values in the Table 1 except 

4 2 1
0.9,   0.5,   0.6e a p= = =

.
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Figure 7b. Variation in the infected prey population for the 

model (1) with the parameter values in Table 1 except 

1 2 1 2 3 1 4
0a a p e eλ λ= = = = = = = and 

3
0.17e =

.
 

 
 
 

 
 
Figure 8b. Variation in the susceptible predator population for 
the model (1) with the parameter values in Table 1 except 

1 2 1 2 3 1 4
0a a p e eλ λ= = = = = = = and 

3
0.17e =

.
  

 
 
 

Phase portrait of the model 
 
A numerical study with the predator efficiency q  reveals 

an interesting result, namely that as the predator 
conversion efficiency q  decreases; the system dynamics 

changes the behaviour as the result of the incorporated 
treatment parameters. This is shown in Figures 9 to 12. 
 
 

Conclusions 
 

This paper investigates the dynamical behaviour of an 
eco-epidemiological model. The model integrates 
treatment and disease infection in both prey and predator 
populations. Incorporating treatment in the model 
provides a more realistic and plays an important role for 
biological control of disease, and increasing the rate of 
treatment   can   increase   prey   and   predator    density 
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Figure 9a. Variation of prey, infected prey and 

predator for the model (1) with the parameter values in 
Table 1. 

 
 
 

 
 
Figure 10a. Variation of prey, infected prey and 
treatment for the model (1) with the parameter values in 
the Table 1. 

 
 
 

 
 
Figure 11a. Variation of infected predator, 
infected prey and susceptible predator for the 
model (1) with the parameter values in Table 1. 

 
 
 
 

 
 
Figure 9b. Variation of prey, infected prey and 

predator the model (1) with the parameter values in 
Table 1 except 

1 2 1 2 3 1 4
0a a p e eλ λ= = = = = = =

.
  

 
 

 

 
 
Figure 10b. Variation of prey, infected prey and 
treatment for the model (1) with the parameter 
values in the Table 1 except 0.15q =
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Figure 11b. Variation of infected predator, infected 

prey and susceptible predator for the model (1) with 

the parameter values in Table 1 except 0.15q =
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Figure 12a. Variation of susceptible predator, infected 

predator and treatment for the model (1) with the 
parameter values in Table 1. 

 

 
 
population. The boundedness and positivity of the system 
seem to hold which implies that the system is biologically 
well behaved. Disease free equilibrium points were 
obtained and    their stability analysis   investigated.   The 
existence of an interior equilibrium with predator and prey 
coexisting and both endemic is interesting biologically. 
The analysis on interior equilibrium indicates that under a 
complicated set of conditions, it is possible to have 
multiple interior equilibria numerically. The model 
analysis shows that treatment of infected populations has 
the effect of reducing the spread of the disease. It is 
observed that incorporating of treatment of infected prey 
and predator into the system may save the population 
from extinction. 

A numerical study of the model was carried out and it 
was observed that the increase of the number of infected 
prey tends to lower the whole population. It can be 
concluded that the disease can be eradicated in a 
population through treatment. 
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