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Warm water stream fish assemblages (2005) and habitat variables (2004 and 2005) were examined from 
May to September at 108 sites in the Tonawanda and Johnson Creek Watersheds of Western New York. 
Seventy species and > 27,500 fishes were identified; ~98% were from Families Cyprinidae, 
Centrarchidae, Catostomidae and Percidae. Data were analyzed at 16 spatial scales using best subsets 
and backward stepwise multiple linear regression to explore associations between individual fish 
species ≥9% of total catch and fish assemblage variables [catch per unit effort (CPUE), species 
richness, Simpson’s diversity] with six habitat variables (pool type, maximum depth, substrate size, 
instream wood, bank cover, aquatic vegetation). CPUE was the only fish assemblage variable related to 
habitat variables, especially aquatic vegetation and pool type. Only two species (johnny darter, 
Etheostoma nigrum; round goby, Neogobius melanostomus) were significantly associated with habitat 
variables. The results reflected inherent difficulties understanding the complexities of habitat use by 
warm water stream fishes and their assemblages and how to manage them on a broad scale.  
 
Key words: Warm water stream fishes, fish species-habitat associations, fish assemblage-habitat associations, 
statistical fish-habitat models. 

 
 
INTRODUCTION 
 
Management and conservation of aquatic resources re-
quires the ability to identify species’ distributions and 
habitat requirements (Argent et al., 2003). Lotic ecosys-
tems are inherently difficult to study due to many factors 
that affect their transfer of mass and energy across the 
landscape (Fausch et al., 2002). Pool development and 
depth are among the most significant habitat attributes 
affecting stream fishes (Schlosser, 1982; Platts et al., 
1983). Pools in general support more and larger fish than 
runs or riffles (Gillette et al., 2005; Sharma and Jackson, 
2007; McGarvey and Hughes, 2008), but a pool’s proxy-
mity to runs or riffles determines habitat suitability for 

certain stream fishes (Quist et al., 2006) by contributing 
to habitat heterogeneity (Lau et al., 2006). Stream sys-
tems are complex, and associations between fishes and 
habitat features vary considerably over spatial and tem-
poral scales (Angermeier, 1987; Closs et al., 2004). With 
a few exceptions (cf. Smith, 1979; Smith, 1985; Pfleiger, 
1997; Moyle, 2002), fisheries literature lacks information 
on specific habitat preferences of stream fishes. 

Physical habitat commonly influences fish assemblages 
in lotic systems at various spatial scales (Angermeier, 
1987; Lau et al., 2006). For instance, large woody debris 
stabilizes sinuous streams and increases local habitat
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diversity (Hunter, 1991; Flosi et al., 1998) and complexity 
(Angermeier and Karr, 1984); submerged aquatic vege-
tation also creates local structural complexity in aquatic 
systems (Brazner and Beals, 1997).  

Understanding the patterns of fish assemblages in a 
watershed is dependent on the spatial scale of study; too 
coarse a sampling design may limit spatial (zonation) 
analysis (McGarvey and Hughes, 2008). Often, only a 
fragment of the entire ecosystem is covered (Fausch et 
al., 2002) making it difficult to locate fishes with specific 
habitat requirements. In addition, the transport of mate-
rials and organisms down the hydraulic highway is highly 
temporal (Fausch et al., 2002), and spatial variation is 
also high (Gorman and Karr, 1978). Substantial variation 
in habitat (for example, depth; Powers et al., 2003) redu-
ces the ability to detect statistical associations with fish 
species or assemblages (Gerhard et al., 2005; McGarvey 
and Hughes, 2008).  

Elucidating fish-habitat relationships has proven difficult 
(Beals, 2006), and most comparisons have not been sta-
tistically robust (Guy and Brown, 2007). Regression 
analysis is commonly used but has difficulty handling 
collinear variables (Beals, 2006). The objectives in this 
study were to evaluate warm water stream fishes and 
their assemblages in relation to habitats (for example, 
pool type) at watershed and sub-watershed scales. Best 
subsets and multiple linear regressions were used to 
explore associations and test null hypotheses that stream 
habitat features and fish species or their assemblages 
were unrelated at various scales in the study streams. 
 
 

MATERIALS AND METHODS 
 
Study area     
 
This study was conducted in the Tonawanda and Johnson Creek 
Watersheds (TCW, JCW) of Western New York State (NYS) (Figure 
1). Both are warm water streams supporting similar fish assem-
blages dominated by Families Cyprinidae, Centrarchidae, Catosto-
midae and Percidae. The TCW covers an area 5.6 times larger than 
the JCW and extends across Erie, Niagara, Genesee, and 
Wyoming Counties, ultimately draining into the Niagara River via 
the western portion of the NYS Barge (Erie) Canal. The JCW 
borders the northeastern corner of the TCW, mostly in Niagara 
County, and then flows through Orleans County into Lake Ontario. 
The TCW is more complex and urbanized than the JCW but both 
are affected by canals, dams, storm water and agricultural runoff. 

The Erie Canal creates hydrologic anomalies in the TCW near 
river kilometer 18 (rkm) (main channel/canal confluence) where 
canal flow reverses when lock E34 opens and stream flow increa-
ses when the canal is lowered during the winter season. The canal 
is also a vector for invasive species in many watersheds from 
Buffalo to Albany across NYS (Carlson and Daniels 2004), inclu-
ding the JCW where canal water enters from discharge valves and 
the lower TCW that is connected directly to the canal. Despite the 
high density of lowhead dams in the TCW (109) compared to that of 
the JCW (18), disturbance to the natural flow regime may be 
greater in the main channel of the JCW because of the Lyndonville 
Dam near rkm 18 that creates an expansive impoundment and 
impedes fish migration from Lake Ontario. Smaller lowhead dams 
on the main stem of the TCW also impound some water and create 
fish passage barriers but a narrow lotic channel is maintained.  
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Surface runoff from many farms is the major non-point source 
pollution vector in both the TCW and JCW; but storm water runoff 
from eastern suburbs of Buffalo affect the lower subwatershed 
(canal reach) of the TCW. The TCW is also much more turbid than 
the JCW as a result of its numerous exposed clay banks, especially 
in the lower 50 rkm. Although wild and stocked trout persist in the 
very upper portions of the TCW, most of the main stem and major 
tributaries of both watersheds are warm water systems which do 
not receive the same level of environmental protection in NYS as 
cold water ‘trout’ streams. 
 
 

Survey protocols 
 

Stream habitat data were gathered at 68 sites in the TCW and 40 
sites in the JCW from May to September, 2004. Following methods 
similar to Murphy and Willis (1996) and Platts et al. (1983), six habi-
tat variables were assessed: pool type, maximum depth, substrate 
composition, instream wood, bank cover, and aquatic vegetation 
(Table 1). These six variables were selected with regard to longear 
sunfish (Lepomis megalotis) habitat preferences (Wells and 
Haynes, 2006) and ease of visual observation or semi-quantitative 
estimation in the field. For fish sampling in 2005, 72 sites were 
selected randomly from the 292 potentially fruitful sampling sites 
identified in 2004 but 36 additional sites were purposely chosen in 
the field because of access issues and habitat changes from the 
wet summer of 2004 to the dry summer of 2005 .  

Fish surveys were conducted mostly during the day, guided by 
the NYS Depertment of Environmental Conservation’s (DEC) Cen-
trarchid Sampling Manual (Green, 1989). Site length (m) was esti-
mated after 15 min of power-on electrofishing effort. To avoid 
pseudo-replication (Hurlbert, 1984) across the many kilometers of 
stream sampled in each watershed, no sampling sites were closer 
than 100 m (average 8.4 rkm) or 30 m (average 1.8 rkm) in the 
TCW and JCW, respectively. Where depth permitted, an 18-ft 
electrofishing boat (Type VI-A Pulsator and 5000 W generator, 
Smith-Root, Inc., Vancouver, WA, USA) was used. Other sites with 
water <1.5 m deep were sampled with a backpack electrofisher 
(HT-2000, Hall-Tech, Ltd., Guelph, Ontario, Canada).  

In addition, two small beach seines (4.0 × 2.1 m and 6.4 × 1.2 m; 
6.4 mm mesh; no bags) and a larger 15.2 × 1.8 m seine (9.5 mm 
mesh, center bag) were used immediately after backpack electro-
fishing at sites <1.5m deep to improve the effectiveness of collec-
ting small fishes. Seines were pulled parallel and perpendicular to 
the shoreline until the desired effort was achieved. Hauls ranged 
from a maximum ten to a minimum of four (without fouling) per sam-
pling site. The objective was to representatively and semi-quantita-
tively sample the fish assemblage at each site so as to maximize 
species diversity in the catch. Specimens were identified to species 
in the field (Smith, 1985; Page and Burr, 1991; Knopf, 2002; Nelson 
et al., 2004) and counted. Unidentified species, young-of-the-year 
and suspected hybrids were preserved in 10% formalin and 
returned to the laboratory for identification. 

 
 
Spatial extent of sampling 
 

Sixty-eight sites were sampled during 29 trips covering 155 rkm in 
the Tonawanda Creek watershed in 2005 (Table 1, Figure 1). Sites 
ranged from the western most extent of the Erie Canal near its 
confluence with the Niagara River, eastward 18 rkm to the main 
stem of Tonawanda Creek (14 sites), then upstream past a waterfall 
and dam (these defined the sub-watersheds) to the headwaters. 
Sampling occurred at 33 sites in the lower main stem of 
Tonawanda Creek (TC), including six sites in the lower reaches of 
tributaries (Table 1). In the combined middle and upper main stem 
of TC, 18 sites were sampled, including four sites in the lower 
reaches of tributaries.  
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Figure 1. The sampling area in western New York State USA, May to September, 2004 and 2005. 
 
 
 

Forty sites were surveyed during 19 trips covering 44 rkm in the 
Johnson Creek watershed from the mouth at Lake Ontario to the 
Erie Canal overpass, including its major east branch, Jeddo Creek 
(Figure 1). A total of 24 sites were surveyed in the lower main stem 
of JC from Lake Ontario upstream to the Lyndonville Dam (18.3 
rkm). Another 13 sites were sampled in the upper main stem above 
the dam in Lyndonville, NY upstream to the canal, plus three more 
sites in Jeddo Creek (Table 1). 
 
 

Statistical analysis 
 
Several important assumptions were inherent in the design of this 
study and analysis of these data: 1) Random selection of most fish 
sampling sites also provided random physical habitat data, 2) 
Intensive sampling using two techniques provided a representative 
sample of a site’s fish assemblage, and 3) Intra-stream movement 
of fishes was minimal during the hot/dry summer of 2005 due to low 
flows, consistent in-stream temperatures and no flooding events 
across either watershed. Low water concentrated fish in shallow 
pools, increasing sampling effectiveness, and consistent in-stream 
summer water temperatures negated thermal advantages of fish 
movement.  

Habitat, fish species and fish assemblage data were tabulated for 
each sampling location in each watershed which was then separa-

ted into sub-watershed spatial units (Table 1) and pool types (Table 
2). Raw habitat measurements were standardized (Table 2). To 
minimize observer bias, the first author scored all habitat variables. 
Catch per unit effort (CPUE), species richness and Simpson’s 
diversity were calculated for each of the 108 sampling sites. CPUE 
and species richness data were transformed (square root) to meet 
assumptions of equal variance and normality.  

Using JCW data only, preliminary best subsets (BSR) and back-
ward stepwise (SWR) linear regressions (Statistix, 2003) were used 
to explore relationships between the three fish assemblage varia-
bles (CPUE, species richness, Simpson’s diversity) and six habitat 
variables (Table 2) for the entire watershed and its two sub-water-
shed units (Table 1). Associations between habitat variables and 
species ≥ 1% of total abundance (Table 3), plus two rare (longear 
sunfish; redfin shiner, Lythrurus umbratilis) and two invasive (round 
goby, Neogobius melanostomus; rudd, Scardinius 
erythrophthalmus) species sampled in the JCW, were explored.  
Except for a few species > 9% abundance at one or more spatial 
scales, initial examinations by BSR and SWR of associations bet-
ween the six habitat variables and fish species ≥1% of total 
abundance (19 species) were not informative for any of the spatial 
scales. We then chose a threshold of ≥ 9% total abundance to exa-
mine the most abundant fishes (2 to 4 species per spatial scale) in 
the JCW. Based on the criteria developed during the preliminary 
JCW analyses, the TCW dataset also was analyzed for species >
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Table 1. Fish richness and total abundance, catch per unit effort at each spatial scale, and Simpson’s diversity examined by 
spatial unit (N = 8) and pool type (N = 4) in the Tonawanda and Johnson Creek watersheds, excluding hybrids, subspecies 
and unidentified juveniles. 
 

Spatial Unit 
Number of 

sites 

Fish 

richness 

Fish 

caught 

Catch per 

unit effort 

Simpson’s 

diversity 

Tonawanda Creek Watershed  68 64 21,310 868 0.794 
1
Erie Canal

 
 8 38 1,366 97 0.750 

2
Lower main stem 33 57 8,557 327 0.816 

2
Middle and upper main stems 16 32 12,752 541 0.736 

Tonawanda Creek and Erie Canal tributaries 11 44 3,074 137 0.732 

Pool Type 1 22 49 2,966 142 0.808 

Pool Type 2 12 43 1,711 74 0.790 

Pool Type 3 11 44 3,762 139 0.756 

Pool Type 4 23 52 12,871 512 0.800 

      

Johnson Creek Watershed 40 47 6,218 270 0.810 
3
Lower main stem 24 42 3,158 143 0.823 

3
Upper main stem and east branch 16 37 2,919 197 0.790 

Pool Type 1 14 32 907 69 0.855 

Pool Type 2 7 32 1,115 37 0.796 

Pool Type 3 8 34 1,745 65 0.752 

Pool Type 4 11 37 2,454 100 0.802 

      

 Total (sites, species, fish) 108 70 27,528   
 
1
Sampling sites in the Erie (NYS Barge) Canal ranged from just above its confluence with the Niagara River upstream to its confluence 

with Tonawanda Creek at river km 18. 
2
Main stem basins were delineated by barriers to upstream fish passage. Lower Tonawanda 

Creek included the reach from the confluence with the Erie Canal upstream to Indian Falls, middle Tonawanda Creek included the 
reach from the Indian Falls upstream to the Batavia Dam, and upper Tonawanda Creek included the reach above the Batavia Dam into 
the headwaters. 

3
Upper and Lower Johnson Creek were divided by the Lyndonville Dam at river km 18.3.  

 
 
 

9% total abundance. Due to few sites sampled, data from the 
middle and upper subwatersheds of the TCW were combined to 
form one spatial unit.  

Because pool type was included in 14 of the 21 significant prelim-
nary JCW BSR models, and the explanatory power of the entire- 
and sub-watershed-scale models was generally poor (low adjusted-
r
2
 values), survey data were explored further at the smaller pool-

type (Table 2) scale in both watersheds. Except for the rare and 
invasive fishes noted above, only those BSR models with the lo-
west Mallow’s CP scores and adjusted r² values ≥20% which were 
statistically significant in the SWR models (P≤0.06, because a 
number of the models had P-values of 0.05 to 0.06) were explored 
further. In the end, five spatial units were analyzed in the TCW (en-
tire watershed, two sub-watersheds, Erie Canal and its tributaries, 
TCW tributaries combined), and the JCW data were analyzed at 
three spatial scales (entire watershed, two sub-watersheds) (Table 
1). Both watersheds were analyzed in relation to the same four pool 
types (Table 2).  

It is often difficult to balance statistical rigor and ecological 
meaning in relation to the potential for Type I (false indication of a 
significant difference) and Type II (false indication of no significant 
difference) statistical errors, especially when many statistical tests 
are used to analyze the same data set. BSR models suggested 80 
significant habitat associations with 47 species and 33 assemblage 
variables among the spatial (N = 8) and pool (N = 4) units evalua-
ted. Sixty-one SWR models were significant in the final analyses 
but at α = 0.06 the potential for a Type I error was 0.977 (1 - 
0.94^

61
). We used the Bonferroni correction (cf. Tiemann et al., 

2004; Freeberg, 2008, Etinger et al., 2009) to control for Type I 
errors; in this case the adjusted α was 0.001 (α / n tests = 0.06/61 
significant models). Subsequently, only 12 SWR models for species 
or fish assemblage parameters were significantly related to one or 
more habitat variables. While the chances of making a Type II error 
rose substantially, we present only the 12 most robust (P ≤ 0.001) 
models from Wells (2009) here.  
 
 

RESULTS 
 

Cyprinidae was the most common family (23 spp.), com-
prising > 60% of all fishes recorded in the Tonawanda 
Creek Watershed, followed by Centrarchidae (16%, 11 
spp.), Percidae (15%, eight spp.), and Catostomidae 
(7%, six spp.). These four families represented > 98% of 
all fishes recorded (Table 3). Only nine species com-
prised ≥ 9% of the total abundance over the nine spatial 
scales analyzed in the TCW; 40 of 64 total species (63%) 
sampled in the TCW comprised < 1% of the total 
abundance.  

Cyprinidae was the most common family (15 spp.), 
comprising > 47% of fishes recorded in the Johnson 
Creek watershed, followed by Percidae (21%; six spp.), 
Centrarchidae (16%; six spp.), and Catostomidae (11%; 
four spp.). These four fish families accounted for > 97%
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Table 2. Physical habitat variables observed and scored in Tonawanda Creek and Johnson Creek. Instream wood included 
standing or submerged timber (dead or alive) plus logjams, docks and pilings. Bank cover (natural or artificial) included 
overhead riparian canopy, overhanging bank vegetation, undercut banks, riprap and boulders, bridges and culverts. Aquatic 
vegetation included submergent, emergent and floating forms, excluding algae and mosses. 
 

Variable Observation Determination 
1
Score 

2
Range 

3
Pool Type (PT)    

 Channelized reach Lowest complexity 1 1.0 - 1.74 

 Isolated pool or run Some complexity 2 1.75 - 2.49 

 Pool with run Moderate complexity 3 2.50 - 3.24 

 Pool with riffle Highest complexity 4 3.25 - 4.0 

    

Maximum Depth (MD)    

 Very shallow 0.5 m or less 1 1.0 - 1.74 

 Mostly shallow 0.6 to 1.4 m 2 1.75 - 2.49 

 Moderately deep 1.5 to 2.9 m 3 2.50 - 3.24 

 Mostly deep 3.0 m or more 4 3.25 - 4.0 
 

   
4
Substrate Size Score (SS)    

 Very fine particles mostly silt 1 1.0 - 1.49 

 Fine particles mostly sand 2 1.5 - 2.49 

 Small course particles mostly gravel  3 2.5 - 3.49 

 Large course particles mostly rock 4 > 3.5 

 

% Instream Wood (IW) / Bank Cover (BC) / Aquatic vegetation (AV) 

 Absent  0% 1 0 

 Present 5% or less 2 >0-2.49 

 Moderate 6 to 25% 3 2.5-3.49 

 Abundant 26 to 49% 4 3.5-4.49 

  Dominant 50% or more 5 >4.5 
 
1
Score of 1 (lowest) to 5 (highest) were used to assign values for habitat complexity at each fish sampling site. 

2
The range of scores 

used to quantify the amount of fish cover (an presumably better habitat) at each sampling site. 
3
Type of pool was determined by the 

type of current (riffle or run) within or adjacent to a sampling site. 
4
Substrate size score was the mean of estimated percent cover of 

each particle size group at a sampling site. 
 
 
 

of all fishes recorded (Table 3). Only ten species com-
prised ≥ 9% of the total abundance over the seven spatial 
scales analyzed in the JCW (Table 3); 28 of 47 total spe-
cies (60%) comprised < 1% of the total abundance.  
 
 

Fish assemblage-habitat variable associations 
 

Catch per unit effort accounted for 75% (9/12) of signi-
ficant BSR associations (P ≤ 0.001; see statistical analy-
sis section of Methods); species richness and Simpson’s 
diversity were not significantly associated with any of the 
six habitat variables measured (Table 4). CPUE was 
positively associated with habitat variables in 67% (6/9) 
of the 12 significant SWR models (Table 4), including 
type 3 pools (r

2
 = 0.398) in the entire TCW, type 2 pools 

(r
2
 = 0.217) in the entire JCW, sandy substrate (r

2
 = 

0.628) in the upper subwatershed  of the JCW, and with 
low density of aquatic vegetation in the TCW’s entire sub-
watershed (r

2
 = 0.398), middle + upper subwatersheds 

combined (r
2
 = 0.703), and in type 4 pools (r

2
 = 0.409). 

CPUE was negatively associated with habitat variables in 
33% (3/9) of the 12 significant SWR models (Table 4), 
including low-moderate density of instream wood in the 
JCW type 3 pools (r

2
 = 0.997), moderate aquatic vegeta-

tion cover in JCW type 3 pools (r
2
 = 0.997), and low-

moderate density of bank cover in the JCW type 1 pools 
(r

2
 = 0.589).  

 
 

Fish species-habitat variable associations 
 

Two fish species had significant associations with two (r
2
 

= 0.590). The round goby was positively associated with 
moderate depth (r

2
 = 0.848) in type 3 pools in the entire 

JCW watershed. 
 
 

DISCUSSION 
 

Catch per unit effort-habitat variable associations 
 

We attempted to control for natural and biased variability
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Table 3. Number of fish sampled (N = 70 species) in the Tonawanda Creek (TCW) and Johnson Creek (JCW) 
watersheds. Species are listed in phylogenetic order from primitive to advanced.  
 

Common name Scientific name TCW JCW Both 

GARS LEPISOSTEIDAE    

Longnose gar Lepisosteus osseus  26 26 

     

Bowfins Amiidae    

Bowfin Amia calva  33 33 

     

Herrings Clupeidae    

Alewife Alosa pseudoharengus  24 24 

Gizzard shad Dorosoma cepedianum 1  1 

     

Trouts Salmonidae    
1
Rainbow trout  Oncorhynchus mykiss  1 1 

1
Brown trout  Salmo trutta 36  36 

Rainbow smelt Osmerus mordax 1  1 

     

Mudminnows Umbridae    

Central mudminnow Umbra limi 11 2 13 

     

Pikes Esocidae    

Grass pickerel  Esox americanus vermiculatus 7 1 8 

Northern pike Esox lucius 39 18 57 

Chain pickerel Esox niger 1  1 

     

Minnows and carps  Cyprinidae    

Central stoneroller Campostoma anomalum 297 431 728 
1
Goldfish  Carassius auratus 5  5 

Redside dace Clinostomus elongatus 15  15 
1
Common carp  Cyprinus carpio 269 183 452 

Hornyhead chub Nocomis biguttatus 477 32 509 

River chub Nocomis micropogon 1,146  1,146 

Golden shiner Notemigonus crysoleucas 150 28 178 

Emerald shiner Notropis atherinoides 342 381 723 

Striped shiner Luxilus chrysocephalus 1,854 172 2,026 

Common shiner Luxilus cornutus 80 5 85 

Bigmouth shiner Notropis dorsalis 23  23 

Spottail shiner Notropis hudsonius 4  4 

Rosyface shiner Notropis rubellus 467 12 479 

Spotfin shiner Cyprinella spiloptera 475 236 711 

Sand shiner Notropis stramineus 134  134 
2
Redfin shiner Lythrurus umbratilis 6 57 63 

Mimic shiner Notropis volucellus 553 59 612 

Bluntnose minnow Pimephales notatus 2,518 784 3,302 

Fathead minnow Pimephales promelas 2,130 17 2,147 

Longnose dace Rhinichthys cataractae 95  95 

W. blacknose dace Rhinichthys obtusus 1,364 3 1,367 
1
Rudd  Scardinius erythrophthalmus 13  13 

Creek chub Semotilus atromaculatus 215 541 756 
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Table 2. Contd. 
 

Fallfish Semotilus corporalis 201  201 

     

Suckers Catostomidae    

White sucker Catostomus commersonii 665 304 969 

Northern hog sucker Hypentelium nigricans 595 346 941 

Silver redhorse Moxostoma anisurum 19  19 

Golden redhorse Moxostoma erythrurum 160 54 214 

Shorthead redhorse Moxostoma macrolepidotum 27 9 36 

Greater redhorse Moxostoma valenciennesi 14  14 

     

N. American catfishes  Ictaluridae    

Yellow bullhead Ameiurus natalis  1 1 

Brown bullhead Ameiurus nebulosus 48 67 115 

Channel catfish Ictalurus punctatus 13  13 

Stonecat Noturus flavus 35 10 45 

Tadpole madtom Noturus gyrinus 1 3 4 

Brindled madtom Noturus miurus 21 9 30 

     

Topminnows Fundulidae    

Banded killifish Fundulus diaphanus 1  1 

     

New world silversides  Atherinopsidae    

Brook silverside Labidesthes sicculus 5 2 7 

     

Temperate basses Moronidae    

White perch Morone americana  1 1 

     

Sunfishes Centrarchidae    

Rock bass Ambloplites rupestris 940 297 1,237 

Green sunfish Lepomis cyanellus 537 212 749 

Pumpkinseed Lepomis gibbosus 677 181 858 

Bluegill Lepomis macrochirus 189 23 212 
2
Longear sunfish  Lepomis megalotis 23  23 

Smallmouth bass Micropterus dolomieu 430 120 550 

Largemouth bass Micropterus salmoides 532 178 710 

White crappie Pomoxis annularis 7  7 

Black crappie Pomoxis nigromaculatus 16  16 

     

Perches Percidae    

Greenside darter Etheostoma blennioides 144 86 230 

Rainbow darter Etheostoma caeruleum 108  108 

Fantail dater Etheostoma flabellare 178 34 212 

Johnny darter Etheostoma nigrum 2,075 820 2,895 

Yellow perch Perca flavescens 28 198 226 

Logperch Percina caprodes 249 27 276 

Blackside darter Percina maculata 491 141 632 

Walleye Sander vitreum vitreum 11  11 
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Table 2. Contd. 
 

Drums Sciaenidae    

Freshwater drum Aplodinotus grunniens 2 12 14 

     

Gobies Gobiidae    
1
Round goby  Neogobius melanostomus 63 37 100 

     

Sculpins Cottidae    

Mottled sculpin Cottus bairdii 77  77 

     

  Totals 21,310 6,218 27,528 
 

1
Non-native species: New York State Department of Environmental Conservation Fisheries Database CD (not online 

but see http://www.dec.ny.gov/docs/wildlife_pdf/oct11hlite.pdf for a description). 
2
Native species listed as 

“Threatened” in New York State (http://www.dec.ny.gov/animals/7494.html). 
3
Native species of “Special Concern” in 

New York State (http://www.dec.ny.gov/animals/7008.html) 
 
 
 

Table 4. Multiple linear regression results from analyses of the Tonawanda and Johnson Creek watersheds. Criteria for including the results 
below: 1) variables in best subsets regression models had adj-r² values >20% and P ≤ 0.06, and 2) variables in backward stepwise linear 
regression models had P ≤ 0.001 (Bonferroni-corrected value of α). 
 
1
Scale 

2
Sites 

3
m-CP 

3
r² 

4
Dep 

4
Ind 

4
Assoc 

5
Mean (SE) 

5
Habitat 

6
r² 

6
P-value 

TCW 68 2.7 0.398 CPUE PT pos 2.51(0.153) Type 3 0.371 <0.001 

JCW 40 3.2 0.280 CPUE PT pos 2.40(0.195) Type 2 0.217 0.001 

J-UWS 16 2.0 0.628 CPUE SS pos 2.1(0.138) Sand 0.628 0.001 

J-PT3 8 4.1 0.997 CPUE IW neg 2.5(0.189) Low-mod 0.997 <0.001 

J-PT1 14 0.4 0.589 CPUE BC neg 2.6(0.133) Low-mod 0.589 <0.001 

TCW 68 2.7 0.398 CPUE AV pos 2.21(0.137) Low 0.371 <0.001 

T-M+U 19 3.5 0.753 CPUE AV pos 2.4(0.325) Low 0.703 <0.001 

T-PT4 23 2.4 0.409 CPUE AV pos 2.5(0.280) Low 0.409 <0.001 

J-PT3 8 4.1 0.997 CPUE AV neg 3.1(0.441) Mod 0.997 <0.001 

JCW 40 3.4 0.364 Etni PT pos 2.87(0.196) Type 3 0.348 <0.001 

J-LWS 24 3.5 0.590 Etni PT pos 2.37(0.232) Type 2 0.590 <0.001 

J-PT3 8 1.3 0.848 Neme MD pos 3.00(na) Mod 0.848 <0.001 
 
1
The watersheds were divided into spatial subunits as shown in Table 1. 

2
Number of sites sampled per spatial scale as shown in Table 2.  

3
Results for best subsets regression (BSR): m (Mallow’s)-CP score and adjusted r² values (r²). 

4
Dependent (Dep) and independent (Ind) variables, and 

the direction of associations (Assoc) between them, in statistically significant backward stepwise regression models (SWR). Independent variables are 
pool type (PT), substrate score (SS), instream wood (IW), bank cover (BC), aquatic vegetation (AV) and maximum depth (MD). CPUE = catch per unit 
effort; Etni = johnny darter; Neme = round goby. 

5
Mean habitat condition scores and their standard errors (SE) for sites sampled in each pool type (For 

example, 2 or 3) or spatial scale (e.g., TCW, J-PT3). Low and mod (moderate) vs. high are qualitative descriptors of the habitat scores. 
6
Results for 

backward stepwise linear regression: adj-r² value (r²) and the Bonferroni corrected value of α (P): original α (0.06) / 61 significant models = adjusted α 
≤ 0.001. 
 
 
 

of CPUE in three ways: 1) Segregating and evaluating 
data at spatial (watershed, sub-watershed, tributary) and 
habitat (pool type) scales, 2) Measuring and coding habi-
tat variables in a consistent, semi-quantitative way (all 
done by the first author), and 3) Using the same electro-
fishing and seining methods and effort to collect fish at 
each site. Ultimately, however, habitat conditions and the 
different susceptibilities of species to sampling gears 
determine CPUE (Murphy and Willis, 1996; Boner et al., 
2009). Fish are easier to sample in shallow water (Green, 
1989; Murphy and Willis, 1996), which often limits access 
by  larger  fish  (Butler  and  Fairchild, 2005; Gillette et al., 

2005; Sharma and Jackson, 2007), resulting in dispropor-
tionate catches of smaller species. Extensive sampling by 
boat electrofishing (no seining possible) in the expansive 
and deep lower subwatershed of the TCW (Erie Canal) 
and JCW (drowned river mouth confluence with Lake 
Ontario) likely missed some fishes that were too deep or 
widely scattered for effective electrofishing. In contrast, 
CPUE increased as water depth decreased upstream.  

In the TCW and JCW, CPUE was positively associated 
with type 3 and 2 pools, respectively. We often found 
greater fish abundance and species richness in the long 
and winding TCW where pools were associated with runs  



404          J. Ecol. Nat. Environ. 
 
 
 
(type 3). In the much smaller JCW, isolated pools, mostly 
those in the lower subwatershed without adjacent runs or 
riffles (type 2), were associated with higher CPUE. 

Substrate size influences CPUE because it is a primary 
component of habitat formation and alteration in flowing 
waters (Hunter, 1991; Gillette et al., 2005; Lau et al., 
2006). It often dictates fish assemblage structure, espe-
cially in lotic systems (Talmage et al., 2002; Lau et al., 
2006; Sharma and Jackson, 2007). Substrate size also 
can alter the effectiveness of certain gear types (Gillette 
et al., 2005; Van Snik Gray et al., 2005; Sharma and 
Jackson, 2007) which, due to high seining efficiency, may 
be why CPUE was positively associated with sandy sub-
strate in the upper JCW sub-watershed.  

Woody debris typically influences CPUE (Talmage et 
al., 2002; Powers et al., 2003; Lau et al., 2006) by dimi-
nishing the effectiveness of sampling, especially seining 
(Murphy and Willis, 1996; Flosi et al., 1998; Powers et al., 
2003). However, large woody debris often provides opti-
mal fish habitat in streams (Angermeier and Karr, 1984; 
Flosi et al., 1998), especially for young fishes (Trautman, 
1981; Gregory and Bisson, 1997; Flosi et al., 1998). In 
type 3 pools of the JCW, instream wood had a negative 
influence on CPUE, possibly due to the difficulty of sam-
pling deeper pools containing large woody debris.  

Bank cover influences CPUE (Whitton, 1975; Madejczyk 
et al., 1998; Butler and Fairchild, 2005) by reducing sam-
pling effectiveness when fish hide in hard to reach places 
(for example, undercut banks). Bank cover is important 
for creating microhabitats for stream fishes (Platts et al., 
1983; Murphy and Willis, 1996; Talmage et al., 2002), 
especially as critical rearing habitat for young stream 
fishes (Trautman, 1981; Hunter, 1991) and a food source 
via terrestrial drop-ins (Hunter, 1991; Closs et al., 2004). 
CPUE and bank cover in type 1 pools of the JCW were 
negatively associated, likely due to poor habitat quality of 
type 1 pools (channelized, lowest complexity).  

Aquatic vegetation often influences CPUE by reducing 
sampling effectiveness (Whitton, 1975; Ray et al., 2004; 
Van Snik Gray, et al. 2005). This problem is pronounced 
in areas of heavy weed growth, such as in-stream, slack 
water impoundments (for example, Lyndonville Pond, 
JCW; see Wells, 2009), which may impact foraging effi-
ciency and reduce dissolved oxygen (Brazner and Beals, 
1997), especially at night. However, aquatic vegetation 
provides important shelter and food for many aquatic 
organisms (Flosi et al., 1998; Van Snik Gray et al., 2005; 
Lau et al., 2006) and essential habitat for many fishes 
that require it for at least part of their life cycle (Whitton, 
1975; Van Snik Gray et al., 2005; McGarvey and Hughes, 
2008). In the typically turbid TCW, aquatic vegetation 
(usually emergents) had a positive influence on CPUE at 
three spatial scales (watershed, middle + upper sub-
watershed, and type 4 pools), likely due to the added cover 

along stream margins utilized by the fishes sampled. 
However, in the less turbid JCW submergent vegetation 
in type 3 pools had a negative influence on CPUE; 
reasons for this result are unclear.  

 
 
 
 
Fish species-habitat variable associations 
 

Stepwise regression suggested habitat associations for 
two stream generalists. The johnny darter occurs in many 
stream habitats (Scott and Crossman, 1973; Trautman, 
1981; Smith, 1985), often adjacent to currents (Scott and 
Crossman, 1973; Miller and Robison, 1973; Knopf, 2002), 
and occasionally in pools near current edges (Miller and 
Robison, 1973). It is more tolerant of slow water than 
other darters (Scott and Crossman, 1973; Smith, 1979; 
Trautman, 1981). These conditions were common in the 
JCW, which is probably why the johnny darter was signi-
ficantly associated with type 3 and 2 pools in the entire 
and lower subwatershed of the JCW, respectively.  

The invasive round goby is a benthic habitat generalist 
(Jude et al., 1992; Lever, 1996; Hubbs and Lagler, 2004), 
ecologically similar to the mottled sculpin (Cottus bairdii) 
(Lever, 1996; Vanderploeg et al., 2002), and seemingly 
well adapted for life in North American streams (no air 
bladder). During the survey period in 2005, round goby 
abundance was low (Table 3), likely due to its recent 
invasion of the study area, where it had not been recor-
ded before this study, from the Erie Canal upstream and 
Lake Ontario downstream. There was a negative asso-
ciation (P = 0.003; adj. r

2
 = 0.398) with distance upstream 

from Lake Ontario in lower main stem of Johnson Creek.  
 
 

Habitat modeling summary  
 

Like Butler and Fairchild (2005), MLR models were inter-
preted as if fish species (and fish assemblages) were 
using the habitat they were captured in, thus species-
habitat correlations were assumed for fish occupying sites 
with such habitat. Using a very conservative Bonferroni-
corrected α-value of 0.001, we identified nine literature-
supported habitat influences on fish assem-blage CPUE 
but only three associations for two of the 70 fish species 
sampled. Before Bonferroni correction, 80 habitat varia-
bles in 61 significant SWR models were associated with 
43 species and 37 assemblage (CPUE, richness, Sim-
pson’s diversity) variables (Wells, 2009). The analyses 
reported here have a 0.05 study-wise risk of a Type I 
error and an Unknown, but likely high, risk of Type II error. 
With the necessary Bonferroni constraint, the power of 
MLR models in our study to predict associations of 
stream fish assemblage variables and species with spe-
cific habitat features was disappointingly limited. 

Similar studies also have indicated scale-specific and 
habitat-specific relationships between fish species and 
fish assemblage parameters. Talmage et al. (2002) re-
ported that local-scale factors, often reflective of past and 
present watershed disturbances (for example, farming, 
chan-nelizing), are important to fish communities. Van 
Holt et al. (2006) showed a positive impact of riparian 
forest on fish assemblages at multiple scales. Angermeier 
and Schlosser (1989) indicated that effects of site volume 
and complexity were significant for fish abundance in 
pools but species richness was related more to the nature  



 
 
 
 
of riffles. According to Ray et al. (2004), percent cover of 
aquatic vegetation explained much of the variation in fish 
diversity. Talmage et al. (2002) reported that relationships 
between fish communities and variability of instream 
habitat were positive and linear. Van Holt et al. (2006) 
found significance in pool variability and available cover, 
and suggested that their results showed variation of 
instream habitat structure was important. Also according 
to Van Holt et al. (2006), the variance explained differed 
among models by the spatial scale of analysis. In models 
for large watersheds, variance was associated with fish 
richness but in models at smaller scales variance was 
explained best by fish diversity (richness and evenness). 

In contrast to the results reported here, Butler and 
Fairchild (2005) reported that individual species, not fish 
assemblages, were more associated with specific habitat 
variables. In addition, Van Holt et al. (2006) reported that 
no single model predicted fish assemblages well but that 
high statistical variability in a model predicted fish diver-
sity and that there was a negative relationship between 
available cover and the number of intolerant species 
predicted (both as percentages). Others reported that fish 
assemblage composition is influenced by local habitat 
complexity (Gorman and Karr, 1978, Schlosser, 1982; 
Barko et al., 2004). Microhabitat specialization created 
through adaptive or opportunistic use of available habi-
tats by stream fishes is probably a key component of a 
species’ success (Barko et al., 2004; Rippe, 2005), which 
likely limits the predictive power of MLR models. Of the 
39 fish species analyzed in this study, 67% are habitat 
generalists (Wells, 2009), presenting a substantial chal-
lenge to identifying statistically significant associations 
with specific habitat variables.  
 
 

Research and management  
 

Localized focus on species-specific management has 
shifted to a broader eco-region scale, and watershed 
analysis of fish assemblages is now common (Fausch et 
al., 2002; Guy and Brown, 2007, Bonar et al., 2009). 
Small-scale (this study was large scale, covering most of 
two watersheds) or short-term (a drawback of this two 
summer study) studies are largely ineffective for provi-
ding managers with information and tools at the scales 
needed to conserve stream fish populations and commu-
nities (Fausch et al., 2002). A lack of knowledge of many 
stream fishes and their habitats underline the importance 
of studying habitat heterogeneity on larger spatial and 
temporal scales in these linear aquatic habitats (Fausch 
et al., 2002).  

Ono et al. (1983) remarked that every species may be 
necessary to keep an ecosystem intact. Notable declines 
of many native stream fishes in New York State (Carlson 
and Daniels, 2004; Carlson, 2005; Wells and Haynes, 
2006) have increased awareness of the need to pursue 
conservation for lesser known or imperiled fishes. The 
conservation of stream fishes is an evolving science and 
requires assessment of entire fish assemblages on differ- 
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ent spatial scales. With ever-increasing anthropogenic 
demands being placed on watersheds across the globe, 
a comprehensive and proactive approach to stream fish 
management is needed now more than ever to assess 
and protect important aquatic habitats and prevent further 
extirpation of native stream fishes. Focusing on riparian 
corridor restoration and management (particularly erosion 
control) will best enhance fish habitat in the agriculturally-
influenced, warm water streams of western New York 
State.  
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