
 
Vol. 5(6), pp. 200-206, July 2013  

DOI: 10.5897/JETR2013-0310 

ISSN 2006-9790 © 2013 Academic Journals 

http://www.academicjournals.org/JETR 

Journal of Engineering and Technology 
Research 

 
 
 
 
 
 

Full Length Research Paper 
 

Predictive modeling for an industrial naphtha reforming 
plant using a recurrent-layer artificial neural network 

 

Sepehr Sadighi and S. Reza Seif Mohaddecy* 

 
Catalysis and Nanotechnology Division, Catalytic Reaction Engineering Department, Research Institute of Petroleum 

Industry (RIPI), Iran. 
 

Accepted 28 May, 2013 
 

In this research, a layered-recurrent artificial neural network (ANN) using back-propagation method was 
developed for simulation of a fixed-bed industrial catalytic-reforming unit, called Platformer. Ninety-
seven data points were gathered from the industrial catalytic naphtha reforming plant during the 
complete life cycle of the catalyst (about 919 days). A total of 80% of data were selected as past 
horizontal data sets, and the others were selected as future horizontal ones. After training, testing and 
validating the model using past horizontal data, the developed network was applied to predict the 
volume flow rate and research octane number (RON) of the future horizontal data versus days on 
stream. Results show that the developed ANN was capable of predicting the volume flow rate and RON 
of the gasoline for the future horizontal data with the AAD% of 0.238 and 0.813%, respectively. 
Moreover, the AAD% of the predicted octane barrel against the actual values was 1.447%, confirming 
the excellent capability of the model to simulate the behavior of the under study catalytic reforming 
plant. 
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INTRODUCTION 
 
The need for transportation fuels, especially gasoline, will 
show a steady growth in the future, contributing to 
demand petroleum processes. Catalytic naphtha 
reforming is a very important process for producing high 
octane gasoline, aromatic feedstock and hydrogen in 
petroleum refining and petrochemical industries (Hu et 
al., 2002). This unit uses naphtha as feedstock to 
produce high octane value liquid, hydrogen (H2) and 
liquefied petroleum gas (LPG) as by-products (Liang et 
al., 2005). To design new plants and optimize existing 
units, an appropriate mathematical model for simulating 
the industrial catalytic reforming process is needed 
(Weifeng et al., 2006). 

Besides of kinetic-based models which are classified as 
deterministic   or   first   principal   models,   the   use    of  

an artificial neural network (ANN), a 'black box' model, 
can be also beneficial, especially when the first principal 
approach cannot appropriately describe a system. In 
particular, neural networks are nonlinear, and they learn 
(or train) by examples. The user of a neural network 
gathers representative data, and then invokes training 
algorithms to learn the structure of them (Chaturvedi, 
2010). ANN has been previously applied for modeling of 
refinery processes, such as hydro desulfurization, 
hydrocracking, delayed coking, and thermal cracking of 
naphtha processes (Bellos et al., 2002; Arce-Medina et 
al., 2009; Sadighi et al., 2010; Zahedi et al., 2009; Niaei 
et al., 2007). Due to its ability to model the complex and 
nonlinear problems, the ANN can be a useful approach to 
model the complex  behavior  between  input  and  output
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Figure 1. Block flow diagram of the catalytic reforming unit of the target oil refinery. 

 
 
 
in the catalytic processes, such as catalytic–dielectric 
barrier discharge plasma reactors (Istadi et al., 2006; 
Istadi et al., 2007; Istadi et al., 2007). In the field of 
modeling catalytic reforming plant using ANN (Manamalli 
et al., 2006) developed an artificial neural network to 
maximize the aromatics yield subject to constraints in 
inlet temperature of the reactors. Two neural networks 
one in the forward path and the other in the feedback 
path were trained to give set points for temperature 
control. Zahedi et al. (2008) developed two ANN models 
using the back-propagation and radial basis function 
(RBF) methods for simulating an industrial catalytic-
reforming unit. The proposed models predict the volume 
flow rate of hydrogen, gasoline, and liquid petroleum gas 
(LPG), outlet temperature of reactors, gasoline specific 
gravity, Reid vapor pressure (RVP) and research octane 
number (RON) of gasoline. In this case, 97 data sets 
were collected from an industrial naphtha reforming plant, 
and all data sets were used to train, test and validate the 
ANN architecture. After using ANN model, a set of 
optimized operation conditions leading to a maximized 
volume flow rate of produced gasoline were obtained.  
But, there were no reports to compare the optimized 
volume flow rate of product estimated by model against 
the actual results. Furthermore, the life of the catalyst or 
days on streams was not included in the model which 
was a crucial factor for a commercial scale fixed-bed 
reactor. 

The present study was aimed at investigating the 
predictability of artificial neural network (ANN) models for 
an industrial naphtha reforming unit, called Platformer. 
This investigation discusses about the usage of 
mathematical models to find the behavior of the 
Platformer   that   is,  yield  and  research  octane number 

(RON) of the product from the existing data. This work 
can be significant because of considering the life of the 
catalyst or days on stream to predict the significant output 
variables.  
 
 
Process description 
 
A catalytic naphtha reforming unit licensed by Chevron 
research cooperation with the nominal capacity of 16,500 
barrel per day was chosen as a case study. The feed of 
the plant prior to entering the catalytic reformer should 
undergo hydro desulphurization (HDS) reaction in the 
hydrotreatment unit. Then, the produced naphtha, called 
Platcharge is introduced to the catalytic reforming 
process. The most commonly types of catalytic reforming 
units have three or four reactors that each has a fixed 
catalytic bed. For such a unit, the activity of the catalyst is 
reducing during the operation due to depositing coke and 
losing chloride. Hopefully, the activity of the catalyst can 
be periodically regenerated or restored using in situ high 
temperature oxidation of the coke followed by chlorination 
process (Weifeng et al., 2006; Chaturvedi et al., 2010). 
Therefore, the catalyst of the semi-regenerative catalytic 
reforming is regenerated during routine shutdowns of the 
process occurring once each 18 to 24 months. Normally, 
the catalyst can usually be regenerated 3 or 4 times, and 
then it must be returned to the manufacturer for 
reclamation of the valuable platinum and/or rhenium 
elements. 

As shown in Figure 1, Platcharge is first preheated by 
the output stream of the last reactor in effluent heat 
exchanger (E-1), and after passing through the first 
furnace   (H-1),   it  enters  the  first  reactor  (R-1)  where
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Table 1. Catalyst distribution in reforming reactors. 
 

Parameter 1st reactor 2nd reactor 3rd reactor 4th reactor 

Catalyst weight (kg) 5077.25 7615.87 12693.13 25386.25 

Catalyst distribution (wt %) 10 15 25 50 
 
 
 

Table 2. Operating conditions in the catalytic reforming of the target oil refinery. 
 

Process variable Value 

Inlet temperature (°C ) 490 - 515 

Hydrogen/hydrocarbon ratio (mol/mol) 3-7 

LHSV (h
-1

) 1- 2 

Yield (vol %) 70 - 85 
 
 
 

 
 

Figure 2. Schematic diagram of a typical structure layer. 
 
 
 

naphthenes are dehydrogenated to aromatics. Then, the 
product stream from the first reactor passes through the 
second reactor (R-2), and the outlet stream of that enters 
the third reactor (R-3). Similarly, the product stream from 
the third reactor enters the fourth reactor (R-4). Due to 
endothermic nature of naphtha reforming reaction, 
furnaces that is, H-1, H-2, H-3 and H-4 should essentially 
be provided before each corresponding reforming 
reactor. 

The product stream from the fourth reactor, after 
exchanging heat with fresh feed in heat exchanger (E-1), 
enters a separator (V-1) wherein the produced hydrogen 
during reforming process (gas stream) is recycled, and it 
then mixed with the Platcharge. Finally, the liquid product 
leaving the separator is introduced to the gasoline 
stabilizer in which the LPG and light gases are separated 
from the gasoline. So, the vapor pressure of the gasoline 
can be set according to the market requirement. The final 
product from the stabilizer is called Reformate. 

The catalyst distribution of reactors in an industrial 
catalytic naphtha reforming process is revealed  in  Table 

1. Moreover, the normal operating conditions of this unit 
are presented in Table 2. 
 
 
DEVELOPMENT OF ARTIFICIAL NEURAL NETWORK MODEL 
 
Although the subject of ANN modeling was discovered 50 years 
ago, it is only in the last 2 decades that ANN software have been 
presented to tackle with practical problems. ANN is a parallel 
structure composed of nonlinear nodes which are connected by 
fixed weights and variables. ANNs are different from the classic 
modeling approaches in that they are trained to learn solutions 
instead of being programmed to model an individual problem in the 
classic way. The advantages of ANN compared to classical 
methods are speed, simplicity, and capacity to learn from examples. 
Moreover, its ability to learn by experimental data makes ANNs very 
flexible and powerful than any other parametric approaches (Zahedi 
et al., 2008). 

Figure 2 shows the scheme of a typical ANN structure. A typical 
network consists of an input layer, at least one hidden layer, and an 
output layer. The most widely employed networks have one hidden 
layer only (Hagan et al., 1995). For a feed-forward ANN, the 
information propagates in only the forward direction. In this case, 
each node within a given layer is connected to all of the nodes of 
the previous layer. The node sums up the weighted inputs and a 
bias and passes the result through a linear or nonlinear function 
(Haykin et al., 1998). The training of ANN is carried out by 
introducing it with a set of known inputs and outputs. Then, it learns 
the trend of these known data by manipulating the weights and 
biases. The ANN parameters that is, weights and biases are 
adjusted up to the minimization criterion reached. The most widely 
used criterion is the mean square error (MSE) as follows (Demuth 
et al., 2007): 
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where N is the total number of known values; P is the output 
values; actual refers to the measured outputs from the plant, and 
model refers to the simulated values by ANN. 

To create an ANN model, 110 data sets during the life cycle of 
the catalyst (about 919 days) were gathered from the understudy 
catalytic reforming plant. All data were selected from the normal 
condition when no abnormalities, such as tower flooding, 
emergency depressurization and pump or compressor shut down 
were happen in the operation. Before using these data to  build  the

 

 

 

 

 



 
 
 
 
Table 3. The input variables and their ranges used for building the 
ANN model. 
 

Variable Ranges 

Days on streams (DOS) 154-919 

Naphtha feed flow rate (m
3
/h) 125.76-149.18 

Recycle gas flow rate (m
3
/h) 112200-135100 

Hydrogen to hydrocarbon molar ratio 3.52-4.963 

Inlet temperature to reactor 1 (°C) 500-518 

Inlet temperature to reactor 2 (°C) 500-518 

Inlet temperature to reactor 3 (°C) 500-518 

Inlet temperature to reactor 4 (°C) 500-518 

 
 
 

 
 

Figure 3. Parity plot for the trained, tested and validated RON 
simulated by ANN model. 
 
 
 
ANN, it was necessary to validate them. If a reasonable overall 
mass balance (±5%) could not be calculated, the validity of test run 
was compromised. According to this strategy, 97 data points were 
obtained. The variables and their operating ranges are presented in 
Table 3. 

Among 97 data points, 80 data (up to the day of 800) were 
selected for building the ANN model. So, 48 data points were 
selected for training the ANN (60%), 17 data points for testing 
(20%), and the remained ones for validating the developed network. 
These data were called the past horizontal data supposed to show 
the behavior of the Platformer from start of run to the day of 800. 
The other data points, that is, from the day of 800 to the end of run 
(day of 919) were called the future horizontal data that were chosen 
to evaluate the ability of the ANN model as a reliable tool to predict 
the cycle life of the catalyst. 

The ANN model of Platformer was developed by using the neural 
network toolbox (newlrn function), presented in MATLAB 2010a. A 
layered-recurrent neural network consisting of 7 neurons in the 
input layer and 2 neurons in the output layer was built. 
Determination of nodes in a hidden layer was very important for the 
ANN model. Too small a number of hidden nodes may not train the 
network well to reach an acceptable error. On the other hand, too 
many hidden nodes make the ANN to memorize the data instead of 
learning them. For the developed model in this work, 3 nodes  were 
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selected for the ANN model. So, it was found that the required 
coefficients that is, weights and biases of the designed network 
using 3 hidden nodes were limited to 80 parameters, less than the 
number of training data (97 sets). Therefore, the over learning of 
the model can be prevented. 

The transfer or activation function used in the hidden and output 
nodes is the Tangent sigmoid function as follows: 
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where x is the sum of the weighted inputs to the neuron and f(x) 
represents the output of the node. 

The input neurons of the ANN consisted of days on stream 
(DOS), naphtha feed flow rate, recycle gas flow rate, hydrogen to 
hydrocarbon molar ratio, and inlet temperature to reactors 1 to 4 (7 
neurons). The output layer of that was the research octane number 
(RON) and the product flow rate that is, gasoline or reformate (2 
neurons). Training of the ANN was carried out using the function 
'trainlm' which applied Levenberg-Marquardt optimization method to 
estimate weights and biases. Training was performed until finding 
the minimum MSE between the simulated and actual output 
variables that is, all past horizontal data points. Detailed of the ANN 
model used for the under study naphtha catalytic reforming plant is 
presented in Table 4. 

 
 
RESULTS AND DISCUSSION 
 
Developing the neural network using past horizontal 
data 
 
The described procedure for developing the artificial 
neural network was followed to train, test and validate the 
model for 80 points of past horizontal data. The MSE and 
AAD% of model obtained for RON and gasoline flow rate 
are presented in Table 5. Additionally, the parity plots for 
the RON and gasoline flow rate simulated by the ANN 
models are presented in Figures 3 and 4. From these 
results, it can be found that the deviation of simulated 
values in comparison to the measured data is acceptable 
for the output values of past horizontal data points. It is 
supposed that the main source of deviation was the 
possibility of error measurements in gathering data 
obtained with some faults, such as signal transmission, 
calibration and power fluctuation of instruments which 
could not be excluded from the actual data. However, 
from the presented simulation results, it can be 
concluded that the developed simulation program was 
reliable enough to be applied for predicting the behavior 
of the under study catalytic reforming unit. 

 
 
Predicting the future horizontal outputs 
 
After building the ANN, the outputs corresponding to the 
future horizontal data, that is, RON and gasoline flow rate 
were extrapolated. It is obvious that the predicted outputs 
are related to the days on streams from day of 800 to the 
end of run (day of 919). 
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Table 4. Detailed of ANN algorithm build for the Platformer. 
 

Variable Value 

Number of hidden layers 1 

Number of neurons in the hidden layer 3 

Number of data used for training (60%), Testing (20%) and validating (20%)  80 

Type of network Layered-recurrent  

Number of model parameters  40 

Transfer function of hidden layers Tangent Sigmoid 

Transfer function of output layer Tangent Sigmoid 

Algorithm used for training Levenberg-Marquardt  

Performance function MSE 

 
 
 

 
 

Figure 4. Parity plot for the trained, tested and validated gasoline 
flowrate simulated by ANN model 

 
 
 
Table 5. AAD% and MSE of ANN model after training, testing and 
validating procedure. 
 

Variable AAD% MSE 

RON of gasoline 0.238 0.084 

Flow rate of gasoline 0.813 1.787 

 
 
 

Figures 5 and 6 show the comparisons between the 
RON and flow rate of the produced gasoline against the 
actual values, respectively. As it can be seen from these 
figures, there are close mappings between the measured 
and the predicted (or extrapolated) output variables. It 
should be mentioned that the AAD% of predictions for the 
RON and gasoline flow rate were 0.52 and 1.62%, 
respectively. It is concluded that the ANN-based model is 
also good for extrapolating the behavior of the catalytic 
naphtha reformer. 

As an important parameter for a naphtha catalytic 
reforming unit, the octane barrel of the unit (that is, RON 
× gasoline flow rate) was studied using the validated ANN 
model. This variable is so important to distinguish the end 
of the life cycle, and also it is always monitored to 
estimate the catalyst life. The results showed that AAD% 
of the predicted octane barrel for the future horizontal 
data using the ANN-based model was 1.477%. 
Additionally, the AAD% of the prediction for the octane 
barrel at the end of run (day of 919) was about 0.3%. 
From Figure 7, close mappings between the measured 
and simulated octane barrels for both past and future 
horizontal data can be understood. These results confirm 
that the presented approach can be applied by the 
refineries to monitor the operation of the catalytic 
reforming plant, and it can be used to estimate the 
octane, flow rate of gasoline and life cycle with an 
acceptable accuracy. 
 
 
Conclusions 
 
In this work, a recurrent layer neural network model was 
developed for the simulation of an industrial fixed-bed 
catalytic naphtha reformer. The collected data from the 
under study plant was divided to the past horizontal data 
(80 points from start of run to the day of 800), and the 
future horizontal ones (from the day of 800 to end of the 
life cycle). The built ANN model was trained, tested and 
validated on the basis of the past horizontal data. The 
results showed that the ANN model could simulate the 
RON, the flow rate of the produced gasoline, and the 
octane barrel of the past horizontal data with the AAD% 
of 0.238, 0.813 and 0.853%, respectively. Finally, the 
developed ANN model were applied to predict the RON, 
gasoline flow rate and octane barrel of the future 
horizontal data which were significant for estimating the 
life of the catalyst. The comparison between the model 
predictions (or extrapolation) and the future horizontal 
data confirmed that the developed ANN model could 
predict these momentous outputs with the AAD% of 0.52, 
1.62 and 1.477%, respectively.  
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Figure 5. Actual RON of gasoline against predicted values vs. days of streams. 
 
 
 

 
 

Figure 6. Actual flowrate of gasoline against predicted values vs. days of streams. 
 
 
 

 
 

Figure 7. Octane barrel of past and future horizontal data against actual values vs. days of streams.
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