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Layered rock masses can be described efficiently using a continuum formulation. There are two 
distinctive continuum based formulations that are found in the published literatures e.g. conventional 
continuum formulation based models such as Ubiquitous Joint model and non conventional 
formulation based models such as Cosserat Continuum models. Such equivalent Continuum models 
may provide reasonably accurate predictions when joint slips are minimal that is. When the shearing is 
in the direction of layering and rock layer bending can be neglected. However, when joint slips are large 
and loading direction is not aligned with the direction of layering models based on conventional 
continuum theories may considerably overestimate the deformation since the bending rigidity of the 
rock layers are not incorporated in such model formulations. For the case of rock layers with bending 
stiffness, an Accurate Continuum model can be formulated successfully on the basis of Cosserat 
continuum theory. The accuracy of both the conventional and the Cosserat Continuum models to 
describe the load-deformation behaviour of the layered rocks is studied in this paper. 
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INTRODUCTION 
 
Modelling the behaviour of rock masses consisting of a 
large number of layers is often necessary in mining 
applications (e.g. coal mining). Such a modelling can be 
carried out in a discontinuous manner by explicit 
introduction of joints using either the finite element or 
distinct element approach (Goodman et al., 1968; 
Cundall, 1987). 

When the number of layers to be modelled is 
excessively large (that is when the layers are thin 
compared to the dimensions of the engineering 
structures) it is advantageous to devise a continuum-
based method. A continuum description of a layered 
medium can be formulated as long as consistency and 
statistical homogeneity in joint properties and spacing 
can be established. Such a continuum model provides a 
large-scale (average) description of the material 
response to loading. The continuum model devised in 
such a manner is often known as smeared (implicit) joint 
model in a sense that the joints are implicit in the choice 
of the stress-strain relationship adopted for the equivalent 
continuum. A distinctive advantage of the smeared joint 
model is that in a numerical (e.g. finite element) solution 

the problem region can now be discretized with a coarser 
mesh (that is subdivided into fewer finite elements) than 
in the discrete models where the size of the finite 
elements cannot exceed the layer thickness. Thus, in 
smeared joint models, the size of the elements is solely 
dictated by computational needs rather than by the layer 
thickness. 

In the models based on the conventional equivalent 
continuum approach (that is standard implicit joint 
model), the layered material is replaced with a 
homogeneous anisotropic medium characterised by the 
so called effective elastic moduli comprising the 
heterogeneity of the medium. The elastic standard 
implicit joint model has been extended for the layered 
materials exhibiting strength anisotropy along the layer 
interfaces (e.g. Ubiquitous Joint model in FLAC (Itasca, 
2008)). Such equivalent continuum models may provide 
reasonably accurate predictions when joint slips are 
minimal that is, when the shearing is in the direction of 
layering and rock layer bending can be neglected. 
However, when joint slips are large and loading direction 
is not aligned with the direction of layering, rock layers do  
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bend as they slip against each other. In such cases 
models based on conventional continuum theories may 
considerably overestimate the deformation since the 
bending rigidity of the rock layers are not incorporated in 
such model formulations. 

For the case of rock layers with bending stiffness, such 
an implicit continuum model can be formulated 
successfully on the basis of Cosserat theory (Cosseart 
and Cosserat, 2009). The Cosserat model provides a 
large-scale (average) description of a layered medium. 
An important feature of the Cosserat model is that it 
incorporates bending rigidity of individual layers in its 
formulation and this makes it different from other 
conventional implicit models. Cosserat based equivalent 
continuum models were formulated in (Mühlhaus, 1993) 
and (Adhikary and Dyskin, 1998) where the rock layers 
were assumed to be elastic. In (Adhikary and Dyskin, 
1998), provision was made for plastic deformation along 
the joints only. Adhikary and Guo (2002) further 
developed a model incorporating plastic deformation of 
both joints and rock layers. 

The accuracy of both the Implicit Joint and the 
Cosserat Models to accurately describe the load-
deformation behaviour of the layered rocks will be studied 
in this paper. 
 
 

THEORETICAL FORMULATIONS 
 

A full description of the Implicit (Ubiquitous Joint) model 
for strength anisotropy can be found in (Itasca, 2008). A 
full description of the two dimensional plane strain 
Cosserat model with elastic rock layers was previously 
presented in (Adhikary and Dyskin, 1998) and with 
elasto-plastic rock layers was presented in Adhikary and 
Guo, 2002). Hence, this research only concentrates on 
the major differences between the Implicit Joint model 
and the Cosserat model. 

In the Cosserat model using the Cartesian coordinates 
(x1, x2), the material point displacement can be defined by 

a translational vector (u1, u2) and by a rotation Ω3, 
whereas the material point displacement is defined only 
by a translational vector (u1, u2) in the Implicit Joint 
model. Here, axis 3 is aligned to the out of plane direction 
and axis 2 is perpendicular to the layers. 

The two-dimensional Cosserat model has 4 non-

symmetric stress components 12212211 ,,, σσσσ  and two 

couple stresses 3231,mm , whereas the two-dimensional 

implicit joint model has only three stress components 

12212211  ,, σστσσ == .When the rock layers are 

aligned in the 1-coordinate direction, the moment stress 
term m32 vanishes.  
 
 

Cosserat model 
 
The   four   stresses  are  conjugate  to  four   deformation 
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And the couple stress m31 is conjugate to the respective 

curvature 1κ  defined by: 
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The elastic stress strain relationships are described by: 
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Where { }3112212211 m,,,, σσσσ=σ , 

{ }112212211 ,,,, κγγγγ=e                                               (4) 
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Where E is the Young’s modulus of the intact layer, ν is 
the Poisson’s ratio, h is the layer thickness, G is the 
shear modulus of the intact layer, kn and ks are the joint 
normal and shear stiffness. When the layer thickness h 
tends to zero (that is. B1 tends to zero) the Cosserat 
model reduces to the standard Implicit Joint model. 
 
 

Implicit joint model  
 
The three stresses are conjugate to three deformation 

γεε ,, 2211  measures defined by: 
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The elastic stress strain relationships are described by: 
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Where { }τσσ ,, 2211=σ , { }γεε ,, 2211=e  and         (12) 
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Where E is the Young’s modulus of the intact layer, ν is 
the Poisson’s ratio, h is the layer thickness, G is the 
shear modulus of the intact layer, kn and ks are the joint 
normal and shear stiffness. 
 
The Ubiquitous Joint model  described  in  FLAC  (Itasca, 
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2008) is a strength anisotropy model and thus is 
assumed to have isotropic elastic properties with reduced 
strength in the direction of rock layering. 

Figure 1 presents the stresses and volume forces 
acting on a Cosserat element and Ubiquitous Joint 
element representing a layered rock with layers oriented 
in the 1-direction. 
 
 
DEFICIENCY INHERENT IN THE IMPLICIT JOINT 
MODEL 
 

The Implicit Joint model works well as long as the rock 
layers are subjected to translational deformation without 
any bending (this may include slip along the layer 
interfaces).  However when the rock layers undergo 
bending during loading the Implicit Joint model (such as 
incorporated in FLAC (Itasca, 2008)) may break down 
completely. 

For simplicity let us assume that the rock layer 
interfaces (joints) have zero shear strength that is. both 
the cohesion and the friction angle along the layer 
interfaces are zero and the rock layer is elastic. Thus if 
the layered rock is subjected to loading such that the 
layers slip along the interfaces and at the same time 
undergo bending. Though the magnitude of the shear 
stress component along the layer interfaces will be zero, 
the shear stress component perpendicular to the layering 
direction dies not vanish and will increase in proportion to 
layer bending. However in the Implicit Joint model the 

magnitude of shear stress component σ21 (that is the 
shear stress component acting in the direction 
perpendicular to the layering direction) cannot increase 

as it is restricted to be equal to σ12 (that is the shear 
stress in the layering direction which is assumed to be 
zero; Figure 2a). This is due to the virtue of the 
fundamental assumptions of two equal shear 
components made in the standard continuum formulation 
to avoid the elemental rotation. A zero shear stress 
component in the direction perpendicular to layering 
implies essentially a weak rubber like material with no 
bending stiffness. Thus such implicit joint models may 
yield erroneous and excessively large deformations. 

This could happen easily in the case of slopes 
excavated in layered rocks (Figure 2) where the rock 
layers slip against each other and bend into the 
excavation giving rise to so-called flexural toppling failure. 
Since the joint shear strength (that is the shear strength 
along the layering direction) is generally low, the shear 
strength in the Implicit Joint model will be reduced as 
soon as joint start to slip irrespective of intact rock layer 
strength. An attempt by the author to back analyse the 
centrifuge experiment of flexural toppling failures reported 
in (Adhikary and Guo, 2002) using Ubiquitous Joint 
model (FLAC - Itasca, 2008) yielded a very erroneous 
result mimicking circular failure mode similar to failures 
seen in homogeneous slopes but with reduced strength 
due to the presence of weak planes. 
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Figure 1. Stresses and volume forces acting on a Cosserat element and a Ubiquitous joint element. 
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Figure 2. A schematic showing (a) erroneous shear stress that may arise in the Ubiquitous Joint model (b) flexural 
toppling failures. 
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Figure 3. A schematic of the example used in the analytical verification. 
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Figure 4. Comparison of the analytical and numerical results. 

 
 
 

But the Cosserat model does not suffer from the same 
deficiency since it can have two different shear stress 
components. During loading if the layered rock deforms 
in such a way that the layer do slip against each other 

implying zero σ12, σ21 will remain non-zero and will 
increase with layer bending depending upon the bending 
rigidity of the rock layers. The couple stresses arising 
from layer bending will counter the rotation arising due to 
the differences in the two components of the shear 
stresses. 
 
 
NUMERICAL VERIFICATION 
 
A simple case as shown in Figure 3 will be considered in 
order to highlight the deficiency in the Implicit Joint 
model. Here 10 layers are perfectly clamped on the left-

hand side and a traction τs is applied on the right hand 
side. The rock layers are assumed to have Young’s 
modulus (E) of 10 GPa, Poisson’s ratio of 0.20, thickness 
of 1m and length (l) of 10m. The joint normal and shear 
stiffness is assumed to be very big (that is 10

10
 GPa/m) 

implying no-elastic anisotropy. The strength anisotropy is 
introduced by assuming zero joint shear strength. Since 
the shear strength in the layer direction is zero, the 
deformation solution should remain independent of the x2 
direction, which allows analytical verification of the results 
on the basis of beam theory, which yields the elastic 
deflection of the beam as (Timoshenko and Goodier, 
1970): 
 

(((( ))))2

2

3

2 1
4

)( ν
τ

−−−−====
Eh

l
lu s                                                (15) 

 
This problem is analysed with a plane strain Cosserat 
finite element code as well as Ubiquitous Joint model 

built in FLAC (Itasca, 2008). The problem domain is 
discretized into 400 isoparametric quadrilateral elements. 
Figure 4 shows the comparison of the analytical and the 
numerical calculations. The elastic deflection obtained 
from the Cosserat model agrees quite well with the 
analytical deflection. However, the Ubiquitous Joint 
model produces excessively large deflection indicating 
the bending of a rubber like material with no bending 
stiffness. Additional simulations with different rock layer 
Young’s modulus E or layer thickness h did not make any 
difference in the Ubiquitous Joint model FLAC (Itasca, 
2008) results, whereas the Cosserat model results 
agreed well with the analytical solution (Equation 15).  
 
 
CONCLUSION 
 
The analysis of the constitutive equations (that is. the 
requirement that two shear stress components in the 
Ubiquitous Joint model be the same) and the numerical 
simulation of bending of a package of layered rocks 
clearly demonstrate that the standard Implicit Joint 
models (e.g. Ubiquitous Joint model built in FLAC - 
Itasca, 2008) can completely break down when the rock 
layers undergo bending during loading and hence could 
lead to erroneous results. Use of standard implicit joint 
models should be limited to small deformation cases 
where possibility of rock layer bending is negligible. Any 
attempt to use such standard implicit joint model for the 
simulation of layered rock with the possibility of rock layer 
bending when shearing direction is not aligned with the 
direction of layering (e.g. flexural toppling failures of rock 
slopes, deformation of underground excavations in 
layered rocks) will provide erroneous results. Whereas 
the Implicit Joint models based on non-standard 
continuum (e.g. Cosserat models) can accurately 
simulate the load deformation behaviour of layered rocks. 
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