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Surface roughness, an indicator of surface quality is one of the most specified customer requirements 
in a machining process. For efficient use of machine tools, optimum cutting parameters (speed, feed 
and depth of cut) are required. So it is necessary to find a suitable optimization method which can find 
optimum values of cutting parameters for minimizing surface roughness. The turning process 
parameter optimization is highly constrained and nonlinear. In this work, machining process was 
carried out on brass C26000 material in dry cutting condition in a CNC turning machine and surface 
roughness was measured using Surface Roughness Tester. To predict the surface roughness, an 
artificial neural network (ANN) model was designed through back propagation network using Matlab 7 
software for the data obtained. Comparison of the experimental data and ANN results show that there is 
no significant difference and ANN was used confidently. The results obtained, conclude that ANN is 
reliable and accurate for solving the cutting parameter optimization.   
 
Key words: CNC turning process, non-ferrous material, surface roughness, artificial neural network (ANN), 
optimization. 

 
 
INTRODUCTION 
 
Now-a-days, due to the increasing demand of higher 
precision components for its functional aspect, surface 
roughness of a machined part plays an important role in 
the modern manufacturing process. Turning is a 
machining operation, which is carried out on lathe. The 
quality of the surface plays a very important role in the 
performance of turning as a good quality turned surface 
significantly improves fatigue strength, corrosion 
resistance, or creep life. Surface roughness also affects 
several functional attributes of parts, such as, contact 
causing surface friction, wearing, light reflection, heat 
transmission, ability of distributing and holding a 
lubricant, load bearing capacity, coating or resisting 
fatigue. Therefore, the desired finish surface is usually 
specified and the appropriate processes  are  selected  to  
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reach the required quality (Mike et al., 1998). To achieve 
the desired surface finish, a good predictive model is 
required for stable machining. Generally, these models 
have a complex relationship between surface roughness 
and operational parameters, work materials and chip 
breaker types.  

Artificial neural networks (ANNs) are information 
processing systems, and since their inception, they have 
been used in several areas of engineering applications. 
In experimental studies, some of the operating conditions 
of a system can be investigated. For this type of 
experimental work, experts and special equipment are 
needed. It also requires too much time and high cost. 
ANNs have been trained to solve non-linear and complex 
problems that are not exactly modelled mathematically. 
ANNs eliminate the limitations of the classical 
approaches by extracting the desired information using 
the input data. Applying ANN to a system needs sufficient 
input and output data instead of a mathematical equation. 
Furthermore, it can continuously re-train for new data  
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during the operation, thus it can adapt to changes in the 
system. ANNs can also be used to deal with problems 
with incomplete and imprecise data.  

In this work, artificial neural network model have been 
developed to predict the surface roughness on the 
machining of brass C26000 metal. To judge the efficiency 
and ability of the model to predict surface roughness 
values, percentage deviation and average percentage 
deviation are used. The results obtained, conclude that 
ANN is reliable and accurate for predicting the values. 
The actual Ra value was obtained as 1.1999 µm and the 
corresponding predicted surface roughness value was 
1.1859 µm, which implies greater accuracy. 
 
 
Literature survey 
 
Since turning is the primary operation in most of the 
production processes in the industry, surface finish of 
turned components has greater influence on the quality of 
the product. Surface finish in turning had been found to 
be influenced in varying amounts by a number of factors 
such as feed rate, work material characteristics, work 
hardness, unstable built-up edge, cutting speed, depth of 
cut, cutting time, tool nose radius. According to these 
parameters, a detailed literature survey is carried out as 
follows. David et al. (2006) described an approach to 
predict Surface roughness in a high speed end-milling 
process and used artificial neural networks (ANN) and 
statistical tools to develop different surface roughness 
predictors. Srikanth and Kamala (2008) proposed a real 
coded genetic algorithm (RCGA) to find optimum cutting 
parameters and explained various issues of RCGA and 
its advantages over the existing approach of binary 
coded genetic algorithm (BCGA). Franic and Joze (2003) 
used binary coded genetic algorithm (BCGA) for the 
optimization of cutting parameters. This genetic algorithm 
optimizes the cutting conditions having an influence on 
production cost, time and quality of the final product. 
Suresh et al. (2002) developed optimum surface 
roughness predictive model using binary coded genetic 
algorithm (BCGA). This GA program gives minimum and 
maximum values of surface roughness and their 
respective optimal machining conditions. Yang and Tarng 
(1998] used Taguchi method for design optimization on 
surface quality. An orthogonal array, the signal-to-noise 
(S/N) ratio and the analysis of variance (ANOVA) were 
employed to investigate the cutting characteristics. Uros 
and Franci (2003) proposed a neural network-based 
approach to complex optimization of cutting parameters 
and described the multi-objective technique of 
optimization of cutting conditions by means of the neural 
networks taking into consideration the technological, 
economic and organizational limitations. Oktem et al. 
(2005) utilized response surface methodology to create 
an   efficient analytical model for surface roughness in 
terms of cutting  parameters:  Feed,  cutting  speed,  axial  

 
 
 
 
depth of cut, radial depth of cut and machining tolerance. 
Al-Ahmari (2007) developed empirical models for tool life, 
surface roughness and cutting force for turning 
operations. Two important data mining techniques used 
were response surface methodology and neural 
networks. Huang and Joseph (2001) predicted in-process 
surface roughness through multiple regression model in 
turning operation via accelerometer. Hossain et al. (2008) 
developed an artificial neural network algorithm for 
predicting the surface roughness in end milling of Inconel 
718 alloy. Avisekh et al. (2009) conducted a study of 
feasibility of on-line monitoring of surface roughness in 
turning operations using a developed opto-electrical 
transducer. Regression and neural network (NN) models 
were exploited to predict surface roughness and 
compared to actual and on-line measurements. Groover 
and Mikell (1996) depicted the impact of three factors, 
namely, the feed, nose radius, and cutting-edge angles, 
on surface roughness. Azouzi and Guillot (1997) 
proposed an on-line prediction of surface finish and 
dimensional deviation in turning using neural network 
based sensor fusion. Feng and Hu (2001) addressed a 
comparative study of the ideal and actual surface 
roughness in finish turning and also applied the fractional 
factorial experimentation approach for studying the 
impact of turning parameters on the roughness of turned 
surfaces and used analysis of variances to examine the 
impact of turning factors and factor interactions on 
surface roughness. Muammer et al. (2007) addressed 
regression analysis and neural network-based models 
used for the prediction of surface roughness and 
compared for various cutting conditions in turning. Bajic 
et al. (2008) focused on modeling of machined surface 
roughness and optimization of cutting parameters in face 
milling and examined the influence of cutting parameters 
on surface roughness in face milling. Sakir et al. (2008) 
worked on the prediction of surface roughness using 
artificial neural network in lathe and investigated the 
effect of tool geometry on surface roughness in universal 
lathe and carried out machining process on AISI 1040 
steel in dry cutting condition using various insert 
geometry at depth of cut of 0.5 mm.  

Optimization of machining parameters not only 
increases the utility for machining economics, but also 
the product quality to a great extent. The dynamic nature 
and widespread usage of turning operations in practice 
have raised a need for seeking a systematic approach 
that can help to set-up turning operations in a timely 
manner and also to achieve the desired surface 
roughness quality.  

After a detailed literature survey, it is inferred that there 
are no appropriate surface recognition models for 
machining Brass C26000 metal in CNC turning. The 
experimental works were conducted in a leading pump 
manufacturing company. The seamless pipe which is 
being manufactured in the pump industry made up of 
Brass C26000 requires more surface  finish  in  the  inner 



 
 
 
 

 
 
Figure 1. Basic components of an artificial neural network. 

 
 
 
surface area that is considered in this work.    

This work predicts the surface recognition system 
based on artificial neural network (ANN) technique over 
Brass C26000 metal in CNC turning 
 
 
PROBLEM DEFINITION 
 
Most of the measurement techniques have limitations to 
their in-process use. The purpose of the analysis is to 
develop techniques to predict the surface roughness of a 
part to be machined and to avoid “trial and error” 
approaches to set-up turning conditions in order to 
achieve the desired surface roughness. The goal of 
which is to predict surface roughness (Ra) under multiple 
cutting conditions determined by spindle speed, feed rate 
and depth of cut. Surface roughness would be measured 
directly by surface roughness measuring instruments. 
Experimental results are expected to show that 
parameters of spindle speed, feed rate and depth of cut 
could predict surface roughness (Ra) under different 
combinations of cutting parameters.  
 
 
Artificial neural networks 
 
The artificial neural network which is described in this 
work is all variations on the parallel distributed processing 
(PDP) idea. The architecture of each network is based on 
very similar building blocks which perform the processing.  
 
 
A framework for distributed representation 
 

An artificial network consists of a pool of simple 
processing units which communicate by sending signals 
to each other over a large number of weighted 
connections. A set of major aspects of a parallel 
distributed model can be distinguished: 
 

1. A set of processing units ('neurons,' 'cells'); 
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2. A state of activation yk for every unit, which equivalent 
to the output of the unit; 
3. Connections between the units. Generally each 
connection is defined by a weight wjk which determines 
the effect which the signal of unit j has on unit k; 
4. A propagation rule, which determines the effective 
input sk of a unit from its external inputs; 
5. An activation function Fk, which determines the new 
level of activation based on the effective input sk(t) and 
the current activation yk(t) (that is, the update); 
6. An external input (aka bias, offset) θk for each unit; 
7. A method for information gathering (the learning rule); 

 
An environment within which the system must operate, 
providing input signals and if necessary- error signals. 
Figure 1 illustrates the aforementioned basics; the 
propagation rule used here is the `standard' weighted 
summation.  

 
 
Processing units 

 
Each unit performs a relatively simple job: Receive input 
from neighbors or external sources and use this to 
compute an output signal which is propagated to other 
units. Apart from this processing, a second task is the 
adjustment of the weights. The system is inherently 
parallel in the sense that many units can carry out their 
computations at the same time. 

Within neural systems, it is useful to distinguish three 
types of units: Input units (indicated by an index i) which 
receive data from outside the neural network; output units 
(indicated by an index o) which send data out of the 
neural network, and hidden units (indicated by an index 
h) whose input and output signals remain within the 
neural network. 

 
 
Connections between units 

 
In most cases, it is assumed that each unit provides an 
additive contribution to the input of the unit with which it is 
connected. The total input to unit k is simply the weighted 
sum of the separate outputs from each of the connected 
units plus a bias or offset term θk, 

 
 
                           (1) 
 

 
The contribution for positive wjk is considered as an 
excitation and for negative wjk as inhibition. In some 
cases, more complex rules for combining inputs are 
used, in which a distinction is made between excitatory 
and inhibitory inputs. We call units with propagation rule 
(1) sigma units. 
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Figure 2. Activation function. 

 
 
 

A different propagation rule, introduced by Feldman and 
Ballard, is known as the propagation rule for the sigma-pi 
unit, 
 

 
 
                                  
               (2) 

 
Often, the yjm are weighted before multiplication. Although 
these units are not frequently used, they have their value 
for gating of input, as well as implementation of lookup 
tables. 
 
 
Activation and output rules 
 
It also needed a rule which gives the effect of the total 
input on the activation of the unit. We need a function Fk 
which takes the total input sk (t) and the current activation 
yk (t) and produces a new value of the activation of the 
unit k: 
 
                                    
        
                                                                                       (3) 
 
Often, the activation function is a non-decreasing function 
of the total input of the unit, although activation functions 
are not restricted to non-decreasing functions. Generally, 
some sort of threshold function is used: A hard limiting 
threshold function (a SGN function), or a linear or semi-
linear function, or a smoothly limiting threshold (Figure 2): 
 

 
 
 
 

                                                                                       (4)                                                                               
 
For this smoothly limiting function often a sigmoid (S-
shaped) function like (5) is used. In some applications, a 
hyperbolic tangent is used, yielding output values in the 
range [-1 to +1]: 
 

 
                             (5) 
 

 
 
 
 
In some cases, the output of a unit can be a stochastic 
function of the total input of the unit. In that case, the 
activation is not deterministically determined by the 
neuron input, but the neuron input determines the 
probability p that a neuron gets a high activation value, in 
which T (temperature) is a parameter which determines 
the slope of the probability function:  
 

 
                                           (6) 
 

 
 
Network topologies 
 
Here, the pattern of connections between the units and 
the propagation of data was focused on. As for this 
pattern of connections, the main distinction we can make 
is between: 
 
1. Feed-forward networks, where the data flow from input 
to output units is strictly feed forward. The data 
processing can extend over multiple (layers of) units, but 
no feedback connections are present, that is, connections 
extending from outputs of units to inputs of units in the 
same layer or previous layers. 
2. Recurrent networks that do contain feedback 
connections. Contrary to feed-forward networks, the 
dynamical properties of the network are important. In 
some cases, the activation values of the units undergo a 
relaxation process such that the network will evolve to a 
stable state in which these activations do not change 
anymore. In other applications, the changes in the 
activation values of the output neurons are significant, 
such that the dynamical behaviour constitutes the output 
of the network. 
 
 
DEVELOPMENT OF A NEURAL NETWORK MODEL 
 
The network used in the program is a feed forward 
network with back propagation learning rule. Training 
begins with all weights set to random numbers. For each 
data record, the predicted value is compared to the 
desired (actual) value and the weights are adjusted to 
move the prediction closer to the desired value. Many 
cycles are made through the entire set of training data 
with the weights being continually adjusted to produce 
more accurate predictions. 
 
 

Architecture of the proposed artificial neural network 
 
The artificial neural network architecture developed by hit 
and trial method has one input layer, one output layer 
and two hidden layers with 4, 3, 3, 1 neurons in the layers 
respectively. The ranges of the inputs for the four layers 
are specified. Figure 3  shows  overview  of  the  network.  
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Figure 3. Typical back propagation network. 

 
 
 
The activation function for the input and the two hidden 
layers is chosen as tansigmoidal function. The activation 
function for the output layer is chosen as purelinear 
function. 

The network is then simulated for the input values and 
a graph is plotted between the output and target (neural 
network output) values. The network created is trained for 
the input and output values. The stopping criterion for 
training is number of epochs and is given as 300. The 
network is again simulated for the input values and a 
graph is plotted between the output and target (neural 
network output) values. The deviations are noted from 
the graphical output of the program. The input values for 
the test readings are then given and the network is 
trained. The target value is then obtained and compared 
with actual output. The network has an input layer, two 
hidden layers and an output layer (Figure 4). 
 
 
Input layer 
 
The input layer has four neurons (Figure 5). 
 
 
First hidden layer 
 
First hidden layer has three neurons (Figure 6). 

Second hidden layer 
 
Second hidden layer has three neurons (Figure 7). 
 
 
Output layer 
 
The output layer has a single neuron (Figure 8). 
 
 
Execution of experiments 
 
The tests were performed on a CNC turning center. The 
brass C26000 metal work piece with dimensions of 
diameter 20 mm and length of 85 mm was clamped onto 
to the turret of the machine table.  Surface roughness 
measurement was done off line with the usage of TIME 
TR100 surface roughness tester. The radius of the stylus 
point is 10.0 ± 2.5 micron and the traversed length is 6 
mm.  

The experimental setup consists of a CNC machine, 
battery unit for back up purpose, power supply and the 
whole setup is connected to the computer interface.  A 
computer numeric control (CNC) program was written to 
perform the turning process. The parameters defined in 
the CNC machine were: Spindle speed (x1), feed rate 
(x2), depth of cut (x3). According to the acceptable ranges  
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Figure 4. Overview of the network. 

 
 
 

 
 
Figure 5. Input layer. 

 
 
 

 
 
Figure 6. First hidden layer. 

 
 
 
of spindle speed and feed rate when cutting brass with a 
CNMG 120408 insert with a tool holder PCLNR120408 
and nose radius of 0.8, a series of procedures were used 
to  determine  the  cutting  parameters,  such  as   spindle 

speed, feed rate, and depth of cut and then an NC 
program is written to execute the cutting operations. 
Three levels of each factor were selected. Following are 
the cutting parameters  used  in  the  experiment:  spindle  
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Table 1. Experimental readings and actual roughness. 
 

S. No 
Spindle 

Speed (rpm) 
Feed rate 
(mm/rev) 

Depth of 
cut (mm) 

Roughness Roughness 

(µm) Trial1 Trial2 Trial3 Average 

Training set 

1 2500 0.05 0.2 0.95 0.93 0.92 0.9333 0.7933 

2 2500 0.05 0.3 1.01 0.96 0.98 0.9833 0.8433 

3 2500 0.05 0.4 1.07 1.08 1.11 1.0867 0.9467 

4 2500 0.12 0.2 1.44 1.47 1.49 1.4667 1.3267 

5 2500 0.12 0.3 1.33 1.3 1.28 1.3033 1.1633 

6 2500 0.12 0.4 1.56 1.59 1.61 1.5867 1.4467 

7 2500 0.15 0.2 1.13 1.1 1.07 1.1000 0.9600 

8 2500 0.15 0.3 1.17 1.14 1.12 1.1433 1.0033 

9 2500 0.15 0.4 1.12 1.09 1.13 1.1133 0.9733 

10 3250 0.05 0.2 0.94 0.95 0.96 0.9500 0.8100 

11 3250 0.05 0.3 1.01 1.05 1.07 1.0433 0.9033 

12 3250 0.05 0.4 1.14 1.15 1.12 1.1367 0.9967 

13 3250 0.12 0.2 1.13 1.08 1.09 1.1000 0.9600 

14 3250 0.12 0.3 1.36 1.38 1.4 1.3800 1.2400 

15 3250 0.12 0.4 1.62 1.63 1.63 1.6267 1.4867 

16 3250 0.15 0.2 1.1 1.08 1.13 1.1033 0.9633 

17 3250 0.15 0.3 1.24 1.26 1.21 1.2367 1.0967 

18 3250 0.15 0.4 1.33 1.29 1.29 1.3033 1.1633 

19 3500 0.05 0.2 1.06 1.08 1.1 1.0800 0.9400 

20 3500 0.05 0.3 1.11 1.07 1.1 1.0933 0.9533 

21 3500 0.05 0.4 1.23 1.25 1.27 1.2500 1.1100 

22 3500 0.12 0.2 0.94 0.95 0.93 0.9400 0.8000 

23 3500 0.12 0.3 1.37 1.35 1.39 1.3700 1.2300 

24 3500 0.12 0.4 1.24 1.24 1.21 1.2300 1.0900 

25 3500 0.15 0.2 1.16 1.14 1.15 1.1500 1.0100 

26 3500 0.15 0.3 1.21 1.18 1.21 1.2000 1.0600 

27 3500 0.15 0.4 1.19 1.19 1.18 1.1867 1.0467 

         

Test readings 

28 2750 0.08 0.15 1.21 1.19 1.23 1.2100 1.0700 

29 2750 0.08 0.25 1.2 1.21 1.21 1.2067 1.0667 

30 2750 0.08 0.35 1.2 1.18 1.2 1.1933 1.0533 

31 3000 0.1 0.15 1.44 1.43 1.4 1.4233 1.2833 

32 3000 0.1 0.25 1.55 1.55 1.55 1.5500 1.4100 

33 3000 0.1 0.35 1.21 1.19 1.19 1.1967 1.0567 

34 3300 0.13 0.15 1.57 1.58 1.6 1.5833 1.4433 

35 3300 0.13 0.25 1.24 1.27 1.28 1.2633 1.1233 

36 3300 0.13 0.35 1.44 1.42 1.44 1.4333 1.2933 

 
 
 
speed (2500, 3250, 3500 rpm), feed rate (0.05, 0.12 and 
0.15 mm/rev) and depth of cut (0.2, 0.3, 0.4 mm). Thus, 
there were totally 36 specimens in this experiment. 

All specimens in this experiment were machined under 
dry cutting conditions. Coolants are generally avoided to 
reduce costs and prevent tool breakage due to thermal 
shock. The tool was checked time to time to make sure 
that  it  was  still  functioning  properly.   Also,  after  every 

specimen was cut, the cutting tool was cleaned to avoid 
chip formation or a built-up edge (BUE) which might 
affect the surface roughness of the following specimens. 
In addition, the following assumptions were made: (1) 
The cutting tools used are identical in property; (2) The 
hardness of each work piece is same throughout the 
length of the work piece; (3) Surface roughness values 
are   not   affected   by   abnormal   factors;   (4)   Surface
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Table 2.   Percentage deviations between actual roughness values and predicted roughness values. 
  

Sample 
number 

Spindle 
speed 
(rpm) 

Feed 
rate 

(mm/rev) 

Depth of 
cut 

(mm) 

Roughness 
average 

Normalised 

Actual 
roughness 

(µm) 

Matlab 
readings 

(µm) 

Difference 
Percentage 
deviation 

28 2750 0.08 0.15 1.2100 0.785714286 1.0700 1.0004 0.0696 6.504673 

29 2750 0.08 0.25 1.2067 0.785714286 1.0667 1.3283 0.261633 24.52813 

30 2750 0.08 0.35 1.1933 0.785714286 1.0533 1.4056 0.352267 33.44304 

31 3000 0.1 0.15 1.4233 0.857142857 1.2833 0.8909 0.392433 30.57922 

32 3000 0.1 0.25 1.5500 0.857142857 1.4100 1.3305 0.0795 5.638298 

33 3000 0.1 0.35 1.1967 0.857142857 1.0567 1.5215 0.464833 43.99054 

34 3300 0.13 0.15 1.5833 0.942857143 1.4433 0.8526 0.590733 40.92841 

35 3300 0.13 0.25 1.2633 0.942857143 1.1233 1.2937 0.170367 15.16617 

36 3300 0.13 0.35 1.4333 0.942857143 1.2933 1.0494 0.243933 18.86082 

Average 24.40437 

 
 
 

 
 
Figure 7. Second hidden layer. 

 
 
 

 
 
Figure 8. Output layer. 

 
 
 
roughness values measured within the measuring area 
are sufficient to represent the  roughness  of  entire  work 

piece; (5) The effect of approach angle is not considered; 
(6) Vibration is  negligible,  and  (7)  Tool  nose  radius  is  



 
 
 
 
constant. 

 
 
RESULTS AND DISCUSSION 
 
The actual roughness values have been calculated for 
each set of readings and the same are compared with 
predicted roughness values obtained by using Matlab 7 
software. The percentage deviation between actual 
roughness values and predicted roughness values have 
been calculated and tabulated which is shown in Table 2. 
Average percentage deviation is 24.4%.  

 
 
Comparison of graphical results 
 
Figure 9 shows comparison between actual and 
predicted roughness values and some of the specimens 
only deviating from the actual roughness values.  

Figure 10 shows plot between relative piece numbering 
and percentage deviation between  actual  and  predicted  
surface roughness. The percentage of deviation is about 
24.4%. 

Figure 11 shows the interaction plot between speed 
and surface roughness at constant depth of cut of 0.2 
mm. Feed values are taken as 0.05, 0.12 and 0.15 
mm/rev and this plot obviously predicts that surface 
roughness value decreases with increase in speed and 
feed for smaller depth of cut. 

Figure 12 shows the interaction plot between speed 
and surface roughness at constant depth of cut of 0.3 
mm. Feed values are taken as 0.05, 0.12 and 0.15 
mm/rev and in this plot, roughness values are not 
affected more while increasing speed and feed. 

Figure 13 shows the interaction plot between speed 
and surface roughness at constant depth of cut of 0.4 
mm. Feed values are taken as 0.05, 0.12 and 0.15 
mm/rev and this plot clearly predicts that surface 
roughness value increases up to certain level and 
decreases with increase in speed and feed for larger 
depth of cut. 

Figure 14 shows the interaction plot  between  depth  of 
cut and surface roughness at constant feed of 0.05 
mm/rev. Speed  values are set as 2500, 3250 and 3500 
rpm and this plot clearly predicts that surface roughness 
value is increased considerably with increase in speed 
and depth of cut for smaller feed rate. 

Figure 15 shows the interaction plot between depth of 
cut and surface roughness at constant feed of 0.12 
mm/rev. Speed values are set as 2500, 3250 and 3500 
rpm and this plot expresses that surface roughness value 
is increased to certain level and decreased predominantly 
for higher speed and the surface roughness value is 
decreased to certain level and decreased obviously for 
lower speed with comparatively increase in feed rate. 

 Figure 16 shows the interaction plot between depth of 
cut  and  surface  roughness  at  constant  feed   of   0.15  
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mm/rev. Speed values are set as 2500, 3250 and 3500 
rpm  and this plot depicts that roughness value is affected 
with increase in depth of cut and increase in speed also 
while increasing feed comparatively. 

Figure 17 shows the interaction plot between feed rate 
and surface roughness at constant Speed of 2500 rpm. 
Depth of cut values are set as 0.2, 0.3, and 0.4 mm and 
this plot obviously predicts that surface roughness value 
is increased to certain level and decreased considerably 
for increasing feed rate and decreasing depth of cut for 
comparatively smaller spindle speed.  

Figure 18 shows the interaction plot between feed rate 
and surface roughness at constant speed of 3250 rpm. 
Depth of cut values are set as 0.2, 0.3 and 0.4 mm and 
this plot absolutely expresses that surface roughness 
value is increased to certain level and decreased 
considerably with increase in feed and depth of cut and 
also increase in speed comparatively. 

Figure 19 shows the interaction plot between feed rate 
and surface roughness at constant speed of 3500 rpm. 
Depth of cut values are set as 0.2, 0.3 and 0.4 mm and 
this plot obviously depicts that surface roughness value is 
decreased considerably to a certain level and increased 
for smaller depth of cut and increased feed at 
comparatively higher speed. And the surface roughness 
value is increased considerably to a certain level and 
decreased with increase in feed rate and higher depth of 
cut at comparatively higher speed. 
 
 

Conclusion 
 

In this work, 36 specimens which are made up of the 
brass C26000 material have been machined in a CNC 
turning machine and then a TIME TR 100 surface 
roughness tester had been used to measure the 
roughness average (Ra) values of all the specimens. The 
surface recognition model had been developed through 
artificial neural networks technique. This type of model 
had been evaluated by means of the percentage 
deviation between the predicted Ra values and the actual 
Ra values. The important conclusions drawn from the 
present research are summarized as follows: 
  
1. The surface roughness could be effectively predicted 
by using spindle speed, feed rate, and depth of cut as the 
input variables. 
2. Considering the individual parameters, feed rate had 
been found to be the most influencing parameter, 
followed by spindle speed and depth of cut. 
3. Model (including interaction terms), considering the 
interaction between the individual parameters, could 
achieve an accuracy of 75.6%. 
4. The average actual roughness Ra value had been 
obtained as 1.1999 µm and the corresponding predicted 
surface roughness value is 1.1859 µm.  
5. As the spindle speed increases for lower feed rates, 
the surface roughness decreases. For higher  feed  rates, 
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Figure 9. Comparison of actual and predicted roughness values.  

 
 
 

 
 
Figure 10. Percentage deviation between actual and predicted roughness values. 
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Figure 11. Spindle speed vs surface roughness at DOC = 0.2 mm. 
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Figure 12. Spindle speed vs surface roughness at DOC = 0.3 mm. 
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Figure 13. Spindle speed vs surface roughness at DOC = 0.4 mm. 
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Figure 14. Depth of cut Vs Surface roughness at feed rate = 0.05 mm/rev. 
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Figure 15. Depth of cut vs surface roughness at feed rate = 0.12 mm/rev. 

 
 
 

     Depth of cut (mm) 

  
  

S
u

rf
a
c

e
 r

o
u

g
h

n
e
s
s

 (
µµ µµ

m
) 

Constants: Feed rate = 0.15 (mm/rev) 

 
 
Figure 16. Depth of cut Vs surface roughness at feed rate = 0.15 mm/rev. 
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Figure 17. Feed rate vs surface roughness at spindle speed = 2500 rpm. 
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Figure 18. Feed rate vs surface roughness at spindle speed = 3250 rpm. 
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Figure 19. Feed rate vs surface roughness at spindle speed = 3500 rpm. 

 
 
 
the surface roughness changes considerably. 
6. As the depth of cut influences the surface roughness 
considerably for a given feed rate, the increase in feed 
rate causes the surface roughness to increase and then 
decrease. For lower depth of cut, as the feed rate 
increases surface roughness decreases and then 
increases. 
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