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The main aim of this paper is to assess and compare the relative importance of the effects of
considering the fluid presence and the bond imperfection while evaluating the non-axisymmetric
dynamic response of an imperfectly bonded empty as well as fluid filled orthotropic thin cylindrical
shell buried under soil and excited by compressional wave (P-wave). While applying thin shell theory,
the effect of shear deformation and rotary inertia need not to be considered. The pipeline had been
modeled as an infinite cylindrical shell imperfectly bonded to surrounding. A thin layer is assumed
between the shell and the surrounding medium (soil) such that this layer possesses the properties of
stiffness and damping both. The effects of the fluid presence on the shell displacement have been
studied for different soil conditions and at various angles of incidence of the longitudinal wave. It is
observed that magnitude of the dynamic response of fluid filled pipeline is more than that of an empty
pipeline. Axial and radial deflection of thin pipe is considerable even under hard soil conditions under
imperfect bonding of pipe with soil. Numerical results have been presented for the longitudinal
compressional wave (P- wave) only.

Key words: Orthotropic, Imperfect bond, seismic wave, non-axisymmetric, dynamic response, buried pipelines,

thin shell.

INTRODUCTION

Growing urbanization has created congestion and
problem of space for providing above ground utility
services. In recent years, the use of underground power
cabling, lying down of optic fiber communications line and
water supply lines have been finding increasing use of
thin shell pipes made of different types of orthotropic
materials. After arrival of reinforced plastic mortar (RPM)
pipes and its increasing use in providing utility services to
ever-growing urban population, need was felt to analyze
the pipe of orthotropic materials under static and dynamic
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conditions. The behavior of buried pipeline is observed to
be significantly different from above ground pipes.
Response of these buried pipes under seismic or other
dynamic conditions requires to be analyzed.

During past few years, number of papers like Cole et al.
(1979), and Singh et al. (1987) has appeared on the
axisymmetric dynamic response of buried orthotropic
pipe/shells. Later Chonan (1981), Dwivedi and Upadhyay
(1989, 1990, 1991) and Dwivedi et al. (1991) have
analyzed the axisymmetric problems of imperfectly
bonded shell for the pipes made of orthotropic materials.
Upadhyay and Mishra (1988) have presented a good
account of work on non-axisymmetric response of buried
thick orthotropic pipelines under seismic excitation.
Results show that that there is negligible axial and radial
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Figure 1. Geometry of the problem.

deflection of empty as well as fluid filled thick shell. Again
Dwivedi et al. (1992a, 1992b), Dwivedi et al. (1993a,
1993b, 1996), and Dwivedi et al. (1998) have analyzed
the non-axisymmetric problem of imperfectly bonded
buried thick orthotropic cylindrical shells. Kouretzis et al.
(2007) have presented analytical calculation of blast-
induced strains on buried pipe lines. Hasheminajad and
Kazemirad (2008) dynamic response of an eccentrically
lined circular tunnel in poroelastic soil under seismic
excitation. Lee et al. (2009) in their paper had done the
risk analysis of buried pipelines using probabilistic
method. But in all these analyses, pipeline had been
modeled as thick shell. Rajput et al (2010) have reported
comparison of non-axisymmetric dynamic response of
imperfectly bonded buried orthotropic thick and thin fluid
filled cylindrical shell due to incident shear wave (SH
Wave) and have also presented non-axisymmetric
dynamic response of imperfectly bonded buried
orthotropic thin fluid empty cylindrical shell due to incident
compressional wave.

As far as the non-axisymmetric dynamic response of
thin shell is concerned, no work had been reported so far.
Therefore, present paper attempts to analyze the effect of
imperfect bond between pipe and surrounding medium
on the non- axisymmetric dynamic response of buried
orthotropic thin pipelines. A theoretical analysis of the
non-axisymmetric steady state dynamic response of
buried fluid-filled pipelines excited by seismic waves
travelling in the surrounding infinite medium (soil) is
presented. An infinite cylindrical shell model had been
used for the thin pipeline. Comparisons of the numerical
results for a fluid-filled shell with those for an empty shell
have been presented and discussed.

BASIC EQUATIONS AND FORMULATIONS

The pipeline had been modeled as an infinitely long cylindrical shell
of mean radius R and thickness h. It is considered to be buried in a
linearly elastic, homogeneous and isotropic medium of infinite
extent. Basic approach of the formulation is to obtain the mid plane
displacements of the shell by solving the equations of motion of the
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orthotropic shell. Traction terms in the equations of motion are
obtained by solving the three-dimensional wave equation in the
surrounding medium. Appropriate boundary conditions are applied
at the shell surfaces. Equations arising out of boundary conditions
along with the equations of motion of the shell are simplified to yield
a response equation in matrix form.

Equation governing the non axis-symmetric motion of an infinitely
long orthotropic cylinder had been derived following the approach of
Herrman and Mirsky (1957), Displacement at a particular point in
the shell is taken in the form:

Ux(z, 8,x,t) = u( ,x,t) + Zyx (8,X,1)

Us(Z, 8,X,1) = V(8,X,t) + Zye (8,X,1)

Uz(z, e,x,t) =w(e,xt),

where u,, Ue, Ux are displacement component of a point in the shell.

Considering an infinitely long cylindrical shell of mean radius R and
thickness h buried in a linearly elastic, homogeneous and isotropic
medium of infinite medium, a thin layer is assumed between the
shell and the surrounding medium (soil). The degree of imperfection
of the bond is varied by changing the stiffness and the damping
parameters of this layer. The shell is excited by a longitudinal wave
(p-wave). A wave of wavelength A (=2I1/€) is considered to strike
the shell at an angle ® with the axis of theshell (as shown in Figure
1). Let a cylindrical polar co-ordinate system (r, 6, x) is defined such
that x coincides with the axis of the shell and, in addition, z is
measured normal to the shell middle surface, which is given as:

z=r—R, -h/2<z<h/2 (1)
The basic equations which describe the dynamic behavior of
cylindrical shells with bending resistance under arbitrary loads are
derived from the system of equations which had been presented by
Upadhyay and Mishra (1988). But in the thin shell theory, effect of
shear deformation and rotary inertia is not considered. After
equating all the inertial and moments term equal to zero, the
equilibrium equations of thick shell in stress form (from above
reference) reduces to:

100, 00, N ’w
E@Hg-‘- x I§9+P1 =Ph—3: a
+B ;
R 06 ax R pha 27 @
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Where N, s Nggs N, gs Ng.and M M ggs M o3 M . are

xx?°
stress resultants and moments respectively.

In connection with the equation of equilibrium, it can be argued that
transverse shearing force Qg makes a negligible contribution to
equilibrium of forces in circumferential direction. So after making
0, equal to zero in Equation 2(b), the values of O, and Qx are

determined from Equation 2(c) and (e) and putting it into Equation
2(b) and (d), above equations reduces to:

OMy My Mg, 1 Mgy Ngp, e 0°W,

ox* Raaax RO®x R2 06> R or?’
(3a)
v
1 W Mooy @7,
R0 & o (30)
N, , 1 9N, 0’u
= +P h
o TR a9 ThTAMGEE
(3¢c)

For thin shell theory, shear deformation is not considered due to
negligible thickness. So the shear strain components according to
Herrman and Mirsky (1857) about z-axis in r-6 and r-x plane

Y and 7.6 Will be zero (no coupling is there due to negligible

thickness) but at the same time shear stress component would be
there due to Kirchhoff's hypothesis. So according to Herrman and
Mirsky (1957)

ow
N

Lo
R+z00

}/xz l//x ’

1
Vo= +'/’9—R+Z(V+Z'/’9):0

So from the above equations:

ow

Ve=— P

1 w
Vo = E(V - %),

Here ¥, and ¥, are angle of rotation in r-x and r-6 plane but in

the r-6 plane the tangential deflection is negligible compared to
component of radial deflection in that direction. So:

z_aw'
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1 ow
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From the above, stress resultants come out to be:
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(5)
Here, Gy, Gxz, Gzo are shear moduli of the shell Material. When
these values of stress resultants are placed into above equations of

equilibrium, it results in the required equation of motion of shell in
the matrix form as:

{3 {U+{P}=0
(6)

where [L] is a 3x3 matrix operator and terms {P*} is column matrix
" D 9o D o' 2w,D 9
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Where, w, v and u are the displacement components of the middle
surface of the shell in the radial, tangential and axial directions
respectively. The elements of column matrix {P} are given by
Herrman and Mirsky (1957) as:

P = [1+i]0',7
R 2z

# Z
P3 = Z(l'i‘EJO-ZG

* Z h
A

where, o; denotes the stresses with their usual meaning, but for thin

h/2

# Z
ﬂ{/i , Py= [1"';]0_:9

ni2 o 4
—h/2> P4 - (1+;J0zx

shell P; and P; are zero. Different constants appearing in the
expressions for Lj; are defined as:

. h?
P12

2
E])=7E‘h , E;=7E9h , D=Eph—, D'=E
1=V gV 1=V, Vo 12

Where, moment of inertia, I=h®/12 and E,, Ee are elastic moduli, vye,
vex the Poisson ratio and p is the density of the shell material. 'n’
indicate the mode in circumferential direction; n = 0 represents the
axisymmetric mode.

For the evaluation of {P}, stress o; at z = * (h/2) must be
determined in the terms of incident and scattered field in the
surrounding ground. The total displacement field in the ground is
written as:
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d=d" +d®

Where, superscripts i and s represents the incident and scattered
parts of deflection respectively. By solving the wave equation in the
surrounding infinite medium, the components of incident and
scattered fields can be written as (Chonan, 1981):

, . Or
{ﬂn %}Bl + {_ lﬁl&n E}B3

d\" = cosn@expli&(x—ct)]
R or
+yn—1I,—B;
r R
{— nRy ”}Bl + {inR Bl (5’)}33
() r "R r R . .
dy = 5 sinn@explié(x —ct)]
+ {— qa, }BS
R
and

d¥ = Hzﬁll W}B +{52 i}&}xcosnﬁexp{if(x—ct)]
@)

where, B, =B, /R, B;=B,/R*B;=B,/R and ( )

denotes differentiation with respect to the argument of the Bessel

functions. The constants By, Bs and Bs depend on the parameters
of the incident wave and may be expressed as:

A A A
B :(—1)”“[1';(‘} By = (—1)"[1';( 2 ] B = (—1)”(1—3J
1 £ 3 582 5 S

(8)

B T TG N

et

. Vi 2 o
d® = {Z'BlK" (EJ}BZ - {5 K, (EJ}B“ cosneexp[if(x —c1)]

9)

dy) = simBexgi&(x—ci)|

Where, d;, ds, dx components of displacement vector, A ;A,; A,
are amplitudes of P, SV, SH waves respectively and
B,=B,/R,B,=B,/R*and B;=B,/R. B.....B, are
arbitrary constants. Stress field due to the incident wave can be

obtained by plugging above equations into the stress-displacement
relations of the medium, and is given by:
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where, |, () are modified Bessel functions of first kind, J, () are
Bessel function of first kind and K, ( ) are modified Bessel functions
of second kind

conbexplx—ci)

(10)

With the help of above equations, the stresses at the outer surface
of the shell (z =h/2 or r = R + h/2) can be obtained. Thus {P} in
Equation (2) can be determined. For any disturbance propagating in
the fluid governing linear acoustic equations are the continuity
equation and the Euler equation of motion. These are given as
follows:

Il
<
<

Ip - _
—+ V (V ,. V)V
ot ( f ) S pf

Displacement d(r,6, x, t) at any point, satisfied the equation of
motion:

2
¢/ V(V.d)~-c;VAVAd = z?_(d)

(11)

172 /2

(4+24) 7

where, ¢, =< ——=¢ and ¢, ={-— are the speeds of
P P

dilatational and shear waves respectively in the infinite medium.

Further, A and p are the Lame’s constant, and pn, is the density of
the medium.

Now the mid plane displacement and slopes are assumed to be of
the form:

W = W () cosn® exp[i§(x-ct)]
V =V sinn6 exp[i§(x-ct)]

U = U ) cosné exp[ig(x-ct)] (12)

Plugging Equation (12) in Equation (2) and (11) along with the
expression for {P*}, a set of three simultaneous algebraic equations
were obtained. Four more equations were obtained by imposing the
boundary conditions at the inner and outer surfaces of the shell,
that is:

w = (d?) + dES))r:R+h/2
v+ (h/2)%=(dY +dS),_rinn

ut+ /2y, =@dV +d®) i

Boundary conditions at the outer surface of the shell (r = R + h/2)
are obtained by assuming that the shell and the continuum are
joined together by a bond which is thin, elastic and inertia less. This
implies that the stress at the shell-soil interface is continuous. To
take the elasticity of the bond into account, the stresses in the bond
are assumed proportional to relative displacements between the
shell and continuum. g shear modulus of medium and p density of
shell material
The inner surface of the shell

displacement had been assumed, that is,

aw _ {M}
at at r=R-h/2

a i s
(er)r:R+h/2 = [(Sx +Zx _t)(/ux TH U —(}’—

continuity of the radial

R)l//x ]r:R+h /2
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a i s
(O-rg)r=R+h/2 = [(SH + ZH 5)(#9 + Uy — ”(r - R)l/lﬁ]r=R+h/2

(14)

7
- =—, d T
S,.R’§0 SGR o &= S R °

the non stiffness coefficient of the bond in radial, and axial direction,

Y7,
r-#£ -~ L=
Z.c o Z4c, and +C1 are
the non damping coefficient of the bond in radial, tangential and
axial direction, respectively.
Thus, in-all seven algebraic equations are obtained. These seven

equations when simplified give the final dynamic response
equation, which may be put into the form

Where, ;R =

respectively;

1 2 3
(0} U,) =B, {F'}+B,{F*}+ B,{F°}
(15)
Where [Q] is a (7x7)) matrix and {F'}, {F% and {F%} are (7x1)
matrices. But for the response of longitudinal wave, the amplitudes
due to shear waves B3 and B5 would be zero so the effect of
{F% and {F*} matrices would be eliminated. After putting values of

B3 = B5 =0 and substituting values of Bl from Eq Equation (8),
Equation (15) becomes

{Q}{Uo}=<—l)"“[w§J ¥}
1

(16)
Now if the unknown matrix {UO} is non-dimensionalized with

respect to the amplitude of the incident wave (A+), the elements of
above Q and F matrix are as follows:
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Qs =1,Qs2 = Quz = 0,
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Figure 2. Axial displacement (U) vs. wave number ( ) with soil stiffness ¢ as parameter.

oo 5] 2o

Here it must be pointed out that for an incident P-wave, strain €1 =
B (a non-dimensional wave number of incident wave). Whereas, for
an incident shear wave (SV-wave or SH-wave) €2 = B. In the
present work, the non-dimensional wave number of the incident
wave, that is, B (= 2n R/A) has been given as input, so either e+ or
€2 is always known. The other € can be obtained by using the
following relation:

2
(6_2) =i=M (17)

€ C% (1-2Vm)

where v, is the Poisson ratio of the medium.

RESULTS AND DISCUSSION

Results are presented for a transversely isotropic shell
with r-0 as the plane of isotropy.
Consequently £, = E.,G,.=G,4,V,y=V,., Vg, =V,0,
G,o=E;/2(1+v,). Thus we have

ny=mn,andn, =G,,/E =n/21+v,). In  addition

Vg =V.,=03 has been taken in the numerical
calculations. Different values of shell orthotropy
parameters 77, and T, are used as 0.5, 0.01, 0.05 and

0.1, 0.05, 0.02, respectively. Soil parameter ; had been

varied from 0.1 to 10.0 to take into account different soil
conditions around the pipe, representing soft to hard soil.

For all the values of u, v, = 0.25 had been assumed.

Thickness to radius ratio of the shell (/) had been taken
as 0.01 and the density ratio of the surrounding medium

to the shell (p) had been taken as 0.75. Non-
dimensional amplitude of the middle surface of the shell
in the radial and axial directions (W andU ) have been
plotted against the non-dimensional wave number of the
incident P-wave (B=2nR/A). The shell response had been

shown for empty and fluid filled shell for non-
axisymmetric mode (flexural mode, n = 1) taking stiffness

coefficients (;x 4/9 ;,) and damping coefficients

(I', T, I',) as parameters. Figures 2 to 4 shows the
effect of stiffness coefficient ¢ on axial displacement

U of the shell for soft, medium and hard types of soll
respectively. At small angle of incident wave and for soft
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Figure 3. Axial displacement (U) vs. wave number ( £ ) with {_as parameter.

0B

07 Huid filled ----

0.6 Empty_—

0.5}

04

o 0.1 0.2 0.3 04 05 0.6 o7 o8 0.9
P

¢=60",2=10,{, =0.1110

Figure 4. Axial displacement (U) vs. wave number (B ) with é’x as parameter.
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Figure 5. Axial displacement (U) vs. wave number (B ) with FX as parameter.

soil, the effect of soil stiffness " is more in fluid filled

shell as compare to empty shell, but at higher angle of
incident wave and for hard soil, the effect of {’ on axial

displacement is more in fluid filled shell as compare to
empty shell as shown in Figure 4.
Figures 5 to 7 shows the effect of damping coefficient

I" on axial displacement U of the shell. At small angle of

incident of the wave number and for soft soil the effect
ofI"_ is more in fluid filled shell as compare to empty

shell, but at higher angle of incident of the wave number
and for hard soil the effect of I" _ is more in fluid filled shell

as compare to empty shell. Figure 5 shows that at higher
wave number with higher angle of incidence under hard
soil condition, the axial displacement is negligible both in
the case of empty shell as well as fluid filled shell. The
axial displacement is significant in fluid filled shell as
compared to empty shell buried under soft soil.

Figures 8 to 9 shows the effect of stiffness coefficient

¢ . on radial displacement W of the shell with increasing

wave number under different soil conditions. The radial
displacement of fluid filled shell, first decreases then
increases with increasing value of wave number. A
reverse phenomenon can be seen in case of empty shell.
Under imperfect bond conditions, radial displacement in
empty shell is more predominant.

Figures 11 to 13 show the effect of damping coefficient
[ on radial displacement of the shell W . As wave

number increases radial displacement first decreases
then increases with increasing value of I", in medium soil

in case of fluid filled shell but trend is reversed in empty
shell at higher incidence angle.

Figure 14 shows the effect of orthotropy parametern,

on axial displacement of the shell with soil stiffness as
another variable. Results show that orthotropy

parameterm, has negligible effect on the response in the

case of fluid filled and empty shell.

Figures 15 and 16 shows the effect of density of fluid
on radial and axial displacement of the buried thin shell,
respectively. Fluid density had been taken as variable
and its value has been varied from 0.13 to 0.66. Results
show that with increasing density of the fluid, radial
displacement increases and axial displacement
decreases.

Conclusions

To study the effects of the fluid presence on the thin shell
displacement, under different soil condition at various
angles of incidence of the longitudinal wave under
imperfect bonding, parametric results in graphical
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Figure 16. Axial displacement (U) vs. wave number ( £ ) with fluid density ( 0 ) as parameter.

form have been generated. Based on the results
presented, following general conclusions could be drawn:

1. It is found that magnitude of the response of fluid filled
pipeline can become even more than that of an empty
pipeline, and hence, it cannot be assumed that a fluid
filled pipeline will always furnish safe and conservative
response.

2. Both the shell orthotropic parameters influence the

radial displacement equally well but M, has a stronger

influence on the axial displacement thanm; .

3. The density of the fluid becomes the important
parameters in determining the shell response if incident
longitudinal wave is of smaller wavelength.

4. The fluid filled pipeline response assumes
considerable importance in soft soil condition and at
higher apparent wave speed.

5. The fluid filled pipeline response due to incident
longitudinal wave is significant only at large angle of
incidence. Its response effect is small in hard shell.

6. For large angle of incidence, radial deflection is higher
in fluid filled pipe as compared to empty shell. Thus for
larger wavelength, empty pipe response is more

important because the most common cause of pipeline
failure is excessive axial deformation, while at smaller
wavelength the fluid filled pipe has much importance for
axial displacement.

7. Axial deflection and radial deflection both increase
when the value of bonding parameter stiffness coefficient

(§, ¢, ¢,) and damping coefficient (I' T, T,)

increase from zero to infinity (perfect to imperfect
bonding) as variable.

8. The presence of fluid inside the shell, in general affects
the radial displacement of the shell much more than the
axial displacement, and in certain cases the change in
radial displacement due to fluid presence is more
prominent than that realized by variation of the bond
parameter.
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